Serveur Académique Lausannois SERVAL serval.unil.ch

Author Manuscript
 Faculty of Biology and Medicine Publication

This paper has been peer-reviewed but dos not include the final publisher proof-corrections or journal pagination.

Published in final edited form as:

Title: Determinants of change in polypharmacy status in Switzerland: the population-based CoLaus study.
Authors: Abolhassani N, Castioni J, Marques-Vidal P, Vollenweider P, Waeber G

Journal: European journal of clinical pharmacology
Year: 2017 Sep
Volume: 73
Issue: 9
Pages: 1187-1194
DOI: 10.1007/s00228-017-2288-1

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article.

DETERMINANTS OF CHANGE IN POLYPHARMACY STATUS IN SWITZERLAND: THE POPULATIONBASED COLAUS STUDY

Nazanin Abolhassani*, PhD; Julien Castioni*; Pedro Marques-Vidal, MD, PhD; Peter Vollenweider' MD; Gérard Waeber, MD

Department of Medicine, Internal Medicine, Lausanne university hospital, Lausanne, Switzerland * these authors contributed equally

Authors' emails:

Nazanin Abolhassani na_abolhassani@yahoo.com
Julien Castioni: Julien.Castioni@chuv.ch
Pedro Marques-Vidal: Pedro-Manuel.Marques-Vidal@chuv.ch
Peter Vollenweider: Peter.Vollenweider@chuv.ch
Gérard Waeber: Gerard.Waeber@chuv.ch

Address for correspondence and reprints
Pedro Marques-Vidal
Office BH10-642
Department of Medicine, Internal Medicine
Lausanne university hospital
Rue du Bugnon 46
1011 Lausanne
Switzerland
Phone: +41 213140934
Email: Pedro-Manuel.Marques-Vidal@chuv.ch

Word count: Abstract: 159
Number of tables: 2

Main text: 2322
Figures: $0 \quad$ References: 29

Abstract

Objectives: To assess the prevalence, the change and the determinants of change in polypharmacy in a population-based sample

Methods: Baseline (2003-06) and follow-up (2009-12) data from 4679 participants aged between 35 and 75 years (53.5% women, mean age 52.6 ± 10.6 years) from the population of Lausanne, Switzerland. Polypharmacy was defined by the regular use of ≥ 5 drugs. Four categories of change were defined: never (no polypharmacy at baseline and follow-up), initiating (no polypharmacy at baseline but at follow-up), maintaining or quitting.

Results: Polypharmacy increased from 7.7% at baseline to 15.3% at follow-up. Cardiovascular drugs were the most prescribed medicines at baseline and follow up. Gender, age, obesity, smoking, previously diagnosed hypertension or diabetes or dyslipidemia were significantly and independently associated with initiating and maintaining polypharmacy.

Conclusion: In a population-based sample, prevalence of polypharmacy doubled over a 5.6 year period. The main determinants of initiating polypharmacy were age, overweight and obesity, smoking status and previous diagnosed cardiovascular risk factors.

Abstract word count: 159

Keywords: polypharmacy; determinants; trends; general population; Switzerland

I NTRODUCTI ON

In recent years, there has been a substantial increase in the prescribing of regular medicines in general populations.[1] Subsequently, prevalence of polypharmacy, referred as the simultaneous intake of five or more medications, has been increasing [2] not only among the elderly but also in other ages. [3]

Polypharmacy is driven by the increase in age and multimorbidity. [4] Given the current ageing of the population and the number of drugs needed to treat age-associated multimorbidity, it is expected that the prevalence of patients on polypharmacy will continue to increase. Polypharmacy can increase the risk of drug-disease interaction in addition to drug-drug interactions; however, polypharmacy may, in many cases such as multimorbidity, be entirely appropriate and inevitable.[5-7]

Although polypharmacy has become more widespread in recent years, determinants of change in polypharmacy status in longitudinal study are not well studied. Thus, this study aimed 1) to assess the prevalence and the change of polypharmacy and 2) to examine the determinants of change in polypharmacy status as initiation or quitting.

MATERIALS AND METHODS

Study population and design

The Colaus study is an ongoing prospective survey investigating the biological and genetic determinants of cardiovascular risk factors (CVRF) and cardiovascular disease (CVD) in the population of Lausanne, Switzerland. The study was approved by the Institutional Ethics Committee of the University of Lausanne (decision reference 33/09). Detailed descriptions of the study design have been reported elsewhere.[8] A simple, non-stratified random sample of the Lausanne population aged between 35 and

75 years was drawn. Inclusion criteria were: (a) written informed consent and (b) willingness to take part in the examination and to provide blood samples. Recruitment began in June 2003 and ended in May 2006 and included 6733 participants, with a participation rate of 41%. The baseline evaluation included an interview, a physical exam, blood sampling and a set of questionnaires. As illustrated in supplemental figure 1, of the initial 6733 participants, 6184 (91.8%) provided extended data on their medicines. The follow-up visit was similar to the baseline evaluation and was performed between April 2009 and September 2012, five and a half years on average after the baseline, and included 5064 participants (75.2% of the initial sample), 4679 of which (69.5% of the initial sample) had complete medication data at baseline and follow-up.

Lifestyle, clinical and biological parameters

Lifestyle factors, CVD and medication status were assessed by questionnaire. Smoking status was categorized into never, former and current as reported. Educational level was categorized as low (obligatory school or apprenticeship), medium (high school), or high (university degree). Height and weight were assessed with the participants in light clothes and without shoes using a Seca ${ }^{\circledR}$ scale; body mass index (BMI) was categorized as normal ($18.5<\mathrm{BMI}<25 \mathrm{~kg} / \mathrm{m}^{2}$), overweight ($25 \leq \mathrm{BMI}<30 \mathrm{~kg} / \mathrm{m}^{2}$) and obese ($\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$). As the number of underweight (BMI $\leq 18.5 \mathrm{~kg} / \mathrm{m}^{2}$) participants was small, they were included in the normal weight group.

Blood pressure was measured thrice on the right arm, after a rest of at least 10 minutes in the seated position using an Omron ${ }^{\circledR}$ HEM-907 automated oscillometric sphygmomanometer. The average of the last two blood pressure measurements was used for analyses.

Venous blood samples were drawn after an overnight fast. Clinical chemistry assays were performed at the central laboratory of the University Hospital of Lausanne (CHUV). Total cholesterol,

HDL-cholesterol, triglycerides (TG) and glucose were measured using commercial reagents; LDL-C was calculated using the Friedewald formula if TG $<4.6 \mathrm{mmol} / \mathrm{l}$.

