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Abstract

A relatively simple approach to Nonlinear Predictive Generalized Minimum Variance (NPGMYV) control is
introduced for nonlinear discrete-time multivariable systems. The system is represented by a combination
of a stable nonlinear subsystem where no structure is assumed and a linear subsystem that may be unstable
and modelled in polynomial matrix form. The multi-step predictive control cost index to be minimised
involves both weighted error and control signal costing terms. The NPGMV control law involves an
assumption on the choice of cost-function weights to ensure the existence of a stable nonlinear closed-loop

operator. A valuable feature of the control law is that in the asymptotic case, where the plant is linear, the



controller reduces to a polynomial matrix version of the well known GPC controller. In the limiting case
when the plant is nonlinear and the cost-function is single step the controller becomes equal to the
polynomial matrix version of the so called Nonlinear Generalised Minimum Variance controller. The
controller can be implemented in a form related to a nonlinear version of the Smith Predictor but unlike this
compensator a stabilizing control law can be obtained for open-loop unstable processes.

Keywords: polynomial systems, optimal, predictive, nonlinear, minimum variance, transport delays.

1  Introduction

The aim is to introduce a relatively simple controller for nonlinear systems and one that has some of the
advantages of the popular polynomial based Generalised Predictive Control (GPC) algorithms. It is well
known that nonlinear (NL) systems have more complex behaviour than linear systems, including limit cycle
responses and chaotic behaviour. The proposed controller does not rely on local linearization and it
provides a global optimal control solution.

The linear model based predictive control (MBPC') approach has been applied very successfully in
the process industries, where it has improved the profitability and competitiveness of production plants. It
has been used to improve performance in difficult systems which contain long dead times, time-varying
system parameters and multivariable interactions. The approach is often thought to be easy to understand
relative to other modern control design methods. The predictive control algorithms were first applied in
slow processes for the chemical, petrochemical, food and cement industries, but are now used on [aster
applications, such as servo, hydraulic systems and gas turbine applications. A predictive controller uses
future reference signal information and minimises a multi-step cost-function. The most popular algorithms
are Dynamic Matrix Control (DMC) (1|, Generalized Predictive Control (GPC) [2,3], and the algorithms
of Richalet [4,5]. The relationship between LQO optimal and predictive control was explored in [6].

The GPC controller was originally obtained in a polynomial system form. The control strategy
developed here also builds upon previous results on Generalised Minimum Variance (GMV) control. A

Nonlinear Generalized Minimum Variance (NGMV') controller was derived recently for nonlinear model
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based multivariable systems. The assumption was made that the plant model could be decomposed into a
set of delay terms. a very general nonlinear subsystem that had to be stable and a linear subsystem that
could be represented in polynomial matrix or state equation form and include unstable modes. This
problem was analysed in [8-10]. The major development over the basic NGMV control law in [9] involves
an extension of the NGMV cost-index to include future tracking error and control costing terms in a GPC
type of problem where the linear sub-system of the plant model is represented in polynomial matrix
equation form. When the system is linear the controller is equivalent to a GPC controller that is a practical
solution for many applications.

There is of course a rich history of relatively recent research on nonlinear predictive control [11-24],
but the proposed approach is somewhat different, since it is closer in spirit to that of fixed model based
design than an online optimization algorithm. An advantage of the new predictive control approach is that
the plant model can be in a very general nonlinear operator form. which might involve hard nonlinearities,
a state-dependent state-space model, transfer operators or even nonlinear function look up tables. The plant
can include both linear and nonlinear subsystems and no structure needs to be known for the nonlinear
block but this must be assumed open-loop stable in an appropriate sense. To guarantee closed loop stability
the assumption is made that a certain nonlinear operator has a stable inverse.

It is well known for linear systems that stability for this type of control law is ensured when the
combination of a control weighting function and an error weighted plant model is strictly minimum phase
[25]. For nonlinear systems a related operator is required to have a stable inverse. This implies that the
cost-function weightings must be chosen to satisfy both performance and stability/robustness requirements.

I'he plan for this paper is as follows. The nonlinear plant and linear disturbance models in
polynomial matrix form are described in § 2. It is shown in § 3 that the solution of the linear multi-step
predictive (GPC') control problem can be found from the solution of an equivalent minimum variance
control problem. The cost function and the solution of the NPGMJ nonlinear optimal control problem are

described in § 4. together with the main theorem. A design example is presented in § 5 and finally

conclusions are summarised in § 6.
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2 System Description

The assumed model for the plant can be severely nonlinear and dynamic and may have a very general form
but the disturbance model is chosen to be linear so that relatively simple results are obtained. This is not
restrictive, since in many applications the model for the disturbance signal is only an L77 approximation.
The system shown in Fig. | includes the nonlinear (NL) plant model together with the linear reference,

measurement noise and disturbance signals. The signals v(t) and &(t) are vector zero-mean, independent,

white noise signals. The measurement noise signal v(t) is assumed to have a constant covariance matrix
R, = Rj‘ > (). There is no loss of generality in assuming that the disturbance white noise source £(7) has
an identity covariance matrix. There is also no requirement to specify the distribution of the noise source,
since the structure of the system leads to a prediction equation, which is only dependent upon the linear
stochastic disturbance model. The plant model can have a very general nonlinear operator form, which
might involve hard nonlinearities, a state-dependent state-space model, transfer operators or even
nonlinear-function look up tables. Detailed knowledge of the NL system structure is not required.

