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Abstract 
 
A point process model is developed to assess the reliability of new designs which are 
variants of an existing product. The model is Bayesian and makes use of existing expert 
judgement.  Prior distributions are used to assess the number of inherent weaknesses 
introduced through evolution of the design.  The enhancement of the design will be 
experienced through a growth process where failure information is gained about the new 
design and corrective actions implemented in order to mature reliability. The general model 
formulation and mathematical underpinnings are presented and an illustrative example of 
the model application is described. 
 

 
1. Introduction 
 
Typically models used to predict system reliability based on linear combinations of component 
failure rates are used in isolation and do not inform the design process.  This is because the 
impact of environmental and operating conditions on base reliabilities are difficult to assess, the 
assumption of statistical independence between components is unrealistic and the lack of 
involvement of designers.  Therefore predictions are not trusted to provide useful forecasts or to 
provide insight into ways product reliability might be enhanced. 
 
For the case where designs are evolutionary we propose to formulate a model which captures 
information about novel features between design variants.  Two sources of data are required:  
historical data concerning the performance of the earlier designs to be used as the base 
reliability; expert engineering judgement to assess differences between the base design and the 
variant currently under review. 
 
We propose a point process model.  We model the reliability of the new item as a 
superimposition of two types of failure process.  First, the failure modes within the item not 
removed through the evolutionary design process and so inherited from earlier designs.  Second, 
the failure modes that have been introduced through design changes made to the existing design.   
 
The model is formulated within a Bayesian framework and is described in the following section.  
In part, our model has been motivated by earlier growth modelling reported in Meinhold and 
Singpurwalla (1983).  We present an example of the model application and conclude by 
reflecting upon its use in design decision-making. 
 
2.    Formulation of Model 
 
2.1  Assumptions  
 
We assume a new design has a fixed but unknown number of faults, N, which will be realised as 
failures in operation.  A failure taxonomy is defined a priori and contains C+1 classes, C of 
which categorise the fault according to root cause.  The additional class corresponds to those 
failures where no underlying fault is found and is labelled ‘no fault found (NFF)’ and represents 
noise in the inherent hazard rate of the design.  We denote the number of faults in class i as Ni . 
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The distribution function of the operational time, t, to realise a particular fault classified in 
category i is denoted by Fi(t). 
 
For class i, we have a prior distribution describing the experts belief in the number of faults, Ni, 
likely to be inherent in the design.  We denote this as π i(Ni=ni).  For each prior distribution we 
denote its associated Probability Generating Function as Ai(z).  We make use of the relationship 
between the theoretical distributions and the Probability Generating Functions as this provides a 
suitable summary of the expert judgement to use within the model.   
 
2.2   Model Derivation 
 
The density function of the time to realise the jth fault within a particular class can be expressed 
as: 
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Assuming the realisation of faults is assumed independent, the distribution function of the time 
to first failure of the item is: 
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The distribution of time until all faults have been realised for the C classes is constructed by a 
similar argument giving: 
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2.3   Intensity Function 
 
The realisation of faults through failure can be conceptualised as a point process.  Using the 
same assumptions as before the expected number of faults that have been realised by time t are:  
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Assuming the no fault found failures occur according to a Homogeneous Poisson Process at rate 
µ then the intensity function can be simplified to: 
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2.4   Inference  
 
As the failure process for each class is assumed independent we can develop inference 
procedures for a particular class and ignore the indexing.  Therefore the likelihood function can 
be expressed as: 
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and the posterior distribution of the number of faults in the design given j faults have been 
realised at times ( )1 2 j~

t t , t ,...,t=  
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3.  Illustrative Example 
 
Consider the evaluation of a new design where, for the sake of simplicity, we consider only two 
classes, namely vibration and build, without loss of generality. 
 
An elicitation exercise allows us to construct prior distributions for the number of potential 
faults within the design.  In this case both priors are Poisson with mean 4 and 8 for vibration 
and manufacture respectively.  
 
We also have extracted failure data for the related items from historical records.  From these we 
develop empirical prior distributions for the hazard rate for each class.  The hazard rate is 
associated with the distribution describing the length of time a fault remains undetected within a 
design.  For simplicity we assume the time to realise failures within a particular class are 
independently and identically exponentially distributed random variables. 
 
Figures 1 and 2 illustrate these priors. The computed distribution functions of the time to first 
and last fault detected are illustrated in Figures 3 and 4 respectively. 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
Figure 1: Prior distributions for hazard rate   Figure 2: Prior distribution for number of faults 
 
 
 
 
 
 
 
 
 
 
 
  Figure 3: CDF for time to first failure                Figure 4: CDF of time to detect last fault  
 
4.   Conclusion 
 
The proposed model requires the involvement of design, and other, engineers to assess the 
design weaknesses and analyse historical failure data. Involvement in the model specification 
and set-up has allowed engineers to accept the model and thus use it to inform design decisions.   
Further details are reported in Hodge et al (2001). 
 
The general model is presented here along with results for particular distributional assumptions.  
Further details about the statistical inference procedures and their properties for the case where 
we have Poisson priors and exponential times to fault realisation are described in Quigley and 
Walls (2002).  However the model supports a wider class of distributions and results have been 
derived for other parametric models as well as nonparametric approaches.  
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