For each condition (hypertension, dyslipidemia, or diabetes), three categories were defined: 1) absent (neither reported nor newly diagnosed at the baseline examination); 2) reported by the participant and 3) newly diagnosed at the baseline examination among participants not reporting the condition (supplemental figure 2). Newly diagnosed hypertension was defined as a systolic BP (SBP) $\geq 140 \mathrm{~mm} \mathrm{Hg}$ and/or a diastolic BP (DBP) $\geq 90 \mathrm{~mm} \mathrm{Hg}$.[9] Newly diagnosed dyslipidemia was defined as a total cholesterol $>6.5 \mathrm{mmol} / \mathrm{L}$ and/or LDL-cholesterol $>4.1 \mathrm{mmol} / \mathrm{L}$ and/or triglycerides $>2.0 \mathrm{mmol} / \mathrm{L}$.[10] Newly diagnosed diabetes was defined as a fasting plasma glucose $>7 \mathrm{mmol} / \mathrm{L}$.[11]

Definitions of polypharmacy, and polypharmacy changing status

Participants indicated which medicines they were currently taking. Medicines were coded according to the Anatomical Therapeutics Chemical (ATC) Classification System of the World Health Organization. Medicines were considered if they existed in the ATC; only medications listed in the official Swiss pharmacopeia (compendium.ch) were considered. Other complementary medicines such as non-official phytotherapies, dietary supplements (i.e. shark cartilage, Bach's flowers) or homeopathy were not considered. Polypharmacy was defined as the use of 5 or more medicines, including OTC drugs, regardless if a medicine contained one or more effective drugs (i.e. fixed dose combinations).[12]

Changing of polypharmacy status was defined as never (no polypharmacy at baseline and follow-up); initiation (no polypharmacy at baseline but at follow-up); quitting (polypharmacy at baseline but not at follow-up) and maintaining (polypharmacy at baseline and follow-up).

Statistical analysis

Statistical analysis was performed using Stata software version 14.1 (Stata Corp, College Station, TX, USA). Descriptive results were expressed as mean \pm standard deviation (SD) or as number of participants (percentage). Bivariate analysis was performed using chi square test for categorical variables and Kruskal Wallis nonparametric test for age. Multivariate analysis was performed using multinomial (polytomous) logistic regression and results were expressed as multivariate-adjusted relative risk ratios (RRR) and [95\% confidence interval (CI)]. Models were adjusted for gender; age groups ([35-50[; [50-65[and [65-75]); BMI categories (normal, overweight and obese); educational level (low, middle, high); marital status (living in couple, living alone); country of birth (Switzerland vs. other); smoking categories (never, former, current); being physically active (yes vs. no); hypertension (never, previous and newly diagnosed); dyslipidemia (never, previous and newly diagnosed) and diabetes (never, previous and newly diagnosed). Statistical significance was considered for a two-tailed test with $\mathrm{p}<0.05$.

As some drugs could combine several pharmacologically different active substances, we ran several sensitivity analyses by checking ATC codes corresponding to combinations of different active substances (supplementary table 1), excluding combinations of vitamins and minerals (ATC codes A11A; A11C; A11D; A11E; A11G, A11J; A12AX; B03AD and B03AE). As ATC codes were defined with a maximum of 5 letters in the baseline survey, the same categorization was applied in the follow-up. Categories of "polyactive substances" were defined similarly to polypharmacy, i.e. 0-4 and 5 or more active substances. The same procedure was applied to define categories of change in polyactive substances: never (no polyactive substances at baseline and follow-up); initiation (no polyactive substances at baseline but at follow-up); quitting (polyactive substances at baseline but not at follow-up) and maintaining (polyactive substances at baseline and follow-up). Age-adjusted analyses were conducted using standardization based on the Lausanne population distribution for 2003, obtained from the

Canton statistical office http://www.stat.vd.ch/Default.aspx?DoclD=7818\&Domld=2783. As some age groups initially present at baseline no longer existed at follow-up, calculations were based on age range 40-75, which is common for both baseline and follow-up periods. As no information was available regarding the total number of comorbidities, we used the number of medicines at baseline (categorized into three groups: 0-1, 2-3 and 4 or more) as a proxy for adjustment. Two analyses were performed: one on polypharmacy, and another on polyactive substances.

Results

Selection and characteristics of participants

The demographic, clinical and functional characteristics of the participants included and excluded are summarized in Supplemental table 2. Excluded participants were more frequently men, not born in Switzerland, obese, current smokers and with lower education.

Prevalence of medicines and polypharmacy

Prevalences of polypharmacy status and of the main drugs at baseline and follow-up (FU) are summarized in table 1. Polypharmacy increased from 7.7% at baseline to 15.3% at follow-up. Cardiovascular drugs were the most prescribed medicines, both at baseline and follow-up; among cardiovascular drugs, hypolipidemic drugs and statins were the most frequent ones.

Changes and determinants in polypharmacy status

The changes in the polypharmacy status and determinants of changes are presented in Supplemental table 3 (bivariate analysis) and Table 2 (multivariate analysis). Four hundred fifteen
participants (9.6\%) initiated; 263 (5.6\%) maintained and only 97 (2.1\%) quitted polypharmacy, while 3868 (82.7\%) were not on polypharmacy neither at baseline nor at follow-up.

Bivariate analysis showed gender, age, BMI categories, education level, living alone, smoking status and known hypertension, dyslipidemia and diabetes to be associated with a change in polypharmacy status. Multivariate analysis indicated that being male and older were associated with any change in polypharmacy status, while overweight and obesity were only associated with initiation and maintaining polypharmacy status. Smoking (current or former) was associated with the initiation of polypharmacy; but only current smoking was associated with maintaining polypharmacy status. Known hypertension was associated with initiating and maintaining polypharmacy status, while no association was found with hypertension diagnosed at baseline. Known dyslipidemia was associated with maintaining polypharmacy status, while no association was found with dyslipidemia diagnosed at baseline. Both known diabetes and diabetes diagnosed at baseline were associated with initiating or maintaining polypharmacy status.

Sensitivity analyses

The crude prevalence rates of polyactive substance use were 8.9% and 17.1% at baseline and follow-up, respectively. The corresponding age-standardized rates for polypharmacy were 8.6% at baseline and 9.6% at follow-up; for polyactive substances, the rates were 9.9% and 13.9%, respectively. The results of the multivariate analysis using change in polyactive substances are provided in supplementary table 4. Similar associations were found as for polypharmacy.