Nonlinear Plant: (Wu)(r)== k(l/‘y;ku)(r) (1)
where z %7 denotes a diagonal matrix of the common delay elements in the output signal paths. The
output of the non-linear subsystem W, . that might represent actuators, will be denoted u, (1) = (W, u)(1).

For simplicity the NL subsystem: W, is assumed to be finite gain stable but the linear subsystem

W, = :_"'I'Vl,k, introduced below, can contain any unstable modes. If the decomposition into a nonlinear
and a linear sub-system is not relevant then let the linear sub-system##, =/7. The generalisation to
different delays in different paths is straightforward [26]. The vectors of signals in the system may be
listed as follows: u,(t) € R™ (input to linear subsystem): w(t) € R™ (control signal); y(t) € R" (plant
output); 2(t) € R" (observations); r(t) € R’ (set-point / reference); y,(t) € R™ (weighted output):

r.(t) € R" (weighted set-point or reference).



2.1  Linear Subsystem Polynomial Matrix Models
The polynomial matrix system models, for the linear part of the ( »x m ) multivariable system may now be
introduced. The sub-systems to be defined are associated with any linear sub-system W in the plant

model and the linear disturbance model. The Controlled Auto-Regressive Moving Average (CARMA)

model, representing the linear subsystem of the plant is defined as:
Az Ny(t) = By (2 Duy(t — k) + Cy (2 M)E(¢) )
where £(f) and the input signal channels in the plant model are assumed to include a k-steps (k= 0)
transport delay and B,(z™') = BOk(z'l)z'k. The delay free plant transfer of the linear sub-system and the
disturbance model may therefore be defined, in the left coprime form:
Wi (z7) Wy(z)= A" Y '[By(z™) Cula™)] 3)
Introduce a stable cost-function weighting model in left coprime form P.(2')= P (z")" P,(z"). The
weighted output may be written as:
y,(t) = P (27 ) y(t) = Po(27) A(27) (B2 ™ gt — k) + Cy(27)E(E)) (4)
The power spectrum for the combined disturbance and noise signal f=d+v=W,_E+ v can be
computed, noting these are linear subsystems, using @, =@, + @, =W, W, ;+ R, where the notation for
the adjoint of W, implies W, (z"')=W,(z) and only in this case z represents the z-domain complex
number. The generalized spectral-fuctor Y, may be computed from this spectrum as ¥, Y, =0 y » where
Y= A'iD, . The system models are assumed to be such that D, is a strictly Schur polynomial matrix
[17.18]:
DD, =C,C,+AR, A (5)
The model for the disturbance signal is linear, which is an assumption that does not affect stability

properties but may cause a degree of sub-optimality in the disturbance rejection properties.



Innovations signal: Disturbance models are often approximated in real applications by linear systems

driven by white noise. It is well known that the signal / =d +v may be modelled in innovations signal
form as f(t)=Y,&(r), where Y, = 4 'D/- is defined via the spectral-factorisation (5) and £(¢) denotes a

white noise signal of zero-mean and identity covariance matrix [8,21]. The system description may be

assumed to be such that D, is strictly Schur. The observations signal may therefore be written. using (2)
as: 2(t) = y(t) + v(t) = A7) By (2 (t — k) + A7 (zC,(27)EE) + o(t)
= A7 )By( ug(t — k) + Y, (27)e(t) (6)
Define the right coprime model for the weighted spectral factor:
Pz (27 )= Dz 47 (7 (7
Then the weighted observations signal = (t) = F.(z ")z(1) may be written as:

2,(t) = Po (2 W (27 )uy(t — k) + Dy, (27) A, (27 )e(t) (8)

2.2 Optimal Linear Prediction

The solution of the optimal control problem requires the introduction of a least squares predictor. This
enables the inferred output y at times 1 +k+1, t+k+2.... to be calculated (assuming that the disturbance

at future times is null). The cost-function to be minimised, which defines the least-squares predictor, is
given as: J = E{g,(t+j|t) (9)

where the estimation error:

gt +il )=y, (t+j)—y,(t+j|t) (10)
and g}p(f + j | t) defines the predicted value of y,(t) at a time j steps ahead. To generate the prediction

algorithm the following Diophantine equation must be solved for the solution(£,, H ), with E of

smallest degree (deg(E (z7')) < j+ k):



First Diophantine: E (2’1)--’1),(3 N+ z"'kHJ(z e Dfp(z_l) (1)
This equation may be written as:
E (™) + 27 H (27 JAN 2 ) = Dyl )4 (27 (12)

Prediction equation: Substituting from (11) the expression for the weighted observations signal (8):

2,(8) = B (2 Wi (= gt — k) + Dy (2) A7 (2)et)
= P(e Wig(e gt = B) + (B(27) + 277 H (2 ) A (= ))e(t)

Substituting from the innovations (6) (1) =Y, L2(t) — D;’Buku,(,(t — k) obtain:

2,(t) = P(27" Wy (2 uy(t — k) + E,(27)e(t)
+ 277 H (2)AP () (Y (27)a(t) - D} (27 By (27 Yug(t - k)

Recall A}'}}T' = D;,,' F. and substituting, the weighted observations:
z,(8) = E,(z)e(t) + 27" H (27) Dy (27 )Pe(27)2(t)

+(R-(3'I)A (27)By(z7) - '?_J_kH,(;; 1)"11_1(:_1>D/I(Z-I)Buk(z 1))“‘0(1’ — k)
Weighted Output:  T'o obtain the expression for the weighted output ::’,(f.) =F.z(t) = y,(t) +v,(1),
where y,(t) = F.y(t) and v, (t) = Fu(l):
2,(t) = E (z7)e(t) + 27 H (z27) Dy (27)z,(t)

+( Pz, (2 )A(z7") = 277 H (27)) AT (27D (27 ) By (27 Yuy (8 - &) (13)

but from (7) £.Y;A, = D, and from (12) and (13):

P

y,(t) = E (2 He(t) - v, () + 2™ A.11')(.2 ')Df‘,,](z")zp(l.)
+(Dp(2™) = 27 H (27)) A7 (27 )D7 (2B (2™t - #)

Future Values of Weighted Output: Using (11), the j + & steps ahead weighted output signal:

y,(t+ g+ k)= EJ(:")E(K +i+k) - (t+j+k)+ Hj(z“)pﬂ)(z“);p(r)



+E'j(z‘1)Df”(z'l)B,,k(z Dy (t + 7) (14)
To further simplify the equations (recalling Df‘l is assumed to be stable), the right coprime model:
Bz (5™ = DA (e 1B, 15
Dyl @ niz p(27) By (2 (15)
Also let the signal 'uf(f,) = Df‘ll(;"l)u“(t), then (14) may be written:
y,(t+7+k)= (Ej(:")(;(f +j+k)=-u,t+ 7+ A:))

+ [H, () D5 (272, (1) + E,(27) By (2 Yyt + 5)] (16)
Note that the maximum degree of the polynomial matrix £ is j+ A —land hence the noise components

in E&(t+ j+k) includesg(t + j + k) ,.... &(t + 1), which are at future times.

2.3 The Prediction Equations

The optimal predictor at time  + 7 + A, given observations up to time ¢, can now be derived. Consider first
the case where the noise {#(?)} is zero. The observations, up to time ¢ are known and the future values of
the control inputs { #,(t),... %, (¢ + j) }, used in the predictor, are computed at time ¢, and hence the future

control input is independent of the future disturbance and noise sequence. It follows that the expected
value of the square [.] and round (.) bracketed terms in equation (16) must be zero. The predictor to

minimise the cost (9), given that the cross terms in the cost are null, follows, from (16):
§,(t+ 3+ k| £) = [ H(z7)Dp (2 )2, (t) + E,(27) By (2™ uy(t + 1) ] (17)
If the measurement noise signal is  non-zero then the weighted noise term

‘1'P(f + j+k)=P

22 Do(t + 7+ k). If the weighting P.(z ') is a constant, which is usual in GPC control,
or if it is assumed a polynomial matrix of degree j + & — 1, then 'up(f + 7 + k) is only dependent on future

white measurement noise and the expected value of such a term and the square bracketed terms in (16) must

be zero. The optimal predictor is therefore again given by (17) and the prediction error:



G,(t + j+ k| 1) = (E (2 )e(t + j+ k) — v, (¢ + j+ k) (18)
A second Diophantine equation may now be introduced to break up the term Ej(z’l)f)’lk(z’]) into a part
with a j+/ step delay and a part depending on D, (z ') (recall u,(t) = Dﬂl(z‘l)-u,(,(t) ). Thus, forj = 0,
introduce the following Diophantine equation, with (G. S)). of smallest degree for (i, :
Second Diophantine: G, ("Dl Y + 278 (27 ) = B (27)B,,(z™) (19)
where dng(Gj(z‘l)) = 7. The prediction. from equation (17), may now be obtained (forj = 0) as:
g (t+j+k|t)= H}(:;"')Df;,l(:"):p(f) +G (27 )yt + 7) + S, (27 Ju(t - 1) (20)
The degree of Gj(z‘l) is j and the second term in (20) therefore involves the inputs which are in the future.
Define the signal f (¢), in terms of past outputs and inputs, as:
£(0) = H(z7)D(z7")z,(t) + 8,(z " u,(t - 1) (1)
Thus, the predicted weighted output (20) may be written, for j > 0. as:
Gt +J+ k[ 1) = G,z uy(t + ) + £,(1) (22)
Coefficients of the Polynomial matrix G J(:’l) . From equations (I1)and (19):

G, (z)Dp(zY) + 2778, (2 1) = E,(2 ) B.(z)

J

E(2)By(z") + 27 H (a7 A (27" Bu(z™) = Dp (2 A2 ' By(27)
From these and from (7) 1Y, = D4, and from (15) D,B,, = B, D,,:

@D, = BY,B, -s"*H A8, - 28,

G, =B A"B, (& H A B, + 78 )0

1 <

The G (z ') therefore includes the first j + 1 Markov parameters gy, of the weighted plantCc, = RW,,.



