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Abstnlct 

A relati ely simple approach to Nonlinear Prediclive (;en 'rali:;ed Minilllum Variance (NPGMV) contr 1 is 

intr' duced for nOl1lin,"()J" di"cr 'Ie-lime tIIulli Jllriuh!" systems, The system i repre ented by a comhination 

of a stable nonlinear ubsystem where no tructure i assumed and a lin ar subsy tern that may be unstable 

and modell d in polynomial matriA form. The multi-step predictive control cost index to b minimised 

in olves both wei ht d error and control signal cosling terms. he NPCMV control law involves an 

as umption on the ch icc of cost-function weights to ensure the existence of a stable n nlinear clos d-Ioop 

oper tor. A valuable feature orthe control law is that in the asymptotic case. where th plant is linear, the 
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controller r duces to a polyn mial matri.\ version of the well known CPC c ntroller. In the limiting case
 

when the plant is nonl inear and the cost-function is ingle tep the controller becomes equal to the
 

polynomial matrix version of the so called Nonlinear Generalised Minimum Vuriunce controller. Th
 

contr Iler can be implemented in a form related to a nonlinear version of the Smith Predictor but unlik thi'
 

compensator a stabilizing control Jaw can be obtained for open-loop unstable proc sses.
 

Keywords: polynomial systems. optimal, predictive. nonlinear. minimum variance, tran-port delays.
 

Introduction 

The aim is to introduce a relatively simple controller for n nlinear systems and one that has sam of the 

advantages of the popular polynomial ba ed (jenerulised Predictive Control (OPC) algorithms. It is well 

known that n nlinear (NL) systems have more complex behaviour than tinear systems, including limit cycle 

respon es and chaotic behaviour. The proposed controller does not rely on local linearization and it 

provides a global optimal control solution. 

h lin ar muriel based predictive (:ontrol (MBPC) approach ha' been appli d very suc 'essfully in 

the pro ess industries, where it has improved the profitability and competitivene s of production plants. [t 

has been u d to improve perfonnance in dirncult system which contain long dead times, time-varying 

sy·tem parameters and Illultivariable interactions. The approach is often thought to be easy to und rstand 

relati e to other modern control design methods. The predictive contrul alg rithms were tir. t applied in 

low processes for the chemical, petrochemical, toad and cement industrie', but ar now used on faster 

application. uch as servo, hydraulic systems and gas turbine applications. A predictive controller usc 

futur r fercnce signal inlonllation and minimises a Illulti- tep co t-function. The most p pular algorithms 

are DYI/amic Mutrix ('nf1tr( I (DM ) [I J. Generali::: 'd Predictive ('untrol (GPC) [2,3], an the algorithms 

ofRichalet [4,51. The relationship bdwecn LQ optimal and predicfi\'(: "onfrol was xplored in f6]. 

The GPC controller was originally obtained in a polynomial sy t m form. The c ntr I strategy 

developed here also builds upon pr viaus results on Generalised Minimum Variance (GlvfV) control. A 

Nonlinear Generali::ed Minimum Variance (NCMV) controller was derived rec !ltly for nonlinear model 
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bused Illultivariabl systems. The assumption was made that th plant model could be decompo ed into a 

set of delay tem1 . a 'ery general nonlinear sub yst m that had t be stabl and a linear sub ystem that 

could be repre ente I in polynomial matrix or state e uation form and include unstable modes. This 

prabl m was analysed in r8-1 0). The maj r development over the basic GMV control law in [9J involves 

an extension of th NGJvrv cost-index to in lude future tracking error and control costing terms in a GPC 

t pe of problem where the linear ,·ub-system of the plant model is repre ented in polynomial matrix 

equation form. When the system i linear the controller is e uiv' lent to a GPC controller that is a practical 

solution f, r many applications. 

There is of course a rich history 01' relatively recent research n nonlinear predictive c ntrol [J 1-241, 

but the proposed approach i om what ditferent. since it is c10s r in spirit to that of fixed model based 

design than n online optimization algorithm. An advantag of the new predictive control approach is that 

the plant model can be in a very general nonlinear operator form, which might involve hard nonlinearities. 

a tate-depend nt state-space model, transfer operators or ev n nonlinear function I ok up tabh::s. The plant 

can includ both linear and nonlinear subsystems and no structure needs to be known for til nonlinear 

block but this must be as umed open-loop stable in an appropriate sense. 0 guarantee closed loop tability 

the as umplion is made that a c rtain nonlinear operator ha a stable inverse. 

It i· \V 11 known f r linear system that stability for thi type of control law insured when the 

c mbinati n of a control weighting function and an error weighted plant model is stricti minimum phase 

125J. For nonlinear syst m a related operator is required to have' stabl inverse. This implies that th 

c t-function weighting must be chosen to sati Iy b th pert! rmance and stability/robustn 5S requirelll nls. 

rhe plan for this paper i as fall ws. The nonlinear plant and linear di. turbam:e m dels in 

p lynomial matrix torm are described in § 2. It is sho\'\'n in S3 that the solution or the linear multi-step 

predicti (Gro contr I problem can be tound from the solution of an equivalent minimum variance 

control problem. The cost function nd the solution of the NPGMV nonlinear optimal control problem arc 

described in . 4. t gether with the main theorem. A design example is presented in § 5 and finally 

conclusions are ummarised in § 6. 
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2 System Description 

The a umed mod I for the plant can be severely nonlinear and dynamic and may have a very gen ral form 

but th disturbance model is cho en to c linear 0 that relatively simple results are obtain d. This is not 

restrictive. since in m ny applications the model for the disturbance signal is only an LTl appr ximation. 

Th system shown in Fig. I includes the nonlinear ( L) plant model together ith the linear reference. 

measurement noise and disturbance signal. The signals 1I(t) and c;(t) are vector zero-mean. independent. 

white noi e signal . Th~ meu.wremenl noise signal 1 (t) is assumed to have a con tant covariance matrix 

R1 = R~ ~ O. There is no loss of generality in as timing that the di. 'Iurhance white n ise source ~ I) has 

an identit I c variance matrix. Th re is al 0 no requirement to specifY the di tri ution of the noise s urce. 

inc the structure of the system leads to a prediction equation, \.-"hieh i only dependent upon the linear 

stochastic di turbance model. The plant m del can have a very general nonlinear operator form, which 

might involve hard nonlinearities, a state-dependent tate- pace model, tran fer operators or ev n 

nonlinear-function .look LIp tables. Detai I d knowledge of the NL system structure is not r qui red. 