When the analysis was adjusted for number of medicines at baseline, similar results were obtained for polypharmacy regarding the determinants of initiation; for maintenance, significant
associations persisted for age, BMI categories and known hypertension, dyslipidemia and diabetes, while for quitting all determinants were no longer significant (supplementary table 5). Finally, for polyactive substances, most determinants of initiation remained significant; for maintenance, significant associations persisted for age, BMI categories and and known hypertension and diabetes, while for quitting all determinants were no longer significant (supplementary table 6).

DISCUSSION

In this study, we assessed the baseline determinants of changes in polypharmacy such as BMI, smoking, and presence of specific comorbidities and we found an absolute increase from 7.7\% to 15.3\% in polypharmacy over 5.6 years.

Prevalence of medicines and polypharmacy

Cardiovascular drugs were the most prescribed medicines, both at baseline and follow-up. This finding is consistent with a study in a Scottish primary care population. [13] Indeed, cardiovascular drugs not only constitute the greatest part of medicines taken by the population, but are also a strong predictor of polypharmacy.[14]

Among cardiovascular drugs, hypolipidemic drugs and statins were the most frequent ones and their prevalence almost doubled between baseline and follow-up. Importantly, this increase in hypolipidemic drugs is lower than the increase in dyslipidaemia prevalence. [15] Nevertheless, this doubling of hypolipidemic drugs between baseline and follow-up, with one-fifth of participants taking them, is in line with a study conducted in Ireland [1] and also with a wider acceptance of preventive medication for the general population.[16] Contrary to United States, there is no consensus regarding
guidelines for cardiovascular prevention In Switzerland. Several equations are used. This lack of consensus could explain a lower statin prescription.[17]

Changes and determinants in polypharmacy status

Polypharmacy literally doubled from 7.7% at baseline to 15.3% at follow-up, a finding also observed in the US (8.2\% in 1999-2000 to 15% in 2011-2012).[18] Although some participants quitted polypharmacy, initiating polypharmacy was more than 4.5 fold more frequent than quitting. Male gender was significantly associated with a lower likelihood of initiating, quitting or maintaining polypharmacy. A possible explanation is that men utilize less frequently preventive care services than women,[19] which would preclude the timely detection of diseases and therefore their treatment. Nevertheless, the effect of gender in polypharmacy changes should be further explored.

Increased age was significantly and positively associated with initiating, quitting or maintaining polypharmacy. The increased age-related morbidity is the most obvious explanation for the initiation and maintenance, while the avoidance of any possible drug-drug interaction as well as the limited life expectancy in older adults might explain the positive association with quitting, as discussed in a systematic review.[20]

Increased body mass index and current smoking were significantly and positively associated with initiating and maintaining polypharmacy status. Also, similar to our finding, obese subjects had significantly more exposure to multiple drug treatments in population-based studies in Italy and Greece.[21,22] This might be partly due to the increased number of cardiovascular risk factors among obese subjects [23], although other diseases such as arthrosis and sleep disorders might also contribute to the increased number of drugs in this group. Regarding smoking, in the Greek study, smokers were
almost three times more likely to take four or more drugs.[22] Again, a higher prevalence of smokingassociated diseases such as chronic obstructive pulmonary disease might contribute. Unfortunately, no data regarding non-cardiovascular diseases was collected in the CoLaus study to confirm these hypotheses.The most likely explanation is an increased occurrence of obesity- and smoking-associated pathologies and corresponding medication. Overall, our results suggest that quitting smoking and preventing obesity might be interesting solutions to decrease the prevalence of polypharmacy.

Consistent with the high prevalence of cardiovascular drugs, participants previously diagnosed with hypertension, dyslipidemia and diabetes had a higher likelihood of initiating or maintaining polypharmacy status. Similarly, a study conducted in Spain showed that hypertension or dyslipidemia, combined with other medications for the treatment of diabetes or other cardiovascular pathologies, could be considered as a pattern of polypharmacy.[24] However, newly diagnosed risk factors had no effect (with the exception of newly diagnosed diabetes for initiation of polypharmacy). The association with maintenance of polypharmacy was expected, as cardiovascular risk factors need a chronic, lifetime treatment.[25] The fact that existing cardiovascular risk factors were also associated with initiating polypharmacy was less expected, but consistent with the fact that treatment escalation is frequently necessary to maintain acceptable levels. Conversely, only newly diagnosed diabetes was significantly associated with initiating polypharmacy, which is consistent with a longitudinal study in Netherlands indicating diabetes was a strong predictor of polypharmacy.[26] Interestingly, most of the factors associated with polypharmacy (obesity, hypertension, dyslipidemia and diabetes) are components of the metabolic syndrome. Hence, our results suggest that participants with metabolic syndrome would be at high risk of polypharmacy. Indeed, a cross-sectional study conducted in Nancy (France) showed people with metabolic syndrome to have a 3.17 higher likelihood of presenting with polypharmacy ≥ 4 drugs).[27]

Sensitivity analyses

A significant number of drugs contain several active substances, a sensitivity analysis was conducted taking into account the number of active substances rather than the number of drugs (pills) taken. Considering only number of drugs might underestimate the effect of polypharmacy and indeed, the prevalence rate of participants taking at least 5 active substances was higher by approximately 2% than the rate based on drugs. Hence, it is likely that most prevalence rates reported using number of drugs (pills) are also underestimated, but the magnitude of the underestimation will depend on the availability of drugs with several active substances.

Interestingly, the main determinants of change in the number of active substances were similar to those for polypharmacy. The same findings were obtained after adjusting for number of medicines at baseline; for instance, age, BMI categories and known cardiovascular risk factors were positively associated with initiation and maintenance. Hence, our results suggest that, contrary to the prevalence rates, the determinants of polypharmacy and of polyactive substances are identical and that age and BMI categories are the main drivers of initiating and maintaining polypharmacy or polyactive substances. Given the ageing and the increase in BMI of the worldwide population, our results suggest that the prevalence of polypharmacy or polyactive substances will considerably increase in the near future. Still, studies assessing both polypharmacy and polyactive drugs in the general population are missing and it would be of interest that our results be replicated in other settings.

Strengths and limitations

The major strength of this study is that it is one of the few prospective studies assessing determinants of change in polypharmacy in a population-based sample. This study has also some
limitations. First, participation rate was low (41\%), but in line with other epidemiological studies. [28] Second, recall bias might occur, as participants might have indicated only the most important medications. Hence, polypharmacy prevalences might be underestimated. Still, our results provide a conservative estimation of the already considerable prevalence (15\% at follow-up) of polypharmacy in this group. Also, recent studies suggest that self-reported medication use closely relates with pharmacy records [29]; hence, recall bias might be reduced.