Thus, d"‘g((?)(il)) = J and GJ(Z. 1) =gyt 4(]13_] tet g,z ', where Gu(z_l) = Yo -

2.4 Vector/Matrix Prediction Equations

The future weighted outputs are to be predicted for inputs

where N > 0. Equation (22) may therefore be used to obtain:

( g,(t+k|t) [ g, 0 - 0 07 wu® 1 [£®)]
g,(t+1+k|t) 9 g 0 o O] y(t+1) £(t)
: =l { @& & ; : +|
Gy
G NHED | | 9 Iva o G % ||w(E+N) || ()

The vector form of the predicted weighted outputs:

- g v 0
}frk,N — ("N[’r,rv T F;.N

Using (21). the free response predictions F, , :

(HT [H™N] [5,(z")]
! AO | | HGEH| 8(z™)
Ex=|"0 =] . |PRGHR®+ L T ult-1)
Lf-""(t)J _H.»v(-": l)_ _S.lv(zrl)_

= Houl2 l)3},([) + 8% ')u,(f =1)

computed in the interval t g [t,{+ N]|

(24)

The functions H,,(z™") and S,,(z ') are defined in an obvious way from (25). The prediction error

E}(s"')g({ +7+k)- v, (t + 7+ k) may be written, recalling rlng(Ej(::’l)) < j+ k. as:

[ ep(t + E) +... + e, j6(t + 1) —u (t +&)

B et +1+k)+...+ee(t+1)-n,(t+1+k)
kN T :

eoE(t+ N+ k) + o+ ey 8t +1) = v, (t+ N +K)

A

(26)



Future set point knowledge: The future variations of the reference signal 7(f) are assumed known over N

steps and the weighted referencer, (t) = F.(z "Yr(t). The vectors of fiture weighted signals:

(o) ] A 1, (t)
r(t+1) y,(t+1) wuy(t +1)
Ru=| " | Y= . | U=l @7)
_"p(f’ +N)] | y,(t+N) | | up{t + N) |

The k steps-ahead future weighted outputs can be written in vector terms Y, v =Y, , v + Y, , and the
future tracking error, that includes a dynamic error weighting, may therefore be written as:

E1r+k,:\f = Ruk.N R Ym.—,.-'v = [‘Jr‘k,zv = (Yux.N ok Vx;k,N) (28)

The vector of predicted signals )“;,,mv in (28) and the prediction error )"',_N are orthogonal.

3 Main Features of Generalised Predictive Control
A review of the derivation of the GPC controller is provided below where the input will be taken to be that
for the linear sub-system (u, ), since it provides results that are needed for the definition of the NL problem

of interest. The GPC performance index, to be minimised:

N
=B e (t+j+k) e, (t+j+k)+Alu,(t+ ) u(t + 5))| t} (29)

0
where F{.[#} denotes the conditional expectation, conditioned on measurements up to time 1; A, denotes
a scalar control signal weighting and the vector of future weighted error signal values
e(t+j+k)=F(z D(r(t+j+k)—y(t + j+4k)). The future optimal control is to be calculated for
the interval T € [t. t + N| and the GPC cost-function:

J = E{'lz} - E{(R:.k,.w o }-rﬂk,:\«')l-(jl)uk,;\’ - )/hk‘N) + [’r/“c/\fvlr“v ’ f} (30)

Introducing the optimal predictor, using (28) and (30), obtain,



J = E{(Ruk,w _ (}}z.k,;v A f:m;v))r(’]?v.k..rv - (y:;.k_vv + Y:kv» + ('Y:(f,'lw:/\fv("r:fiv | f} 31

.2

where the cost weightings on the future inputs u, are written A}, = diag{A; A ..., A, }.

3.1 GPC Optimal Control Solution
The terms in the performance criterion can be simplified by noting the prediction errors in f'hm depends
on future values of the signal &(¢), which are assumed to be independent of future controls. The estimate
Ym,w is therefore orthogonal to the estimation error Y,_, , and R, . is assumed to be a known over the
(N+1) steps. The cost may therefore be obtained as:

J = (Rt»k,N - Y,r'k_N)T(I?t'k‘N - Y’Hk,N) + U:,ji:/\?v[‘r:f.'\' + Jn (32)
where J, = E{ }K“ f;‘“. [} is independent of the control action. Substituting (24) into (32) obtain:

J =By = (GyUpy + F3) (R n = (GyUply + Fiy)) + UNARU Yy +

Thus, define: Hocuny Tl =F (33)
B v 0 \T/p v 70 rOT A 2 rr0
and J = (Rz.k,xv - (’.-v["rz,‘v) (Hiuk,N - (’Nl":,/v) +U z,NANULN T+ Ju
_ DT o 0T AT DT v 770 ot (T 2 0
e huk,.'v[?nk,.fv - [»/r‘;v 'NRMc.N . Rtvk.h'(’ﬁl"t,‘\’ +L tN ( ’NGN + AN)Ue,N + Ju (34)

To minimise this conditional cost term the gradient of the cost must be set to zero to obtain the vector of

future controls. Note the ./, term is independent of the control action and a perturbation and gradient
calculation may be applied [27] to obtain the vector of GPC future optimal controls as:

=1

[‘/'t(fN = (G:("N #* sz) Gﬂ[v (R‘hk,N P ]';.N) (35)

The GGPC optimal control signal at time ¢ is based on the receding horizon principle [27] and the optimal

control is taken as the first element in the vector of future controls [/}, .