Nonlinear Plant: (I) 

here :: -k I lIenot a diagonal matrix of the common delay element in the lit put signal paths. rhe 

outputofth non-linearsLlbsystcmY\1k' that might r present actuators,wiJl bedenot d U(I(I)=( Iku)(t). 

r r simplicity the L subsystem: WI is a . limed to bc .finite: gain sluM!! hut the linear subsystem 

Wo ==-k WOk • inlroduct:d b low. can contain any unstable modes. If th decompo ition into a nOI linear 

and a linear sub-system is not relevant then let the linear ub-sySknl F~-;n, = I _ The g neralisatiol1 to 

di Ilerent delays in di rrcrent paths is . rraighUorward [26 j. The vectors f signal in the system may be 

Ii t d as fall ws: 'Lio(t) E Rrr~1 (input to linear subsystem); u.(t) E R'" (control signal); y(t) E R'- (plant 

output); z(t) E H'- (observations); r(t) E fl' (set-p int I reference); Yp(t) E R'" (wl.:ighted 0 tput): 

'Ip(t) E R' (weighted set-p int or rcfcrcncl.:). 
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2.1 Linear Sub!;y,.,tem Polynomial Matrix Models 

The polynomi I matrix system models. for the incar part of the (r x In) multi varia Ie system ma now be 

intr duced. The. ub-, ystems to be defin d ar associated with any lin ar sub-system Wo in the plant 

model and the linear disturbance m del. he Contmllcd AUI()-Reb71'cssive Moving Av rage (CARMA) 

model, representing the linear subsystem of the plant is derin d as: 

(2) 

when: ';(1) and the input signal channels in the plant mod I are assum d to includ a k-sleps (k ~ 0 ) 

transport delay and BfI( Z 1) = BOk (Z-I)Z-k, Th de!ayfree plant transfl r of the Iinear sub-system and the 

disturbance model may therefore be defined. in tht: left coprime form: 

(3) 

Introduce a stable c:os/-jimc/io/1 weigh/ingmode! in left coprime form ~.(-:; 1)= ~~I(Z-ltl P (;; I), hecn 

weight d output may be written as: 

(4) 

The power .'pee/rUllt tor the combined di turbance and n ise il:,'T1al I = II + 'U = n~l~ + /I can be 

computed. noting these a 'e Iinear sub )'stcms. using cP if =mdd + (/)\T := w"Wt; + Rr , wh re the n tati n for 

the adjoint of WI implies U~; (= I) =W: C:-) and only in this case:: represents the ::-domain complex 

number. The generali::ed s[le 'lro/~fl/etor YI may bc computed from this spectrum as Y, Y; =(f> /I • where 

V = A-I Dr' The 5y'tem models are assumed to be such that D, is a s/riclly 8,:17/11' p Iynomial matrix 

[17.18 J: 

(5) 

The model f r the disturbance ignal is linear. which is an as L1n1ption that does not < ffect stability 

properties but may caLIs a degree of LIb-optimality inlhe di5turbanc rejection properties. 
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bmovations sil:lI(ll: Disturbance models are often appro.xi mated in real appl ications b. Iinear systems 

driven by white noise. It is well known that the signal I == d + \' may be mod lied in i novations signal 

form as/(t)==}jE(t), \ here }j =A I Dr is defined via the spectral-factorisati n (5) and £(1) denote a 

\-\·hite noise signal of zero-mean and identity covariance matrix [8,21]. The syst m description may be 

as Limed to b such that Dr is strictly Schur. The ohserl'utions signa! may theref re be written. LI ing (2) 

a-; z(t) == y(t) + 'u(t) = A-l(z-I)Bok(z-l)'Uo(l- k) + il1(z-I)C<J(.Z-1)';(t) +o(t) 

:= A-1(z-1)Bok(z l)U(J(t - k) + Yj(Z-I)&(t) (6) 

Detine the right coprime model for the weighted .lpJc!ralj(.JC!or: 

(7) 

Then the we(Rhted observutiollS si, rna! ZT' (t) = P. (z -I ):;(1) may be wrinen a : 

(8) 

2.2 Optimal Linear Prediction 

Th olution of the ptimal control problem require the intr duction or a least squares predictor. Thi 

enables the inferred output vat times I -I- k + I . 1+ k +:?., t be caJculat d (assuming that the disturbance 

at future times is null). The cost-function to be minimised, wi jch defines the [ a"t-squares predictor, is 

given 'IS: ,J = E{.'/r,(1 + jl/)'l (9) 

where the estimation error: 

(I ) 

and iiT,(t + j I t) derines the predicted valLIe of .1/1,(1.) at a time) steps ahead. To generate the prediction 

algorithm the f !lowing iU/7hulllil1(' equarion must he 'olved for the soluljon(E). H). with E] of 

mallest degree ( leg(E/z-1
)) < ] + k): 
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First Diophalltine: ( [ I) 

This equation may b written as: 

D -I) J 4H ( -I) 1-1( 1) D ( -J)4-1( -I) ( 12)r,;.~ + Z );"" f;; = fp Z • f Z 

Prediction equatioll: Substituting from (I J) the expression fI r the weighted obs rvati ns signal (8): 

Zl'(t) = Pc (Z-I)WOk(Z 1)/I'u(l - k) + Dh)(Z-I)Af \: 1)1:(1) 

= ~.(Z-I)~V~k(Z-I)'Uu(t - k) + (E}(Z-I) + z J-Ir:H (2 I)A/(",-I))t:(I) 

ub titutin t from the innovation (6) c(t) =}'~ IZ(I - D;IBok/lO(t - k) obtain: 

ZI'(t) = ~.(Z-IF~;k(Z-I)iLn(t - /,;) + E;(z I)t:(t) 

+ Z-7-
k H (z I)A;I(Z-I)(}~ I(Z-J)2(1) - D/(z- )BOk(z I)no(t - k))

J 

Recall A~;t r/ = Dr~Pc and substituting, the }I'eighled obs-rl'Oliof/s: 

Weighted Output: 1'0 obtain the expression tor the weighted output ,:)f) = F" z(t.) = .1J 1'(1) + 11,,(1), 

but from (7) J:.. rrA( - DIi> and from (12) and ( 13): 

lJp(l) = EJ(z l)t.(t) - (1,,(1) + Z J 4lI/z ')()'h,I(Z-I)ZI'(I.) 