Conclusion

In a population-based sample, prevalence of polypharmacy doubled over a 5.6 year period. The main determinants of initiating polypharmacy were age, overweight and obesity, smoking status and previous diagnosed cardiovascular risk factors.

AUTHORS CONTRIBUTIONS

NA wrote most of the manuscript; PMV collected data, made the statistical analysis and reviewed the manuscript for important intellectual content; JC designed the study and reviewed the manuscript for important intellectual content; PV and GW revised the manuscript for important intellectual content. PMV had full access to the data and is the guarantor of the study. All authors have read and approved the final version of the manuscript.

CONFLICT OF INTEREST

The authors report no conflict of interest.

FUNDING

The CoLaus study was and is supported by research grants from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (grants 33CSCO-122661, 33CS30-139468 and 33CS30-148401). Nazanin Abolhassani is supported by an excellence scholarship from the Swiss Federal Government (Reference No. 2016.1098). The funding sources had no contribution to the study design, analysis and interpretation, as well as writing the report and decision to submit the article for publication.

REFERENCES

1. Moriarty F, Hardy C, Bennett K, Smith SM, Fahey T (2015) Trends and interaction of polypharmacy and potentially inappropriate prescribing in primary care over 15 years in Ireland: a repeated crosssectional study. BMJ open 5 (9):e008656
2. Gnjidic D, Hilmer SN, Blyth FM, Naganathan V, Waite L, Seibel MJ, McLachlan AJ, Cumming RG, Handelsman DJ, Le Couteur DG (2012) Polypharmacy cutoff and outcomes: five or more medicines were used to identify community-dwelling older men at risk of different adverse outcomes. J Clin Epidemiol 65 (9):989-995
3. Arnoldo L, Cattani G, Cojutti P, Pea F, Brusaferro S (2016) Monitoring polypharmacy in healthcare systems through a multi-setting survey: should we put more attention on long term care facilities? J Public Health Res 5 (3)
4. Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B (2012) Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet 380 (9836):37-43
5. Hughes CM, Cooper JA, Ryan C (2014) Going beyond the numbers-a call to redefine polypharmacy. Br J Clin Pharmacol 77 (6):915-916
6. Payne RA, Abel GA, Avery AJ, Mercer SW, Roland MO (2014) Is polypharmacy always hazardous? A retrospective cohort analysis using linked electronic health records from primary and secondary care. Br J Clin Pharmacol 77 (6):1073-1082
7. Lindblad CI, Hanlon JT, Gross CR, Sloane RJ, Pieper CF, Hajjar ER, Ruby CM, Schmader KE, Panel MC (2006) Clinically important drug-disease interactions and their prevalence in older adults. Clin Ther 28 (8):1133-1143
8. Firmann M, Mayor V, Vidal PM, Bochud M, Pecoud A, Hayoz D, Paccaud F, Preisig M, Song KS, Yuan X, Danoff TM, Stirnadel HA, Waterworth D, Mooser V, Waeber G, Vollenweider P (2008) The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC cardiovascular disorders 8:6. doi:10.1186/1471-2261-8-6
9. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F, Redon J, Dominiczak A, Narkiewicz K, Nilsson PM, Burnier M, Viigimaa M, Ambrosioni E, Caufield M, Coca A, Olsen MH, Schmieder RE, Tsioufis C, van de Borne P, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Clement DL, Coca A, Gillebert TC, Tendera M, Rosei EA, Ambrosioni E, Anker SD, Bauersachs J, Hitij JB, Caulfield M, De Buyzere M, De Geest S, Derumeaux GA, Erdine S, Farsang C, Funck-Brentano C, Gerc V, Germano G, Gielen S, Haller H, Hoes AW, Jordan J, Kahan T, Komajda M, Lovic D, Mahrholdt H, Olsen MH, Ostergren J, Parati G, Perk J, Polonia J, Popescu BA, Reiner Z, Ryden L, Sirenko Y, Stanton A, Struijker-Boudier H, Tsioufis C, van de Borne P, Vlachopoulos C, Volpe M, Wood DA (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34 (28):2159-2219. doi:10.1093/eurheartj/eht151
10. Moser M, Gencer B, Rodondi N (2014) Recommendations for management of dyslipidemia in 2014. Rev Med Suisse 10 (420):518, 520-514
11. Association AD (2014) Diagnosis and classification of diabetes mellitus. Diabetes care 37 (Supplement 1):S81-S90
12. Viktil KK, Blix HS, Moger TA, Reikvam A (2007) Polypharmacy as commonly defined is an indicator of limited value in the assessment of drug-related problems. British journal of clinical pharmacology 63 (2):187-195. doi:10.1111/j.1365-2125.2006.02744.x
13. Payne RA, Avery AJ, Duerden M, Saunders CL, Simpson CR, Abel GA (2014) Prevalence of polypharmacy in a Scottish primary care population. Eur J Clin Pharmacol 70 (5):575-581. doi:10.1007/s00228-013-1639-9
14. Volpe M, Chin D, Paneni F (2010) The challenge of polypharmacy in cardiovascular medicine. Fundam Clin Pharmacol 24 (1):9-17. doi:10.1111/j.1472-8206.2009.00757.x
15. Antiochos P, Marques-Vidal P, Waeber G, Vollenweider P (2015) Five year trends in dyslipidaemia prevalence and management in Switzerland: the CoLaus study. Nutrition, metabolism, and cardiovascular diseases : NMCD 25 (11):1007-1015. doi:10.1016/j.numecd.2015.07.011
16. Goldacre B, Smeeth L (2014) Mass treatment with statins. BMJ (Clinical research ed) 349:g4745
17. Stewart J, Manmathan G, Wilkinson P (2017) Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc Dis 6:2048004016687211. doi:10.1177/2048004016687211
18. Kantor ED, Rehm CD, Haas JS, Chan AT, Giovannucci EL (2015) Trends in Prescription Drug Use Among Adults in the United States From 1999-2012. Jama 314 (17):1818-1831. doi:10.1001/jama.2015.13766
19. Vaidya V, Partha G, Karmakar M (2012) Gender differences in utilization of preventive care services in the United States. J Womens Health (Larchmt) 21 (2):140-145. doi:10.1089/jwh.2011.2876
20. Jokanovic N, Tan EC, Dooley MJ, Kirkpatrick CM, Bell JS (2015) Prevalence and factors associated with polypharmacy in long-term care facilities: A systematic review. J Am Med Dir Assoc 16 (6):535. e531-535. e512
21. Degli Esposti E, Sturani A, Valpiani G, Di Martino M, Ziccardi F, Rita Cassani A, Baraccani C, Gentile M, Puglia MG, Degli Esposti L (2006) The relationship between body weight and drug costs: An Italian population-based study. Clin Ther 28 (9):1472-1481. doi:10.1016/j.clinthera.2006.09.016
22. Pappa E, Kontodimopoulos N, Papadopoulos AA, Tountas Y, Niakas D (2011) Prescribed-drug utilization and polypharmacy in a general population in Greece: association with sociodemographic, health needs, health-services utilization, and lifestyle factors. Eur J Clin Pharmacol 67 (2):185-192. doi:10.1007/s00228-010-0940-0
23. Davin C, Vollenweider P, Waeber G, Paccaud F, Marques-Vidal P (2012) Cardiovascular risk factors attributable to obesity and overweight in Switzerland. Nutr Metab Cardiovasc Dis 22 (11):952-958. doi:10.1016/j.numecd.2011.01.004
24. Calderon-Larranaga A, Gimeno-Feliu LA, Gonzalez-Rubio F, Poblador-Plou B, Lairla-San Jose M, AbadDiez JM, Poncel-Falco A, Prados-Torres A (2013) Polypharmacy patterns: unravelling systematic associations between prescribed medications. PLoS One 8 (12):e84967. doi:10.1371/journal.pone. 0084967
25. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT, Corra U, Cosyns B, Deaton C, Graham I, Hall MS, Hobbs FD, Lochen ML, Lollgen H, Marques-Vidal P, Perk J, Prescott E, Redon J, Richter DJ, Sattar N, Smulders Y, Tiberi M, van der Worp HB, van Dis I, Verschuren WM (2016) 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by
invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention \& Rehabilitation (EACPR). Eur Heart J 37 (29):2315-2381. doi:10.1093/eurheartj/ehw106
26. Veehof L, Stewart R, Haaijer-Ruskamp F, Jong BM (2000) The development of polypharmacy. A longitudinal study. Fam Pract 17 (3):261-267
27. Husson N, Watfa G, Laurain MC, Perret-Guillaume C, Niemier JY, Miget P, Benetos A (2014) Characteristics of polymedicated $(>/=4)$ elderly: a survey in a community-dwelling population aged 60 years and over. J Nutr Health Aging 18 (1):87-91. doi:10.1007/s12603-013-0337-8
28. Galea S, Tracy M (2007) Participation rates in epidemiologic studies. Ann Epidemiol 17 (9):643-653. doi:10.1016/j.annepidem.2007.03.013
29. Drieling RL, LaCroix AZ, Beresford SA, Boudreau DM, Kooperberg C, Heckbert SR (2016) Validity of Self-Reported Medication Use Compared With Pharmacy Records in a Cohort of Older Women: Findings From the Women's Health Initiative. Am J Epidemiol 184 (3):233-238. doi:10.1093/aje/kwv446

