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When a beam of electrons moves into an increasing magnetic field, conservation of the magnetic 
moment results in the formation of a crescent, or horseshoe shaped velocity distribution. The 
resultant horseshoe shaped velocity distribution has been shown to be unstable with respect to a 
cyclotron-maser type instability. This instability has been postulated as the mechanism responsible 
for auroral kilometric radiation and also non-thermal radiation from other astrophysical bodies. In 
this paper the previous theory, that assumed an infinite uniform plasma, is extended to apply to a 
bounded cylindrical geometry. This more exact theory in bounded cylindrical geometry is also 
directly relevant to a laboratory experiment currently being carried out. 

 

 

1. Introduction 
When a beam of electrons moves into a 

converging magnetic field, the velocity distribution 
function takes on a horseshoe shape as a result of 
conservation of magnetic moment.  A few years ago 
it was pointed out that such a distribution is unstable 
to a cyclotron maser type of instability and it was 
suggested that this instability might be the source of 
auroral kilometric radiation [1] and also of emission 
from certain types of star [2]. 

The theoretical analysis presented in the earlier 
papers is somewhat approximate and assumes an 
infinite uniform plasma.  We discuss in this paper a 
more exact theory in cylindrical geometry, obtaining 
a dispersion relation for the modes in a cylindrical 
cavity in which the driving electron beam occupies a 
central cylindrical region or an annular region.   

This cylindrical geometry configuration is 
directly relevant to a laboratory experiment which is 
currently being carried out and which is described in 
an accompanying paper [3].  This experiment 
exploits the fact that the mechanism only depends on 
dimensionless ratios like the ratio of the wave 
frequency to the cyclotron and plasma frequencies 
and the factor by which the magnetic field varies 
along the path of the electron beam.  Thus it is 
possible to scale the effect to laboratory size and to 
frequencies of several GHz and above.  
 
2. Theory 

Adiabatic invariance of the magnetic moment and 
particle energy applied to electrons in an increasing 
magnetic field results in the transformed distribution 

with a shape of a horseshoe in velocity space [1], 
having the following form for an initial drifting 
Maxwellian distribution: 
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We consider radiation near the fundamental of 
the electron cyclotron frequency. The relevant 
elements of the dielectric tensor are calculated for 
the distribution (1) using standard formulae as, given 
for example, in [4].  

To investigate the properties of the horseshoe 
distribution instability we look for the growth rate of 
different modes, determined as the imaginary part of 
a complex-value kz  in the field propagator 

e - i wt + i kz z . The frequency is chosen to be just below 
the cyclotron frequency, in the range where the 
instability is expected to occur.  

To obtain the dispersion equations for kz  we 
look for a solution of Maxwell’s equations with the 
dielectric tensor described above, in a form of sums 
of anisotropic TE and TM modes. Each  TE or TM 
mode has transverse components in the form of an 
“anisotropic sum” of the corresponding TE and TM 
components for the isotropic case, which means that 
different components are additive with different 
weights, 
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In such a representation the field components are 

sought in the following form: 
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and                                                                          (3) 
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while the z-components have a form similar to that 
of the isotropic case, because we have only a 
transverse anisotropy, 
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where nJ  and ′
nJ  are the Bessel functions of the 

first kind and their derivatives, respectively. 
TE and TM modes inside the plasma region have 
different plβ  determined by the following 
dispersion equations: 
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for TE modes and  
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for TM modes, where 11k  and 12k  are the elements 
of the dielectric tensor and depend on the radiation 
frequency ω .  

TE and TM modes in plasma in the proposed 
representation can exist separately, but when we 
consider a configuration with either a cylindrical 
core, or an annulus filled with plasma, then the 
anisotropic nature of the plasma response requires 
that both modes be present. Otherwise it is not 
possible to satisfy the boundary conditions. These 
modes have different spatial structures due to 
different plβ .  The coefficients for the fields and 

additional dispersion equation for finding plβ  can 
be obtained by applying boundary conditions at the 
plasma interface, r=R1, with the field in the vacuum 
region being expressed in a conventional way as a 
sum of TE and TM modes. 
 
3. Results 

We consider how the growth rate depends on the 
mode structure and look at the effect of different 
radial distributions of the driving electron beam.  
The analytic results confirm that the growth rate is 
sufficient for us to expect the instability to reach 
saturation within the dimensions of the experiment, 
a typical length scale for exponential growth being 
of the order of 10 cm.   

The analytic growth rates are also compatible 
with the rate of growth seen in computer 
simulations. The dispersion equations we have 
obtained allow us to look separately at each spatial 
mode generated by the horseshoe distribution 
instability.  Calculating an accurate solution is very 
fast, which is an advantage in comparison with fully 
numerical simulations like PIC codes. 

Typical results for the growth rate per metre of 
the coupled TE and TM mode for different mode 
numbers are given in Fig.1. One can see modes 
growing (white) with a high rate and also modes 
damping (black). 
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Fig.1. Growth rate of different TE and TM coupled modes 
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