+(Dh,(;;-I)-Z) 4H (z 1)).1/(.::-1)1);'(.: I)ilok(z 1)'/I,\I(t-k)
J 

Future Values of Weig/rled Output: Using ( 11 ). the .J + k steps ahead weighted output ign I: 
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(I ) 

To further simplify the cqu tions (recalling D;l is as umed to be stable), the right coprime m del: 

B1k(Z-I)D;i(z-1) = D/(Z-l)Bllk(Z- ) (15 ) 

Also let the _i!:,'Tlal 'uf(i) = Djl\;::;-l)llo(t) , then (14) may be 'ovritten: 

y JI + j + 1,;) = (E](;;-I )l:(t +) + k) - 'l,/t +,] + k))r 

+ [ H)(Z-l)D;l(Z-1 ),,)f) + E)(Z-1 )B1k(Z l)LLf(t +J)] ( 16) 

ote that the maxin um degree of the polynomial matrix E) i j + I,; - 1and hence the noise components 

in El(t + ,] + /,;) includes E( t + j + 1.:) " E( t + L), which ar at future times. 

2.3 The Prediction Equations 

The optimal predictor at time t + ,] + k. gi en ob ervations up to time f, can now be derived. Consid I' first 

the case wher the noise {o(t)} is zero. The observations. up to time { are known and the futur values of 

the control inputs { '/I.o(t) ,", "'u(t + j) }, us d in the predictor. are omputed at time f. and hence the future 

contI' I input i independent or the future disturbance and noise sequence. It follow thal the expected 

value of the "quare [.J and round (.) brack ted tCI1TI in equ tion (16) must be Lero. The predictor to 

minimi e the cost (9), given thatlhe cross terms in the cost are null, follows, from (16): 

( 17) 

If the measurement noise ignal IS 11 n-7cro then the weighted nOI e term 

"flU +.1 + k = Pru (::; I U(l +.1 + k). If the weightingPr.(' I) is a constant, which is usual in CPC c ntrol, 

or ifit is assumed a p Iyn mial matrix of degree .I + k - J. then lJp(t + J + k) is only dependent on future 

\ hite m asurement nois and the expected value of such a [em and the square brack ted terms in ( 16) must 

be zero. The optimal I redictor- i . therefore a ain given by ( 17) and the predicfiot1 c:rrur: 
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( (8) 

second Diophantine eq/lalioll may nO"\1 be introduced to break up the t I'm E)(Z-l)Blk(Z-l) into a p rt 

with a)+ 1 step dela. and ''I part depending on Df1 Z 1) (recall 'U00 = DI;(Z-I )u.[J(t)), Thus. for j 2. 0, 

introduce the following Diophantine quat ion, with ( -' ' S ). of smullest def,Jree forC :
.1 ) ) 

G ( - -I D (-' 1) - j-J (_-I) = E ( -I)B ( -J)Second Diophantine: J) ~ 11 '" + - j 'J j ... II.: 2 ( 19) 

wheredeg(G/z- I 
)) =J' The prediction. from equation (J7), may now be obtain d (for) _ ) as: 

The degree of G)(z-J) is} and the secon term in (20) therefore in olves the inputs which are in th future. 

Defin the signal .t)t), in terms of past outputs and inputs. a': 

(21 ) 

hus, th preJided ,!'eighted nul/iul (20) may be written, for j cO. as: 

(22) 

Coefficient,\' (if the Polynomial mlltrix G
J 

:;-1). From equations (I 1) and (19): 

' n P}'R )-kH lin 'J IeCtJ/1=('IJI,-': /1 lk- Z '7, 

(,' - 1) \ ln _(- ) k H t 1H _ J 1 (.' ) 1) I 
t) - ,J Ilk '" j·....f Ii. + <, v J /1 

Th G)(z l) theretore includes the fir t J + I Marl\ov paramctcf:) 'V
J 

of the weighted plant C 
j 

= J~; ~Ik' 
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2.4 VectorlMlitri.\: Prediction Equations 

The future wight d outputs are [0 be predicted for inputs computed 111 the interval t c [t.t + N] 

wher N ~ O. Equation (22) may therefore be u d to obtain: 

:&1' (t + kit) 

:Op (t +] + kif) 

gu 

91 

0 

go 0 

0 0 

0 

uu( t) 

'uu(t + 1) 

11)(1) 

.I; (t) 

= ,I]J 90 + (23) 

y1'(f + N + kit) 

!}N J 

(IN gN-l !h % v,u(t + N) h (I) 

he ector form of the predicted weighted output: 

(24) 

Using (21 ). lh free respon c prt:dictions F;.N : 

So(;: -1)H11(z-J)taU) 
IIJ(z I) SJ (z 1)AU) 

Dh,l(Z 1);:;1'(1) +F N = l, 

J~(t) 

(25) 

The functi ns [fNZ(Z-l) and SNz{Z I) are detined in an obvi us way from (25). The predicli n error 

('OE(t + I,) + '" + 'k IE(I +- I) -o,,(f + 1..) 

ellf-;(f + 1 + I;) + .,. + ('kL(t + I) - '/11'(1; +] + k) 
(26) 
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Future set poillt kllowledge: The futur variations of the ref r nee si!:,'Tlal r( l) are a sumed kn wn over N 

steps and the weighted rcterence 7~(t) ::: ~,(:: J) '1'(1). The vectors ofji/ture weighted signals: 

7~, (t) 1/1' (f) Ill) (t) 

T~(t+1) yp(t + 1) 'Uu(t + :I) 
Rt,N = }~,N = Uf~N = (27) 

I~(t + rv) iJ
1
,(f + N) uo(t + N) 

The k steps-ahead future weighted outputs can be written in vector terms Y;+k,N = }~+k, +} ~+k,N and thc 

fi.lture trar.;king error, that includes a dynamic error weighting, may therefore be written a : 

(28) 

. ­
fhe vect r of predicted si nals }~+kN in (28) and the prediction error :r:,N are ortho onal. 