TABLES

Table 1: evolution of polypharmacy status and of the main drugs at baseline (2003-2006) and follow-up (2009-2012), Colaus study, Switzerland, 4679 participants

	Baseline	Follow-up	P-value
Polypharmacy			
5+ medicines	360 (7.7)	714 (15.3)	<0.001
Cardiovascular	1,015 (21.7)	1,780 (38.0)	<0.001
Hypolipidemic drugs (C10)	535 (11.4)	1,003 (21.4)	<0.001
Statins (C10AA, C10B)	459 (9.8)	838 (17.9)	<0.001
Other §	99 (2.1)	216 (4.6)	<0.001
Antivitamin K (B01AA)	52 (1.1)	109 (2.3)	<0.001
Antiaggregants	312 (6.7)	565 (12.1)	<0.001
Aspirin	301 (6.4)	520 (11.1)	<0.001
ARB (C09C, C09D)	238 (5.1)	623 (13.3)	<0.001
ACE inhibitors (C09A, C09B)	157 (3.4)	345 (7.4)	<0.001
Beta-blockers (C07)	163 (3.5)	426 (9.1)	<0.001
Calcium channel blockers (C08)	91 (1.9)	218 (4.7)	<0.001
Diuretics (C03)	55 (1.2)	163 (3.5)	<0.001
Other (C01, C02, C04)	6 (0.1)	81 (1.7)	<0.001
Antidiabetic drugs (A10)	151 (3.2)	265 (5.7)	<0.001
Oral antidiabetics	139 (3.0)	241 (5.2)	<0.001
Insulin (A10A)	27 (0.6)	61 (1.3)	<0.001
Drugs for the digestive tract	284 (6.1)	453 (9.7)	<0.001
Antiacids (A02)	194 (4.2)	341 (7.3)	<0.001
Drugs for constipation (A06)	31 (0.7)	66 (1.4)	<0.001
Other §§	97 (2.1)	107 (2.3)	0.450
Vitamins and minerals (A11,A12)	217 (4.6)	596 (12.7)	<0.001
Analgesics	588 (12.6)	625 (13.4)	0.230

Anilides (NO2BE)	$77(1.7)$	$106(2.3)$	0.025
NSAIDs (MO1)	$225(4.8)$	$425(9.1)$	<0.001
Opioids (NO2A)	$28(0.6)$	$61(1.3)$	<0.001
Psychiatric	$610(13.0)$	$770(16.5)$	<0.001
Antidepressants (N06)	$429(9.2)$	$503(10.8)$	<0.001
Anxiolytics (N05B)	$178(3.8)$	$243(5.2)$	<0.001
Hypnotics and sedatives (N05C)	$130(2.8)$	$227(4.9)$	<0.001
Antipsychotics (N05A)	$41(0.9)$	$53(1.1)$	0.104

§§ codes A01, A03, A04, A05, A07 and A09. ARB, angiotensin receptor blockers; ACE, angiotensin converting enzyme; NSAID, non-steroidal antiinflammatory drugs; Results are expressed as number of participants (column percentage). Between-period comparison using Cochran's test for paired data.

Table 2: multivariate analysis of the factors associated with changes in polypharmacy ($5+$ medicines/day) status between baseline (2003-2006) and follow-up (2009-2012), Colaus study, Switzerland, 4679 participants.