3.2 Equivalent GPC Cost Minimisation Problem

The above is equivalent to a special cost minimisation problem which is needed to motivate the NPGMV

problem introduced later. Let the constant matrix X | = }'i_'(,'N + A% be factorised as:
Ty v AT 2
Y'Y=X,=G,G, +A}

Completing the squares in (34) the cost:

_ pr N 0T ~T D nT ~ 710 0y Ty 0
o 5= th.NRl.k.N . l"t.N 'N[]lqk,.-\' _Ruk,m'(’;v['t,.v +("£‘N} } ("r.N +']n

(B s G Y™ U YT )Y TGER, o ~ YU ) + By (I = Gy Y Y TG Ry +J,

e -~ . . ~ 1 ¢
T'he cost-function: F = @ u®, o (1)
: ; T AT x Fr70
where Doy =Y Gu(Ryn —Fy)-YU,y
The terms that are independent of the control action may be writtenas .J,,(¢) = J, +./,(t) where

J(t) = RE (1= GY Y TGR,

(36)

(37)

(38)

(39)

The last term J,,(?) in equation (37) does not depend upon control action and the optimal control is found

by setting the first term to zero, giving the same control as in (35). Thence, the GPC controller for the

above linear system is the same as the controller to minimise the norm of the signal ®,,, , in (38).

3.3 Modified Cost-Index

The above discussion motivates the definition of a new multi-step minimum variance cost problem that has

the same solution for the optimal controller. Consider a new signal to be minimised of the form:
=1 \ .
¢=Lo(z7)(r () — (1)) + Foy 1
The vector of future values of this signal.
. () 70
(D \'=R\EJ\ +l‘:.‘- l‘//\

{./

Also introduce cost weightings, using the original GMV weightings, to have the constant matrix form:

(40)

(41)



=G and F’ =-A3. (42)

J=B{J,} = B{®] (y®pn | 1} (43)

Predicting forward k-steps:

(D = R‘N(Rt-*-k‘!\’ - 11.1,1\’) + ‘F‘U Lru (44)

tek,N
Now consider the signal @, , . and substitute for Y, , = )"’,’M + }lk,/v- Then from (44) obtain:

Y :Pm(ﬁukw - Y’{-;-k,;\") t E‘-].['z”m - P,\ Efk,N (45)

t+k N

This expression may be written in terms of an estimate and estimation error vector as:

Dinv =P +d“'/«».f\;\ (46)

The estimated prediction d)“,m = Pty = )M v) + F Uy and prediction error:

(D = —R'NY;-FL'.N (47)

tek N

Multi-Step Cost Index: The performance index (43) may therefore be simplified as:
T = B{} = B{®L,\ @ | 1} = E{(®py + Do) (Progn + i) | 1}
The terms in (43) can be simplified, recalling the optimal estimate }rhk » and the estimation error }M #
are orthogonal and the future reference R, , is a known signal. Expanding:
J=d!, O, +E®, D, |t (48)

Thence, the cost-function: J(t) = d" i@ J(1) (49)
The part of the cost term independent of control action may be written as:

1,(t) = B{®, y @y | th = EFL W FG P Y 0 1) (50)
Now simplify the vector(b“k"v by substituting for }':'“,‘.IN from (24) and using (42) and (36) obtain:

" . ) U li s Iy 3 1 ro ) Urr0
(ka,N e PCN(th,N ~ Y K, v) F [ = Foy ht'k.N = Pcrv(cﬂl”:w + J[*:,,-\r) + F;.w[’:,.w'



=F (R ) - (Azx * (".';:.r.(:;\' )L:J\ o PM(R N Fm> - X.v["rr(.)‘ev Sy

en\ kN T TN
From a similar argument the multi-step predictive control sets the squared term in (49) to zero @, , = 0.
Y - ; H e = v #l R RS > o
Clearly the resulting optimal control U, = X "F_ (R, , —F, ) is the same as the vector of future

GPC controls in (35).
Theorem 3.1: Equivalent Minimum Variance Predictive Control Problem
Consider the minimisation of the GPC cost index (29) for the system and assumptions introduced in §2,

where the nonlinear subsystem ), =/ and the vector of optimal GPC controls is given by (35).
Redefine the cost-index to have a multi-step variance form (43) J(t) = E{®], @, |t}. where

D,y = Po(Riyn = Yiuw) + FUpy and the cost weightings P, = Gl and F° =-A3. Then the

g
vector of future optimal controls is identical to the GPC controls defined in (35). ]
Proof: Follows by collecting together the above results. [ ]

4 NPGMV Optimal Control Problem
The Nonlinear Predictive Generalised Minimum Variance (NPGMV) control problem of interest is now
considered. The actual input to the system is of course the control signal u(r), shown in Fig, I, rather than

the input to the linear sub-system u,. The cost-function for the nonlinear control problem must include a

control signal costing term, although the costing on the intermediate signal u,(¢) can be retained to
examine limiting cases. This signal may also represent an actuator output that may be costed in some
problems. If the smallest delay in each output channel of the plant is of magnitude & -steps this implies
that the control signal ¢ affects the output at least k -steps later, TFor this reason the control signal costing
should be defined to have the form:

(Fu)(r) == (Aqu)(r) (52)



Typically this weighting on the nonlinear sub-system input will be a linear dvnamic operator but it may
also be chosen to be nonlinear to introduce an anti-windup capability [10]. This operator .#, can be
assumed to be full rank and invertible. Thus, consider a new signal whose variance is to be minimised,
involving the weighted sum of error, subsystem input and control signals:

@y (1) = Pe(t) + Fgouy (1) + (F u)t) (53)
[n analogy with the GPC problem a multi-step cost index may be defined that is an extension of (43):
Extended Multi-Step Performance Index: J, = E{®),] @, |t} (54)

The signal (DL_ » 1s therefore extended to include the additional future control signal costing term:

(Dl)

t+k,N

= l)/'.v E’w—k.N s E:|"- ['f“\ i (‘};k‘g\’l”‘rt .w) = P,W(Rpk,..v - Y’Hk,.v\’) + EE(II?N = (‘;L::k.N("rc,:\) (55)

The non-linear function %, .U, , will normally be defined to have the simple diagonal operator form:

(FaxnlUy) = diag{(Au) (1), (Fuu)(t+1)...., (Fu)(t+ N)} (56)
where U}, = (M, U,,) and M, also has a block diagonal matrix form:
(M nU.y) = diag{¥, W,.... ., WU, = [((Ba)@),....( M)t + N)'T (57)

Remarks: The problem simplifies when N = () to the single-step non predictive control problem, which is

the same as the so-called NGM/ control problem [9].

4.1 The NPGMYV Control Solution

The solution follows from very similar steps to those in §3.3 and will therefore be summarised only briefly

below. Observe from (44) that @}, = ®, , + z7*(A, U, ) and @, , =D}, + @), . where

@, :d)uk..w + (-"’L;f.-,/vl"lr‘,\) = Pr'&'([”’{#&,;\‘ h s )?;wk,:\’) + P::,”BN " ('}l;k,N["’t.N) (58)

tek N

and the estimation error:



The future predicted values in the signal (D',’ .y involves the estimated vector of weighted outputs }:'“ LN
and these are orthogonal to ¥, , . Also note that the estimation error is zero mean and hence the expected
value of the product with any known signal is null. The cost-function may therefore be written as:

J(t) = O Dy + I1(1) (60)

where the optimal control sets (D“k v = 0. The condition for optimality therefore has the form.

(Rm.w‘ »LV>+(‘};A‘V+FU}4/L(\)(I:\': 6

4.2 The Nonlinear Predictive GMV Control Signal

The future optimal control. to minimize (60), follows from the condition for optimality in (61):

[’"rf,,.v ik ( ckN =% M’lk \) ( tek N )/!.\’V) (62)
An alternative solution of (61), in an easier form for implementation, gives:
U(, —'/Zu, (1 (Huk,;v =X, k, \) A ”/u( \l tw ) (63)

The optimal predictive control law is nonlinear. since it involves the nonlinear control signal costing term:

Fn and the nonlinear model for the plant }1{, . Further simplification is possible by substituting from

(24) for the estimate Y’M‘N . s0 that the condition for optimality in (61) may be written as:

]_:\ (Rl rkN - F;,N) * ('}:tk./‘l i (P Fﬂ’ )} 1k, \ l,.'v )
Substituting from (42) the condition for optimality becomes:
- ('HHI«.N =y ) il G Yl['YI‘li!k,x)l’r:.f. =0 (64)

The two alternative solutions for the vector of future optimal controls, noting (36), therefore becomes:

U, =—A, , ~ X ) P(R

tN ck N 1k N

=E) 6

t+k N

or



U, == I ( }‘:._\(th,.w = 1:\) =X 0 U ) (66)

t ck.N 1k, N~ tw

Remarks: The NPGMYV control law in equation (65) is model based and includes an internal model for the
nonlinear process. The control law is to be implemented using a receding horizon philosophy and from the
preceding discussion it becomes identical to the GPC controller (35) in the limiting linear case when the

control costing tends to zero (., y —> 0.2}, = 1). The problem construction enables an important
property to be predicted and confirmed from (65). That is, if the control weighting %, ,—0 then U,
should introduce the inverse of the plant model 7}, \ (if one exists) and the resulting vector of future

controls (s",[fN will then be the same as the GPC controls for the resulting linear system.

Theorem 4.1:  Nonlinear Predictive GMV Optimal Control Law

Consider the system described in §2 and the predictive control problem for the cost index (54) (N >0).