Main Features of Generalised Predictive Control 

reviewofth derivation of the Gre controller is provid d below where the input will be taken to be that 

fi r the linear sub-sy tern (lIo )' since it provides e ults that ar n eded for the d finition orth NL pr blem 

of interest. The GPC /7er.!rwmUJlce index, t be rninimi cd: 

N 

J ::: E{I '1'(1 +.J + k)"'('p(l +.i + k) +A;U'o(t + J)'l'ulI (l + j))j/} (29) 
} II 

wh re J{ .It} d 'note the conditional expectation. <.:Onditioncd on measurements lip to time I: A) den tes 

n scalar control signal v eightin r and the vector of future weighle I error sign I ville 

Pl,(t + j + k) = Pc (z 1)('1(1 + j + k) -!J(t + J + k)) . he future optimal control is to bi: cal ulated for 

the interval T € [I. t + N] and til\; cpe ,'()s/:1ill1ctiol1: 

(30) 

IntroJucing the optimal predictor. using (28) and (30), obtain, 
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where the c t weightings on the future inputs 110 are written A ~ == diag{ J,~ ,1l,2 .... , 2,~ }. 

3.1 GPC Optimal COlltrol Solulio" 

The tems in the performance criterion can be sim lified by noting the prediction errors in ~+k,N depends 

on futur values or the sigr al E( t). wh ich ar' as umed to be indep ndent of future controls. The e timate 

Y~+k N is therefore orth gonal to the estimation rror ~~k.N and R,+J..I' is assumed 0 be a known over the 

1) step. The cost may therefore be btained as: 

(32) 

-, ­
where Jo =E{Y,+J...\ }~+k II} is independent of the control action. 'ub tituting (24) into (32) btain: 

Thu , defin (33) 

and 

(34) 

To minimise this conditional cost term the gradient of the cost l11U t be set to zero to obtain the vector of 

futur contr Is. Note the J I tem1 is indepcnd nl of the control action and a perturbation and gradient 

calculation may be appli d [27] to obtain the vector of CiPCluflire optima! controls as: 

( 5) 

The c;PC optimal control ignal at time t is ba d on the 1'1.: 'l'Jing hori=oll principle [271 and the optimal 

control is taken a the tir t elen cnt in the veet r I future control {lt~N' 
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3.2 Equivaleflt GPC Cost Minimisatiofl Problem 

The above is equivalent to a s cia I cost minimisation problem hich is needed to motivate the NPGAJIV 

problem introduced later. Let the can tant matrix X = G~CN + A~ be factorised as: 
N 

} -r}? \" GTG A2 
=-\N = TN TN + (36) 

C'mnpletillR the squares in (34) the cost: 

Th cost-function: (37) 

-T 7 . Uwhere ¢11k.N = Y G, (Rt+k,N - F;,N) - Y[ t,N ( 8) 

he terms that re independent of the control acti n may be written a .flO (t) = J{) +.II (I) where 

(3 ) 

The last lenn J\U(t) in equation (37) doe not depend upon control action and the optimal control i found 

by setting the first term to LCro, giving the same control a in (35). Thence, the GPC contr ller for th 

above linear sy (em i the same a<; the controller to minimise thl: norm ohhe signal <J)W•• N in (38). 

3.3 Modified Co:-.,/-I"t1ex 

The abo e discussion motivates the definition of a n w fIlu!ti-sle/? minimum variance' cosl pr blem thaI has 

the same olution lor the optimal controller. Can ider a new signal to be minimised of the torm: 

(40) 

The vector of future val lies of this signal, 

() 
(41 ) 

I' 

Also introduce cost weightings. using the original GA'fV weightings. to have the constant m:'ltrix form: 



P,., = G~ and (42) 

The reason fi r this choice of cost terms becomes apparent below. D fine a MV Jnlllri-step cost-function as: 

(43) 

Predicting forward k-steps: 

(44) 

ow consider the signal ¢ t+k N and substitute for i :+k,N = }';.t k,lV + }~+k,N' Then from (44) obtain: 

(45) 

This expression may b written in terms of an estimate and slimation ~rror vector as: 

A _ 

¢I.,-I..\ =<1)1 I. \ +¢I'kl (46) 

The estimated prediction ef>'+k N = ~'N (RI+k,N - }~+k,N) + F;~{jt~N and prediction error: 

(47) 

Multi-Step Cost Jndex: The performance index (43) may therefore be simplified as: 

The terms in (43) can be simplified, recalling the optimal c timate }~'k,N and the estimation error }~'k,N 

are orthogonal and th~ future reference R is a "nown signal. Expanding: lflr .\ 

(48) 

Thence, the cst-function: (49) 

The part of the cost term independent oj'L'onlrol action may be written as: 

(50) 

Now simplify the vect r¢"k,N by substituting for }~+kN from (24) and using (42) and (36) obtain: 

(I:> - n (D - }7 ) pO TTil -!) R - P ( () F) pO [T u 
l+k,N - r CN 11/+1.,.'1' t+k,N + (W L t,.V - CN tt~/i;.N eN TN t,N + t,N + "A t,N 
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(51 ) 

From a similar argument the multi-step predictive control sets the squared term iT (49) to zero cD t +k,... = 0, 

Clearl th resulting optimal contr I [fuN = )1.'~,Ip, ... (R kN - F' N) is the same as the vector of future
t,'o' .....,lv t .... I t\ 

GPC control in (35). 

Theorem 3.1: Equivalent Minimum Variance Predictive Control Problem 

onsider the minimisation of the CPC co t index (_9) for the system and assumption introduced in ~2, 

where the nonlin ar subsyst 111 V\.{k = [ and the vector of optimal GPC controls is given by (35). 

- T
Redefine the cost-index to have a multi-step variance form (43) .l(t) = E{<1>t+k,... <P,+k,N It}, wh re 

vector of future optimal controls is identical to the GPC contr Is deftn din (35). 

Proof: ollow by collecting together the ab ve result. • 

4 PGMV Optimal Control Problem 

The Nonlinear Pr·dictive Generalised Minimum Variance (I PGMV) contr I pr blem of interest is now 

considered. The actual input to the sy tern is ofcour e the contr I signal u(l), shown in Fig. I. rather than 

the input to the linear sub-sy tern /10 ' Tht: co t-functi n for the nonlinear control problem must il1l:ludl: a 

c ntr I ignal costing term, although the c sting 011 the intermediate signal 110 (1) can be retained t 

examine limiting case. This ignal may al 0 represent an Glc/l/t.l{or output that may be costed in orne 

probkm. If the. mallest delay in each output channel of the plant is or magnitude k -steps this implies 

that th contr I signal t alTects the output at least k -steps later. ror this rca on the control signal costing 

should be d lined to have [he torm: 

(52) 
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Typic !ly this weighting on the nonlinear sub-systen input will be a lineuI" dynamic operator but it may 

also b chosen to be nonlinear to introduce an anti-windup capability [10]. This perator.r;k can be 

assumed to be Cull rank and inver1ible. rhus, consider a new signal whose variance is t e minimised, 

IIlV Iving the weighted sum aCerraI', subsystem input and control signals: 

(53 ) 

In analogy with th GPe problem a multi-step ost index may be defined that is an exten i n of (43): 

Extellded Multi-Step Perfurmallce illdex: J p = E {cD:1:k,N <!>~...k.N It} (54) 

he signal <l>~+k N i therefore extended to include the additional future comrol signal co ting term: 

The non-lin ar function ~k,NUf./i will normally b defined to have the simple diagonal operator form: 

(56) 

where [, ;~N = (Y1{k,.\U f J and )/l1k,x aloha a block diagonal matrix form: 

Remark\': rh pI' blel11 implifics when N = (j to the single-step non predictive control problem, which is 

the am as the so-called NGMV l;ontr I problem [9J. 