	Initiation	P-value	Quitting	P-value	Maintenance	P-value
Gender						
Woman	1 (ref)		1 (ref)		1 (ref)	
Man	0.46 (0.36-0.59)	<0.001	0.34 (0.21-0.57)	<0.001	0.50 (0.36-0.69)	<0.001
Age group						
[35-50]	1 (ref)		1 (ref)		1 (ref)	
[50-65[2.54 (1.93-3.34)	<0.001	2.53 (1.51-4.24)	<0.001	4.70 (2.91-7.61)	<0.001
[65-75]	4.65 (3.36-6.43)	<0.001	3.58 (1.86-6.88)	<0.001	8.96 (5.34-15.05)	<0.001
p -value for trend	<0.001		<0.001		<0.001	
BMI categories						
Normal	1 (ref)		1 (ref)		1 (ref)	
Overweight	1.70 (1.32-2.18)	<0.001	1.16 (0.73-1.85)	0.535	1.43 (1.00-2.04)	0.047
Obese	1.92 (1.41-2.63)	<0.001	1.08 (0.55-2.13)	0.824	1.96 (1.31-2.93)	0.001
p -value for trend	<0.001		0.577		<0.001	
Education						
High	1 (ref.)		1 (ref.)		1 (ref.)	
Middle	1.06 (0.75-1.51)	0.743	0.98 (0.53-1.82)	0.952	1.97 (1.12-3.45)	0.018
Low	1.13 (0.83-1.55)	0.433	0.87 (0.49-1.53)	0.630	1.91 (1.13-3.21)	0.015
p -value for trend	0.433		0.497		0.071	
Marital status						
Living alone	1 (ref)		1 (ref)		1 (ref)	
Living in couple	0.92 (0.74-1.15)	0.481	0.67 (0.44-1.02)	0.059	0.83 (0.62-1.12)	0.222
Born in Switzerland						
No	1 (ref)		1 (ref)		1 (ref)	
Yes	1.02 (0.81-1.29)	0.858	0.85 (0.55-1.31)	0.462	0.74 (0.54-1.00)	0.049
Smoking status						
Never	1 (ref)		1 (ref)		1 (ref)	
Former	1.56 (1.21-2.01)	0.001	1.40 (0.88-2.24)	0.152	1.33 (0.96-1.86)	0.088
Current	2.22 (1.69-2.91)	<0.001	1.08 (0.62-1.88)	0.796	1.57 (1.07-2.31)	0.020
p -value for trend	<0.001		0.570		0.019	
Physically active						

No	1 (ref)		1 (ref)		1 (ref)	
Yes	0.91 (0.73-1.13)	0.396	0.86 (0.56-1.32)	0.490	0.94 (0.70-1.26)	0.686
Hypertension						
None	1 (ref)		1 (ref)		1 (ref)	
Already known	2.71 (2.12-3.46)	<0.001	1.12 (0.67-1.88)	0.654	4.75 (3.39-6.65)	<0.001
Diagnosed at baseline	1.28 (0.92-1.77)	0.140	0.66 (0.33-1.32)	0.240	0.60 (0.32-1.14)	0.118
Dyslipidemia						
None	1 (ref.)		1 (ref.)		1 (ref.)	
Already known	1.40 (1.09-1.80)	0.008	1.69 (1.02-2.81)	0.043	3.41 (2.43-4.77)	<0.001
Diagnosed at baseline	1.03 (0.78-1.36)	0.828	1.57 (0.93-2.64)	0.091	1.31 (0.85-2.02)	0.220
Diabetes						
None	1 (ref)		1 (ref)		1 (ref)	
Already known	3.35 (2.24-5.01)	<0.001	1.66 (0.57-4.82)	0.350	5.64 (3.68-8.65)	<0.001
Diagnosed at baseline	2.62 (1.53-4.50)	<0.001	1.26 (0.29-5.41)	0.753	2.10 (1.03-4.30)	0.041

BMI, body mass index. Results are expressed as multivariate-adjusted odds ratio and (95% confidence interval). Statistical analysis using polytomous logistic regression using the "never" group as reference and using all variables in the table as covariates.

SUPPLEMENTAL DOCUMENTATION

Supplementary 1 : ATC codes of drugs combining active substances.

ATC code	Designation
A03C	antispasmodics in combination with psycholeptics
A03D	antispasmodics in combination with analgesics
A03E	antispasmodics and anticholinergics in combination with other drugs
A05C	drugs for bile therapy and lipotropics in combination
C02L	antihypertensives and diuretics in combination
C02N	combinations of antihypertensives
C03E	diuretics and potassium-sparing agents in combination
C07F	beta blocking agents, other combinations
C09B	ACE inhibitors, combinations
C09D	angiotensin II antagonists, combinations
C10B	lipid modifying agents, combinations
D06C	antibiotics and chemotherapeutics, combinations
D07B	corticosteroids, combinations with antiseptics
D07C	corticosteroids, combinations with antibiotics
D07X	corticosteroids, other combinations
G01B	antiinfectives/antiseptics in combination with corticosteroids
G03E	androgens and female sex hormones in combination
G03F	progestogens and estrogens in combination
J01R	combinations of antibacterials
M01B	antiinflammatory/antirheumatic agents in combination
N06C	psycholeptics and psychoanaleptics in combination
R05F	cough suppressants and expectorants, combinations
S01C	antiinflammatory agents and antiinfectives in combination
S02C	corticosteroids and antiinfectives in combination
S03C	corticosteroids and antiinfectives in combination
A10BD	combinations of oral blood glucose lowering drugs
C03AB	thiazides and potassium in combination
C03AH	thiazides, combinations with psycholeptics and/or analgesics
C03AX	thiazides, combinations with other drugs
C03BB	sulfonamides and potassium in combination
C03BK	sulfonamides, combinations with other drugs
C03CB	sulfonamides and potassium in combination
G02AC	ergot alkaloids and oxytocin incl. analogues, in combination
G03AA	progestogens and estrogens, fixed combinations
G03CC	estrogens, combinations with other drugs
J01EE	combinations of sulfonamides and trimethoprim, incl. derivatives
J04AM	combinations of drugs for treatment of tuberculosis
J05AR	antivirals for treatment of HIV infections, combinations
N01AG	barbiturates in combination with other drugs
N02AG	opioids in combination with antispasmodics
N02AJ	opioids in combination with non-opioid analgesics
R03AK	adrenergics in combination with corticosteroids or other drugs, excl. anticholinergics
R03AL	adrenergics in combination with anticholinergics
S01BB	corticosteroids and mydriatics in combination

Supplemental table 2: baseline characteristics of participants included and excluded from the study