The nonlinear plant operator W, is assumed to be finite gain stable. For closed-loop stability the operator

71 . EX B s s . N s A
(I - .Fck,_ﬂ‘,(.‘(h, + .PCNl/VNk(_/m))/Ll’m) is assumed to be finite guin stable, due to the choice of control

(Fu)(6) = (A u)(t— k). dynamic error P,(z™') and input {4,,....A4y} cost weightings. The multi-step

predictive  control  cost-function to  be minimised, involves a sum of future cost terms

J, = E{®)", ,®! ., | t}. where @, . includes the vector of future error, input and control costing
terms:

Opuen = FuBiin +Fo Uy ¥(Fal,) (67)
and in terms of the weightings 2., =G and £ =-A3% . The NPGMV optimal control law to minimize

the variance of signal (67) is given as:
T P 2 a7 ~1 3 5
L'»” = —('; - J\ }I/lk\) 1:"\(Rtok‘1\' - F ') (68)

ckN N LN

> 5T 2 4 ¥ . b P
where X, =G\ G, + A, Forimplementation of the vector of future optimal control signals:



-F,)-X .U, (69)

kN~ tw
and the current control may be found from the first element of the vector (invoking the receding horizon

philosophy). The signals F,, = Hy,(2™)2(t) + Sy, (27 )u,(t = 1) and w,(t) = D (z uy(t). =

Solution: The proof of the NPGMV optimal control follows by collecting the results in the above section.
The necessary condition for stability can be established using the same argument as after the main theorem

in [9]. This requires the introduction of some linear or NL plant sub-system models. Write the linear plant

in the right coprime form W = By4," and the corresponding block structure as Won = Byn .464& Also

write the plant model in a polynomial NL operator form: A\ . =b’]k_.\./4’: so  that
W« = By AW, :BO.,\‘[":I\“\A:-'-‘ Also note that 2., W,, may be written 2, W,, = P, 4,". Then the

kN TN

following relationship may be established:

. -1
% ! i 7 Y A7 - - r v "
(['f;k,‘v("\‘.fv + ])CJ'.-V["(I’N&'CIU)}LH(,,\ ) = (1 g "Z:'/«.I\ (Xydyy + Py C l”)blk-\"{j )
which may be used to show that the model for the predicted outputs involves only stable operators. (]

Remarks:  The two expressions for the NPGMV control signal (68) and (69) lead to the two alternative
structures, shown in Figs. 2 and 3, respectively. The second, shown in Fig. 3 shows how the current and

future controls may be separated from the full vector of future controls, as explained below. If the error
and input cost-function weightings are defined in the GPC motivated form P, = (j( and F° =-A3 then

for a linear system (W, = /) the optimal control, when .Z. — 0, is identical to a GPC control law.

4.3 Implementation of the Predictive Optimal Control

A useful partition may be introduced which later enables the algorithm to be simplified. The control at time

¢ is computed for N > 0 from the vector of current and future controls by introducing the matrix:



Cy =[1.0......0] (70)

This enables the control at time ¢ to be found from the vector of current and future controls as:

Current control: u()= [1,0,.....0]U,, (71)

To compute the vector of future controls for ¢ > 0 also introduce: C, = [O l‘\.] (72)
u(t) u(t +1)

Future controls: f, =B AL, = [() ]N] 5 = : (73)

u(t + N) u(t + N)
Note from (70), because of the block diagonal structure of the control signal costing .7, . then
Cmf::;.lfv = [~ Wy 0] = -}:L:ICIO (74)

The optimal control at time ¢ can then be computed, using (69) as:

ull) = -7, lCm (Pm(Re~A~

= o) N

~F )= XU, (75)

Ik N ¢t~

The vector of future controls, computed at time t. may also be tound as:

Uy =Co oty (BB = Fo) - X, WU, (76)

ckN 7 en\ ek N LN Nt
. - ) - o 1 . -] g > |
Wherc h'(_“n (7“) write ( m ';Z:.:A,,\' - [0( Nolyem m ]‘v :"/;L,\' = [Ot Nalym. m '/;k‘:\‘Al ¥

The vector 1, (U, . may be written, from equation (57) (partitioning current and future terms) as:

()’1’1.&.\[”’:‘,») = [(}”t'i’k"’)(f)'r ----- (M u)(t + N)T V = [()/I/l’ku)([)’r‘ (}%k,NJ['rt{N T]T (77)
Using a related partition, write the matrix X in the form X, =Y'YV =[¥, Y,]. where ¥ has m,
columns, so that X U, =[Y, LIMU, . =Y,08)0)+Y,0%,U/). Thus the second

equation for implementing the optimal control (69), may be split into the current and future controls as

shown in Fig. 3.



4.4 Marine Predictive Control Design Example

Consider the problem of the simultaneous control of the roll and yaw motions of a ship. A supply vessel
with the conventional angle notation is shown in Fig. 5. The ship heading (yaw angle) is controlled by the
rudder, and it is assumed that the heading trajectory to follow is known. The rolling motion caused by the
force of the sea wave disturbances can be counteracted by the use of fin roll stabilizers. However, this
undesirable movement may also be reduced by active use of the rudder, and a number of commercial
rudder roll stabilization systems have been developed (see [28] and references therein). This strategy
requires high-performance rudder machinery but can provide improved performance or enable smaller fins
to be used. The basic dynamics of the ship roll and yaw motion with respect to the fin and rudder, for

particular ship speed and encounter angle, are shown in Figure 6.