4.1 The NPGMV Control Solution 

The olution r !lows from very similar step' to those in §3.3 and wililheret'ore be summarised only briefly 

and the estimatii.,l11 err 1': 

- (I -··1' .'/ ­
<!>/I~' =<D/+k ..\ =-} ,\~ k \ (59) 
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~u yTh future predicted values in the signal ~1.k.N involves the estimated vector of weighted outputs l.k,N 

and th se are orthogonal to }~~k ,\. AI 0 note that the estimation 1'1'01' is zero mean and hence the expect d 

value orthe product with an known signal i null. The cost-functi n ma th refore be written as: 

(60) 

, 0 
wh re the optimal ontrol ets Cl>t+k,,\ = O. The condition/or optimality therefore has the torm, 

(61 ) 

4.2 The Nonlinear Predictive GMV Control Signal 

The future optimal control, to minimize (60), toll ws from th condition for optimality in (6J 

u = - (f - A~]/v )-1 P (R - Y ) (62)
I,N rk,J N Ik,:" "N l+k,N t+k,N 

An alternative sol ution of (61), in an ea ier form for implemcn ation, gi ves: 

U = _,T-I (p (R - Y )- A 2)1,:' ,[1 ) (63)
I,N ck, f"V l+k,N l+k,N N Ik,.' I,N 

The optimal predictive control law is nonlinear. since it in olves the nonlinear control signal costin J term: 

7;;k,N and the nonlinear model for the plant )1.{k,:-.' Furthl:r implitication is possible by sub tituting i'om 

(24) tOl' the estimate Y; tk,N ' so that the condition lor optimality in (61) may be written as: 

• ubstituting Irom (42) the condition for optimality bl:comes: 

P (R -F )+(F -}'l'}'J'V)U = () (64)
(.w t+k,N !,N k,N Ik,N t.' 

The two a[ternati e solutions for the vector O//iltlll' optimal controls, n ting (36), therefore becomes: 

(05 ) 

or 
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u = -.T I (p R - F ) - x w ,U ) (66)
/,.. c:k,N c., l+k,N t,N N lk,:\ t .• 

Remarks: The NPGMV control law in equation (65) is model based and includes an internal model for the 

nonlinear process, The control la"" is to be implemented u ing a receding horizon philosophy and from the 

precedin", discu si n it becomes identical to the GPC controller (35) in the limiting linear ca e when the 

contr I co ting tends to zero (;z:;; '.N ~ 0, Hik,=, = I), The problem construction nables an important 

property to be predicted and confirmed from (65), That is, if the control weighting .T.k.N~O then [Tt,N 

should introduce the inverse of the plant m del Y1{k,:-: (if one exists) and the resulting veet r of future 

c ntrols t~N will tl en be the same as the GPC controls for the resulting linear system, 

Theorem 4.1: onlinear Predictive GMV Optimal Control Law 

Consider the syst m described in §2 and th predictive control probl III for the cost index (54) (N)O), 

The nonlinear plant operator V\{~ is assum d to be/illile Rain 'tabLe. For closed-lop stability the operator 

(..J;;1I}(1) = (;Z:;:kll)( I- k) . dynamic error PJ." -I) and input {Au, .. AN} COSI wei rhtings. The muLti-step 

predictive controL cost-function to be minimi cd, inv Ives a sum of future eost terms 

.II' = E {<t>~,rk, <t>~I'k,N It}. where <1>~+k.N includes the vector of fUlure error, input and contr I l:Osti ng 

terms: 

""II P L' FI! () (·r U )
...... / ...k, = (. D tfk" + (w I,h + .rCk, !oN (67) 

and in terms or the weightin 'S ~, == G~ and 1';[~ = -A" . The NPUA'!Voptimal control law to minimize 

the variance of signal (67) is given as: 

[ ==-(.T -XH:'tp(R -F) (68)
I." ck.J N lk,:- ,', t, k,1 t,N 

where XlV =C~GN + A ~. For implementalion nr the 1'(!ClOr o/.filfllrlt [i1)1 imol control slf!l1als: 
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u = -.T'! (p (R - F ) - x w .U ) (69)
£,J\ ck,N ('N lJ-k.,N f,N tV lk,;\ t. 

and th current control may be found from the lirst element of the vector (invoking the receding horizon 

Solutio": The proof of the NPGMV ptimal control follows by collecting the results in the above section. 

The necessary condition for stability an be established using the sam argument as afta the main theorem 

in [9]. This r quires the introduction of some lin ar or rL plant sub-system models. Write the lin ar plant 

in the right coprime torm Wo = Bo,4Ql and the orresponding block structure as Wo, \' = BO,,\ ~\ Also 

write the plant model In a polynomial NL operator form: so that 

following relati nship may be established: 

which may be liS d to h w that the model for the predicted outputs involves nly table operat rs. _ 

Remarks: he tw c>..pressions for the NPGMV control signal (68) and (69) lead to the two alt rnative 

structure, ,hown in ·igs. 2 and 3, respectively The econd. shown in Fig. 3 how how the current and 

future c ntr Is may be separated from the full vector of" future controls, a exrlaincd below. If th rror 

and input cost-function weightings are defined in thc ope motiva! J form ~ ,\ = G,( and f~(~ = -A; then 

tor u lincar ystem ( V\1k = / ) the optimal control. when.r: ~ 0, is identical to a ope control law. 