	Included	Excluded	P-value
Sample size	4679	2054	
Women (\%)	$2505(53.5)$	$1039(50.6)$	0.025
Age (years)	52.6 ± 10.6	52.6 ± 11.1	0.979
Age group (\%)			0.017
[35-50[$2088(44.6)$	$941(45.8)$	
[50-65[$1930(41.3)$	$781(38.0)$	
[65-75]	$661(14.1)$	$332(16.2)$	
BMI categories (\%)			<0.001
\quad Normal + underweight	$2320(49.6)$	$917(44.7)$	
\quad Overweight	$1706(36.5)$	$756(36.9)$	
\quad Obese	$653(14.0)$	$378(18.4)$	
Education (\%)			<0.001
\quad High	$939(20.1)$	$381(18.7)$	
\quad Middle	$1186(25.4)$	$439(21.5)$	
\quad Low	$2553(54.6)$	$1221(59.8)$	
Living alone (\%)	$1524(32.6)$	$690(33.7)$	0.381
Born in Switzerland (\%)	$3164(67.6)$	$867(42.2)$	<0.001
Smoking status (\%)			<0.001
Never	$1890(40.4)$	$842(41.1)$	
Former	$1580(33.8)$	$603(29.4)$	
Current	$1208(25.8)$	$604(29.5)$	
Physically active (\%)	$2690(57.5)$	$905(44.1)$	<0.001
Previously diagnosed			
Hypertension	$1147(24.5)$	$588(28.6)$	<0.001
Dyslipidemia	$1087(23.2)$	$486(23.7)$	0.701
Diabetes	$205(4.4)$	$123(6.0)$	0.005

BMI, body mass index. Results are expressed as number of participants (column percentage) or as mean \pm standard deviation. Between-group comparisons using chi-square for categorical variables and student's t-test for continuous variables

Supplemental table 3: bivariate analysis of the factors associated with changes in polypharmacy (5+ medicines/day), between baseline (20032006) and FU (2009-2012), Colaus study, Switzerland, 4679 participants.

	Never ($\mathrm{N}=3868$)	Initiation ($\mathrm{N}=451$)	Quitting ($\mathrm{N}=97$)	Maintaining ($\mathrm{N}=263$)	P-values
Women (\%)	2012 (52.0)	273 (60.5)	73 (75.3)	147 (55.9)	<0.001
Age (years)	51.1 ± 10.2	58.9 ± 9.5	56.7 ± 10.5	62.0 ± 7.9	<0.001
Age group (\%)					<0.001
[35-50[1958 (50.6)	85 (18.9)	23 (23.7)	22 (8.4)	
[50-65[1498 (38.7)	235 (52.1)	53 (54.6)	144 (54.8)	
[65-75]	412 (10.7)	131 (29.1)	21 (21.7)	97 (36.9)	
BMI categories (\%)					<0.001
Normal + underweight	2061 (53.3)	145 (32.1)	48 (49.5)	66 (25.1)	
Overweight	1366 (35.3)	198 (43.9)	36 (37.1)	10.6 (40.3)	
Obese	441 (11.4)	108 (24.0)	13 (13.4)	91 (34.6)	
Education (\%)					<0.001
High	841 (21.8)	61 (13.5)	18 (18.6)	19 (7.2)	
Middle	991 (25.6)	103 (22.8)	26 (26.8)	66 (25.1)	
Low	2035 (52.6)	287 (63.6)	53 (54.6)	178 (67.7)	
Living alone (\%)	1208 (31.2)	170 (37.8)	45 (46.4)	101(38.4)	<0.001
Born in Switzerland (\%)	2608 (67.4)	320 (71.0)	64 (66.0)	172 (65.4)	0.381
Smoking status (\%)					<0.001
Never	1614 (41.7)	141 (31.3)	38 (39.2)	97 (36.9)	
Former	1262 (32.6)	173 (38.4)	38 (39.2)	107 (40.7)	
Current	991 (25.6)	137 (30.4)	21 (21.7)	59 (22.4)	
Physically active (\%)	2261 (58.5)	238 (52.8)	55 (56.7)	136 (51.7)	0.027
Hypertension					<0.001
None	2637 (68.2)	173 (38.4)	62 (64.0)	62 (23.6)	
Already known	721 (18.6)	213 (47.2)	25 (25.8)	188 (71.5)	
Diagnosed at baseline	510 (13.2)	65 (14.4)	10 (10.3)	13 (4.9)	

Dyslipidemia			<0.001		
\quad None	$2366(61.2)$	$199(44.1)$	$45(46.4)$	$62(23.6)$	
\quad Already known	$739(19.1)$	$160(35.5)$	$28(29.9)$	$160(60.9)$	
\quad Diagnosed at baseline	$763(19.7)$	$92(20.4)$	$24(24.7)$	$41(15.6)$	
Diabetes					$187(71.1)$
\quad None	$3727(96.4)$	$376(83.4)$	$91(93.8)$	$64(24.3)$	
Already known	$85(2.2)$	$52(11.5)$	$4(4.1)$	$12(4.6)$	
Diagnosed at baseline	$56(1.5)$	$23(5.1)$	$2(2.1)$		

BMI, body mass index. Results are expressed as number of participants (column percentage) or as mean \pm standard deviation. Between-group comparisons using chi-square for categorical variables and analysis of variance for continuous variables.

Supplementary table 4: multivariate analysis of the factors associated with changes in polyactive substances ($5+$ active substances/day) status between baseline (2003-2006) and follow-up (2009-2012), Colaus study, Switzerland, 4679 participants.

	Initiation	P-value	Quitting	P-value	Maintenance	P-value
N (\% total)	404 (8.6)		156 (3.3)		260 (5.6)	
Gender						
Woman	1 (ref)		1 (ref)		1 (ref)	
Man	0.59 (0.46-0.75)	<0.001	0.31 (0.21-0.47)	<0.001	0.52 (0.37-0.72)	<0.001
Age group						
[35-50[1 (ref)		1 (ref)		1 (ref)	
[50-65[1.85 (1.39-2.47)	<0.001	3.14 (2.06-4.81)	<0.001	4.07 (2.47-6.71)	<0.001
[65-75]	4.16 (2.98-5.81)	<0.001	4.13 (2.40-7.10)	<0.001	10.2 (5.99-17.3)	<0.001
p -value for trend	<0.001		<0.001		<0.001	
BMI categories						
Normal	1 (ref)		1 (ref)		1 (ref)	
Overweight	1.92 (1.46-2.52)	<0.001	1.08 (0.75-1.58)	0.672	1.69 (1.16-2.45)	0.006
Obese	2.23 (1.61-3.10)	<0.001	1.03 (0.60-1.77)	0.901	2.18 (1.44-3.32)	<0.001
p -value for trend	<0.001		0.693		<0.001	
Education						
High	1 (ref.)		1 (ref.)		1 (ref.)	
Middle	0.90 (0.60-1.34)	0.594	1.07 (0.65-1.78)	0.789	1.84 (1.04-3.25)	0.036
Low	1.39 (0.98-1.95)	0.063	0.96 (0.60-1.53)	0.867	1.78 (1.05-3.01)	0.032
p -value for trend	0.006		0.683		0.117	
Marital status						
Living alone	1 (ref)		1 (ref)		1 (ref)	
Living in couple	0.86 (0.68-1.10)	0.226	0.93 (0.66-1.30)	0.654	0.74 (0.55-1.01)	0.059
Born in Switzerland						
No	1 (ref)		1 (ref)		1 (ref)	
Yes	0.91 (0.71-1.16)	0.458	0.96 (0.67-1.38)	0.845	0.73 (0.53-1.00)	0.047
Smoking status						