Roll model: G,(s) =— (0.8)° .
§°+2-0.2-0.85+(0.8)"
0.2
Yaw model: G, (s) =
s(10s+1)
Rudder to roll interaction: G () = 0.1(1-4s)
(65 +1)

The model includes non-minimum phase interaction from the rudder to roll motion and there is an
integrator in the yaw model. The roll characteristics of the ship are modelled using a resonant second-order
system, with a natural frequency of 0.8 rad/sec and a low damping factor. The frequency responses of the
models are shown in Fig. 7. The fin and rudder actuators G, and (; have hard constraints on the
achievable angle and rate. The actuator limits are set as 25 deg and [0 deg/sec for the fins, and 30 deg and
7 deg/sec for the rudder servo, respectively.

Disturbances: The effect of the wave disturbance on the roll and yaw motion is represented in Fig. 13 by

; Sy - 0.5 g . : -
the signals d, and d,. where d, = &, d,=""¢ and £and ¢ are white noise

s7+2:0.1-0.75 +(0.7)° s

sequences. The model for the roll wave disturbance provides a second order linear approximation to the



Pierson-Moskowitz spectrum. and the yaw disturbance is assumed to be of low-frequency nature and is
modelled by an integrator driven by white noise.
Control objectives: The main control objectives are the reduction of roll motion and tracking of the

heading set-point. The former can be characterized by the Roll Reduction Ratio (RRR) defined as:

_ closed-loop roll variance\ (78)

RRR=|1 _
open-loop roll variance )

This ratio represents the improvement in roll reduction achieved by using feedback control, with [00%
corresponding to the ideal null roll motion. The yaw tracking performance can be measured using
conventional measures such as rise time / settling time, or, alternatively. by integral square error (/SE). In a
classical control scheme, rolling motion is regulated using fin stabilizers, and the heading is controlled with
the rudder, involving two SISO systems. A multivariable control scheme will take the system interactions
into account, allowing the rudder to actively attenuate the roll and to control yaw, which is possible due to
the separation in the roll and yaw motion frequency content.

Results: For the purpose of controller design, the continuous-time models of the system were discretized
using the sample time of 0.5 seconds. In the simulations, the ship yaw angle was required to follow a
known trajectory consisting of two step changes, while minimizing the roll motion, according to the

specified criterion. In the limiting case when }/, = I (i.e. no constraints in the ship model) and *, — 0,

the NPGMYV controller collapses to a version of the standard GPC controller but with weighted output and
reference signals in the cost criterion. The results for the nominal settings of N =0,
A, =3xdiag{l07, 5x 107"} and the linear case are shown in Fig. 8. The P, weighting was chosen based
on a multi-loop classical controller (see [9]), the performance of which is also shown.

The GPC results for the roll attenuation in this unconstrained case are somewhat unrealistic and
detuning the controller (increasing A weighting) is normally needed in the presence of fin and rudder
constraints (in particular, fin rate limits are exceeded). The predictive action can also be utilized when the

future yaw trajectory is known, and this is illustrated in Fig. 9 (the stochastic noise has been removed and

.9

&~



the time scale magnified to show the predictive action more clearly). Increasing values of N are indicated
by the arrow. A long prediction horizon often leads to a faster response and also improves the robustness of
the solution (as measured by the response overshoot), which is illustrated by the yaw angle response.

When the constraints are present. the GPC controller needs to be detuned to maintain stability. The
nonlinearities can be accounted for more effectively by introducing the nonlinear control weighting %,
into the NPGMV control structure. For example, defining this weighting appropriately leads to an anti-
windup structure for controllers that include integral action [10]. After tuning, the results are shown in Fig.
10 (for N = 5), where the NPGMV satisfies the rudder angle limits that are much exceeded by the GPC
design. The roll reduction is also more effective with the nonlinear control (about 40% improvement in

Roll Reduction Ratio) since the servo nonlinearities are explicitly accounted for in the controller structure.

5 Concluding Remarks

There are many nonlinear predictive control strategies based on state dependent models, linearization
around a trajectory and others. The aim was to try to produce a control law which is simple to implement
and the result is an algorithm which closer to traditional model based designs than to current nonlinear
predictive control strategies. The NL Predictive Generalised Minimum Variance (NPGMV) control
problem involves a multi-step predictive control cost-function and the introduction of future set-point
information. The predictive controls strategy is a development of the NGMV design method which is easy
to design and implement,

It has the nice property that if the system is linear the control reverts to the GPC design method
which is well known in industry. That is, the NPGPC control design method reduces to that of GPC
control design when the weight %, tends to zero and the system is linear (}4{, =/). This suggests a 2
stage design process might be used where the first stage is for a free choice of GPC weightings based upon
the linear sub-systems. The engineer only need consider the selection of desirable weightings, which satisty

suitable performance requirements for the multivariable system. The NL system characteristics can then be

(]
(#%]



considered in the second stage of the design where the control signal costing (%, possibly nonlinear) is
selected and stability issues are considered.

If the cost horizon becomes only a single step then the control law reverts to the so called NGMV
solution. A method is available for generating cost weightings that will provide a starting point for design
[9] and guarantee a stabilising initial solution. This may be a useful starting point and the number of steps
in the predictive control horizon can then be increased which normally improves robustness at the expense
of additional computations. Clearly if the responses are not improving by using further steps there is no
need to increase the computations. The control law includes an internal model but many of the
computations, as in traditional polynomial equation based predictive control, simply involve the solution of

Diophantine equations and matrix multiplications.
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