4.3 Implementation ofthe Predictive Optimal Control 

A Llseful partition may be intr duced ",hich later enilhl(' the algorithm t be simplified. Tile co trol at time 

I is computed tor N> 0 from the vector of CUITent and futur c ntrol by introducing the matrix: 
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('/II ==[1.0 )J	 (70) 

This enabl s th control at time I to be found from the ector of curr nt and future control as:
 

Current cOlltrol: u(l)= [f.O..... O]Utv (7 J)
 

To compute the vector of future c ntr Is for t > () al 0 introduce: (72)
 

Future cOlltrols:	 U{N == COl U == [ 0 (73) 

ote from (70), because of the block diagonal structure f th control signal costing .!L;;k,N ' then 

(74) 

Th	 optimaL control at time t can then be computed, LI ing 69) as: 

"/1.(1) = -.T Ie (p R - F ) - x w u ) (75)
ck {(J eN t ~k,N I,N N Ik,:\' t ..' 

The ve '(01' ojfiftllrL' conlrnls, computed at time t, may also be found as: 

[If ==-c ;r-I (p (R -F )-X )1/ l! ) (70)
t,N Of ck,N I" t Ik,N t,N N lk,J t,N 

wher~ from (72) writ ('	 ~r I - [0 I J;c, I - [0 .T. I ]
II/"/";I<,S - I,\'JII'/II/11 \ o.,\' - 1\'1)-/11/11 ,J,. \-1 . 

The vector J1{k,:Jl t ,N may be written, frOIll equation (57) (partitioning current and future tenns) a : 

(77) 

Using a related partition, writ ~ the matrix XiV in the (oml X \ == yl Y == r>'~ Y2]' when; Y; has mu 

quation for implementing the optimal control (69). may bl.: split into the curn:nt and future ontrols a 

shown in Fie. 3. 
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4.4 Marine Predictive Control Design Example 

Consider the problem of the simultaneous control of the roll and yaw motions of a ship. A supply vess 

with Ih onventional angle notation is shown in Fig. 5. rhe ship heading (yaw angle) is controlled b the 

rudder, and it is assumed that the heading traje tory to follow is kn wn. The rolling motion cau ed by the 

I' rce of the sea wave disturbances can he counteracted by the use of tin roll stabiliz rs. How ver, this 

LInd sira Ie movement mey also be reduced by aclive use of th rudder, and a number of commercial 

rudder roll stabilization systems have been developed ( ee [28] and referen es therein). This tr tegy 

requires high-perfomlan e rudder machinery but can provide improved performance or enable smaller fins 

to be used. The basic dynamics of the ship roll and yaw motion with re pect to the fin and rudder, for 

particular ship peed and encounter angle, are sh wn 'n Fiuure 6. 

( .) = (0.8):'Roll model: C t/J .\ , 1 

.1'- + 2·0.2·0.8.1' + (08)" 

0.2
Yaw model: (j (.1')=--­

'I' s(t Os + I)
 

( '. ) O. I(I - 4.1')Rudder to roll illteractioll: ',;,; (,\ - --'---"";' 
, (6s + I) 

The model includes non-minimum phase interaction from the rudder to roll motion and there is an 

integrator in the yaw model. he roll characteri tics of the ship are 111 d lied using are onant econd-order 

ystem, with a natural frequency of 0.8 rad/sec and a 10\\ damping factor. The frequency resp nses of the 

In de Is are shown in Fig. 7. he fin and r Idder actuators GI'l and G,i have hard constrail t on the 

achieva Ie angle and ,'ate. The actuator limits are set as 25 eg and 10 dcg/sec for the fins, and 30 deg and 

7 degisec for the rudder servo. respecti v Iy. 

Di.<.tmbance!i: The effect of thl: wave disturbanc on the roll and yaw motion is rellrcsented in Fig. 13 by 

_ 5s cthe signal d~ and d~,. wh re ( ¢ I - 1 dPJI = a.5 r:: and sand r" are whit n ise1 

r +2·a.l·O.7s+(O.7t s 

sequ nces. The model for th roll wave di turbance provides a second order linear approximati n to the 
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Pierson-Moskowi/:: spectrum, and the aw di turbance is assumed to be of low-frequency nature and is
 

modelled by an integrator driven by white noise.
 

Control objectives: Th main control objectiv s are the reduction of roll mati n and tracking of the
 

heading et-point. he former can be characteriLed by the Roll Reduc/ion Ra/io (RRR) defined as:
 

(78) 

This ratio represent the improvement in roll reduction achi ed by usin feedback ontrol, with 100% 

carr sp nding to the ideal null roll motion. The yaw tracking performance can be measured using 

can entional measures such as rise time / settling time, or. alternatively, by integral squar error (IS£). In a 

classical control scheme. rolling mati n is regulat d using fin tabilizers, and the heading is controlled" ith 

the ru der, involving two 5150 y terns. A multivariable control scheme will take the system interactions 

into ac aunt. 'l!lowing the rudder to actively attenuate the roll and to control yaw, which is possible due to 

the separation in th roll and yaw motion frequency c ntent. 

Results: For the purpose of control I r design, the continuous-time models of the system were di cretized 

u ing the sample time of 0.5 seconds. In the simulations. the ship yaw angle was r quired to follow a 

kn wn trajectory co isting of two step chang s, while minimizing the roll motion, accor ing to the 

.p cified crit rion. In the limiting cas when n1k =1 (i.e. no constraints in the ship mod ) and .T:k ~ 0, 

the NPGMV c ntroller collapse to a version or the standard (fPC controller but with weighted output and 

rfernee .ignals in the cost criterion. Th reults for the norninl settinTs or N=O, 

An = 3 x diag{l 0';.5 x 10 '} and the linear case arc shown in rig. 8. The P, weighting was chosen based 

on a multi-loop eta sical controller (st,;e r9j), the performance ofwhi h is also hown. 

The GPe results for the roll atlenuation in this uncon train d case are somewhat unrealistic and 

detuning the controller (increasing /L weighting) is normally needed in th pre ence of fin and rudder 

constr ints (in particular. fin rate limits are exceeded). he pr dictive action can also b utilized wh n the 

future yaw trajectory is known, and this is illustrated in Fig. 9 (the stochastic noise has been removed and 
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5 

the time scale magnified to show the predictive action more clearly). Increasing values of N are indicated 

by the arrow. A long prediction h rizon often leads to a faster response and also improves the robustnes of 

the olution (as m asured by tl re ponse overshool), which is illustrated by the yaw angle respon' . 

When th constraints are present, the GPe controller n cds to b detuned to maintain tability. he 

nonlinearities can be acc unted for more effectivel by introducing the nonlinear control weighting f;. 

into the NPGMV control structure. For example. defining this weighting appropriately leads to an anti­

windup structure for contr Ilers that include integral action [10]. After tunin ,the results are sh wn in fig. 

10 (for N = 5), wher the NPGMV atistie the rudder angle limits that are much exce d d by the GPC 

design. The roll reduction is also more effecti e with the nonlinear control (about 40% improvement in 

Roll Reduction Ratio) since the servo nonlineariti s ar explicitl accounted for in the contr Iler tructur . 

Concluding Remarks 

There are many nonlinear predictive control strategies based on slale c/'pendenl models, lineariz tion 

around a trajectory and others. The aim was to try to produce a c ntrol law which is simple to implement 

and thl..: result i an algorithm which Joser to traditional model based desians than to current nonlin ar 

pr dictive c ntrol strat gies. The NL Predicti\"" Generalised Minimum Variunce (NPGAIV) control 

problem involves a multi-st p predictive control cost-function and the introduction or future set-point 

information. The predictive controls strateby is a development fthe NGMV d si b'l1 method which is easy 

to design 'lI1d implement. 

It has the nie rrop~11y that if the system is linear the control reverts to thl..: GPC design method 

'v hich is well known in industr. That is, th N['(jfl(' control de ign method reduces to that of (IP . 

control desi:Tn when th weight J;;k tt:nds to zero and th system is linear ()/J J.. = I). This sugge ts a 2 

ta re design process mi:=.hL b~ used wh rc the tir t stage is for a free choice CC;PC weightings ba ed upon 

the linear sub-syst m~. Tl l: engineer only need considl:r the sclccti n of desirable weightings. which satisfy 

suitable pert! rmance rcquirclI1l.:nts tor' the mulfiv::lriable system The NL system characteristic:; c n thell be 
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c nsidered in the second stage of the desi!:,'l1 wher the contr I signal co ting (.T k possibly nonlin ar) is 

sel cted and stability i sues are c n idered. 

If the cost horizon becomes only a single tep th n the control law revert to th s called NGMV 

solution. A m thad is available for generating cost weightings that will provide a starting point for design 

f9] and guarantee a stabilising initial solution. This may be a useful tarting point and the number or steps 

in the pr dictive control horizon can then be increa ed which normally improve robustness at the expense 

of additional computations. Clearly if thi: response are not improving by using further steps there is no 

need to incr ase the computations. The control law includes an internal m del but man. f the 

computations. as in traditional polynomial e uation based predictive control, simply involve the solution of 

Diophantine equations and matrix multiplications. 

Acknowledgements: We ar grateful for the support orthe EP RC on the Platform Grant P/C526422/1. 

References 

[1.1.	 Culler C.R. and Ramaker B.L., 1979, Dynamic matrix cuntrol - /1 computer control algorithm, 

, ,I.C.H. E, 86th National Meetino, April 1979. 

f2]. Clarke, D. W., C. Mohtadi and P.S. ruff.c;. 1987, Generalized prediL·tive control - Par' I. The basic 

alRorithm, Part 2. E.~Ylensions ami interpretation, !\utomatica, 23. 2, pp.137-148. 

[3]. Clarke. D. W., and C. Mo tadi. 1989. Prort.!rties ojgenerali. eJ predictive conlml, !\utomatica, Vol. 

., 5, o. 6, pp. f{:S9-87 

f4J.	 Richak:t J.• A. Raull. J.I.. eslud and J. Paron 1978, Model prediclive heuristic cuntrol applicQti 17.1 

to indll. '{rial processes, !\lIlomatica. 14. pp, 413-428. 

151.	 Richalet, J., 1993. indus/rial appli '01 iOl1s of mtiJt:l hosed prediC{fv' eon{r I. AutomaticH, Vol. 29. 

o. 8, pp. 1251-1274. 

[61·	 Bitmcad R.. M Gcvers. and V. Wert7~ 1990. Adaptil'l! Oplimal Control The Thinkilll{ Um\' GPc. 

Prentice Iiali. 

24 



[7]. Kwon W.ll. and Pearson, A. Eo, 1977. A modified quadratic' cost problem ondfeedback stahili:ation
 

ala linear\ystem. iEEE Transacti ns on Automati Control. Vol. AC-22. No.5. pp. 838-842.
 

l8]. Grimble. M J. 200 . GMV (:ol1lrol ofnonlinear mullivariahle .~ys/r::m,\', UKACC Conference Con/rol
 

200./. Univer ity of Bath, 6-9 Sept mber. 

19].	 Grimble, M J. 2005, Non-linear generalised minimllm variance feedback. feedjonrard and trucking 

control. Aut matica. Vol. 41. pp 957-96 . 

[101.	 Grimble, M J. and P Majecki, 2005. Nonlinear Generalised Minimum Variance Conlrol Under 

Actllu/or Saturation. WAC World Congres , Prague. Friday 8 Jul ,2005. 

[11]. Cannon. M. and B. Kouvaritakis, 2001, Open-loop and closed-loop optimality in int rpolation MPC, 

in onIinear Predictive Contro!' Theon! and Pracli ·e. pp. 131-/49. I E, London. 

[12J.	 annan. M. and B. Kouvaritakis, 2002. Efficient constrain d model predictive control with 

as mptotic optimality, Siam J 'ontrol Optimisation. 41 (1), pp. 60-82. 

[13]	 Cannon, M and B. Kouvaritakis, Y.1. Lee and A.C. Broor s. 2001, Efficient nonlinear predictive 

contr I, Int-rt1ationaIJ Control, 74(4). pp.361-372. 

114J. Cannon, M and V. Deshmukh and B. Kouvarital-..is. 2003. onlinear model predictive control with 

polytopic in ariant sets. Alit matico 39(8). pp. 1487-1494. 

r15]. K thaI' . M. V. V. Balakrishnan and M. Morari. 1996, R bust constrained model predictive control 

using Iinear matrix inequal it ies, .!/ulOlnatic:a 32( 10). pp. 1361 -1379. 

116J. Michalska. H. and D.O. May!~, 11)93, Robust receding horizon cantI'l ofconstrained non-linear 

syst'ms. 1l!.EE Trans(/( 'tiuns on AIItol1lotit' Cuntrol, 38. pp. 1623-1633. 

[17]. hamma.1.. and M. Athan , 1990. Analy is of gain scheduled control for non-linear plants. /F.EE 

Transactions on AII/ull/utic Control. 35. pp. 898-907. 

ft 81 KOLivaritaki, B.. M. Cannon and .LA. Rossiter. 1999, onlinear m del based predictive control. In!. 

.J. Control. 72( 10). pp. 919-918. 

1191.	 Lee. Y.I., B. K uv ritakis and M. C~llnon, 2003, on trained receding horizoll predictive contI' I for 

nonlinear yst ms, 1111tol/la/ica. 38( 12), pp. 2093-2 I02 

25 



[20]. Mayne, D.Q.. J.B. Rawlings. C.V. Rao an P.O.M. Sc kaert, 2000, onstrained model predictive 

control: stability and optimality. Automatica 36(6). pp. 789-814. 

(21]. cokaert. P.O.M .. D.Q. Mayne and lB. Ra lings. J999. Suboptimal model predictive control 

(feasibility implies stability). IEEE Transactions on utmnutic 'on/rol, 44(3). pp. 648-654. 

[221- Brooms. A.C. and B. Kou aritakis. 2000. Succes ive constrained optimisation and interpolation in 

non-lin ar mod 1based predictive control, Int. .J Control, 73(4). pp. 312- 16. 

[23]. Aligower. F.. and R. Findei-en, 1998. on-linear predictive control fa distillation column. 

International .~:vmposium 011 NOI/-linear Mociel Predictive Control. Ascona, Switz rland. 

[24]. Camacho, E.F.. 1993. onstrained gen ralized predicti e control. IEEE Transaction on Automatic 

Con/rol. 38. pp. 327-332. 

[25].	 Grimble, M J. 2 06, Robust indus/rial cO/ltrol, John Wiley. Chichester. 

[26].	 Grimble. M J. 200 I, Industrial control systems desif:,Tf7. John Wiley. Chichester, 

[27].	 Grimble M.J. and Johnson, M.A, 1988. Optimal c ntrol and stochastic estimation. Vols. [ and II. 

John Wiley, Chichester. 

[281.	 Perez 1'.,2005, Ship Motion (·on/rol. pringer-Verlag. London. 

26 



• rPo = ~,e + .7;u + ~'ol/o 
I 

r -.J' :- - - - - -: + I Disturbance 
- - - -~: Pc :- - - -~~__ - - - - - - - - - - - -: model 

-------
I 
+ 

I 
Lrror I I 

---!--- __ -1-_­weighting 
: : Control : Inpw 
:.;:; : \I' ighting Fe '0 : 11'eighling
'-_-&- __ 1 , 

I .. 
I 
I 
I 

COl1lroller 
t
I Nonlinear Linear 

dI 
InI + 

r + 
y 

PI lilt suh, I'stems 
+ 
+ 

Afeasurements!ohservations signal z 'I' 

Fig.l: PGMV 2-Degrees of Freedom Feedback ontrol System for onlinear Plant 

Con/roller sllh.~\'s/em ,\ol1finear Ois/lirhulICI' 

FlIIlIre fJ/alll 
(}WpUl

refireI/o'., 

SOl/hI/ear (lfII!r(l{or ill""r e 

+Ohsen'(uio/ll' z 

+ 

" 

Fig. 2: First Form of the NPGMV Polynomial Controller Structure 

27
 



('ontroller Structure I'll/lire cOlI/rals 
XU/Sf! 

( • f 
rulllre l. ~l!!.N 

reference 

t­

+ 
IlIplll 

,l1eGsliremellls 
ar ab. ervatians 

Plant 

Disturbance 

z 

Fig. 3: econd Form of NPGMV Controller (sholl'ingjilfure control siRnal generalion) 

Roll 

wa\·e~. Clurent;;. willd 

Fig. 5: tandard hip Motion De cription (ji'om ['ere:: [28]) 

28 



d¢ 0 

Ga 
a 

'" G¢; 
¢; 

,<:?\. -~ '<;Y -
,<y 

Fins Roll rn del --. Co 
I-- ­

,.... f-- ­Rudder to rollGorP 
interaction Controller 

;; lJI-tO\5, to\,.-+ Gr5 GIJI ~'<Y'<;Y 

fIIrd~1Rudder Yaw model 

Fig. 6: Block Diagram of the Ship Model 

Bode Dagram 

40 

Yaw/Rudder 

·20 

iii 
~ .. 
"C 040€ c 
'" '" :; 

-60 

·80 

100 

Roll/Rudder 

_____ Waves 

\._---- Roll/Fins 

120 
10 < 10'
 

Frequency (rad/sec)
 

10 o 

I· ig. 7: Frequency Rcspon ·cs of the System Model and Wave Spectra 

29 



Roll angle (degj Yaw angle ldegJ 
~--30 50 ­

GPC20 Classical 40 

10' 30 

0 20 

Classical10·10 ' 

-20 ~ GPC 0
Open-loop 

-30 -10 
200 220 240 260 280 300 0 100 200 300 400 500 600 

F"., cornmnd [degJ Rudder corrrrand [degl 
30 100 

Classical Classical20 ..---­50 

0 
""'"-7 

-50 GPC 
-20 

-30 GPC -100 
200 220 2~u <.uv 280 300 0 100 200 300 400 500 600 

Fig. 8: Comparison Nominal erc and Classical Cootrol Results (N= 0) 

I 
10 

0 

30
 



Yaw angle (deg! ,.....80 

N
60 ~ 

setpoint, 

N=O 
N = 1 

-N=3 

40 

20 --.-- N = 5 
_. __.• N =9 

0 
180 200 220 240 260 280 300 

Rudder corrmand [degl 
_.300 ., 

200; 

100 

0 

-100 

-200 
180 200 220 240 260 280 300 

Fig. 9: NPGMV Results - Effect of Varying the Prediction Horizon (N= 0, 1,3,5.9) 

3 ] 



Open-loop Roll angle [oog] 
50::r-\ 40 

10 30 

0 20 
I 

-10 10 

-20 0 

GPC -10-­-30 

-

0 

0 IUU 200 300 400 500 600 0 100 200 300 400 500 600 

Fin COfl'Yl"\3 nd Idegj Rudder cOfl'Yl"\3nd !clegj 
100 400 

-GPC50 
200 

0 Wi 
-50 7

'~CPC-100 
·200 NPGJvfV 

-150 -400 
0 100 200 300 400 500 600 0 100 200 300 400 500 600 

Fig. 10: PG V and linear GPC responses for the con trained system (N = 5) 

32
 