Never	1 (ref)		1 (ref)	1 (ref)		
Former	1.49 (1.14-1.96)	0.004	1.15 (0.79-1.68)	0.476	1.53 (1.09-2.16)	0.014
Current	2.11 (1.58-2.83)	<0.001	1.19 (0.78-1.82)	0.411	1.68 (1.12-2.51)	0.011
p-value for trend	<0.001		0.341		0.007	
Physically active						
No	1 (ref)		1 (ref)		1 (ref)	
Yes	0.87 (0.69-1.10)	0.254	0.91 (0.65-1.28)	0.602	0.90 (0.67-1.22)	0.495
Hypertension						
None	1 (ref)		1 (ref)		1 (ref)	
Already known	4.03 (3.10-5.25)	<0.001	1.58 (1.06-2.33)	0.023	8.00 (5.52-11.6)	<0.001
Diagnosed at baseline	1.64 (1.16-2.32)	0.005	0.62 (0.34-1.12)	0.112	0.84 (0.44-1.62)	0.603
Dyslipidemia						
None	1 (ref.)		1 (ref.)		1 (ref.)	
Already known	1.68 (1.30-2.19)	<0.001	1.43 (0.95-2.15)	0.086	3.30 (2.35-4.65)	<0.001
Diagnosed at baseline	1.05 (0.78-1.42)	0.748	1.36 (0.90-2.07)	0.144	1.07 (0.68-1.70)	0.764
Diabetes						
None	1 (ref)		1 (ref)		1 (ref)	
Already known	4.04 (2.67-6.10)	<0.001	1.44 (0.56-3.72)	0.450	6.99 (4.50-10.9)	<0.001
Diagnosed at baseline	2.68 (1.55-4.65)	<0.001	1.62 (0.56-4.68)	0.370	1.69 (0.78-3.64)	0.182

BMI, body mass index. Results are expressed as multivariate-adjusted odds ratio and (95% confidence interval). Statistical analysis using polytomous logistic regression using the "never" group as reference and using all variables in the table as covariates.

Supplementary table 5: multivariate analysis of the factors associated with changes in polypharmacy status between baseline (2003-2006) and follow-up (2009-2012), Colaus study, Switzerland, 4679 participants.

	Initiation	P-value	Quitting	P-value	Maintenance	P-value
N (\% total)	451 (9.7)		97 (1.9)		263 (5.19)	
Gender						
Woman	1 (ref)		1 (ref)		1 (ref)	
Man	0.59 (0.46-0.76)	<0.001	0.79 (0.42-1.49)	0.471	0.94 (0.59-1.49)	0.784
Age group						
[35-50[1 (ref)		1 (ref)		1 (ref)	
[50-65]	2.00 (1.50-2.65)	<0.001	1.05 (0.55-2.01)	0.884	2.06 (1.08-3.91)	0.027
[65-75]	3.12 (2.22-4.39)	<0.001	0.96 (0.43-2.14)	0.919	2.71 (1.34-5.47)	0.005
p -value for trend	<0.001		0.982		0.006	
BMI categories						
Normal	1 (ref)		1 (ref)		1 (ref)	
Overweight	1.65 (1.27-2.13)	<0.001	1.19 (0.66-2.16)	0.559	1.36 (0.83-2.22)	0.222
Obese	1.92 (1.38-2.66)	<0.001	1.26 (0.55-2.92)	0.586	2.16 (1.20-3.88)	0.010
p -value for trend	<0.001		0.466		0.006	
Education						
High	1 (ref.)		1 (ref.)		1 (ref.)	
Middle	1.05 (0.73-1.51)	0.779	1.02 (0.47-2.19)	0.962	2.15 (1.05-4.43)	0.037
Low	1.16 (0.84-1.60)	0.368	1.00 (0.50-2.01)	1.000	2.32 (1.19-4.51)	0.013
p-value for trend	0.327		0.939		0.031	
Marital status						
Living alone	1 (ref)		1 (ref)		1 (ref)	
Living in couple	0.98 (0.78-1.24)	0.872	0.71 (0.43-1.19)	0.199	0.95 (0.63-1.44)	0.825
Born in Switzerland						
No	1 (ref)		1 (ref)		1 (ref)	
Yes	0.99 (0.78-1.26)	0.958	0.74 (0.43-1.27)	0.276	0.68 (0.44-1.04)	0.077
Smoking status						

Never	1 (ref)		1 (ref)	1 (ref)		
Former	1.45 (1.11-1.88)	0.006	1.02 (0.57-1.82)	0.941	1.08 (0.68-1.71)	0.738
Current	2.21 (1.66-2.93)	<0.001	0.79 (0.40-1.58)	0.51	1.50 (0.88-2.57)	0.135
p -value for trend	<0.001		0.560		0.223	
Physically active						
No	1 (ref)		1 (ref)		1 (ref)	
Yes	0.93 (0.74-1.16)	0.506	0.99 (0.58-1.69)	0.978	1.24 (0.82-1.86)	0.310
Hypertension						
None	1 (ref)		1 (ref)		1 (ref)	
Already known	2.08 (1.61-2.70)	<0.001	0.58 (0.32-1.07)	0.079	2.48 (1.56-3.95)	<0.001
Diagnosed at baseline	1.35 (0.97-1.90)	0.076	0.94 (0.39-2.24)	0.882	0.79 (0.35-1.80)	0.573
Dyslipidemia						
None	1 (ref.)		1 (ref.)		1 (ref.)	
Already known	1.14 (0.88-1.49)	0.313	1.15 (0.62-2.12)	0.665	2.22 (1.39-3.52)	0.001
Diagnosed at baseline	1.07 (0.80-1.43)	0.660	1.63 (0.85-3.15)	0.142	1.6 (0.9-2.87)	0.112
Diabetes						
None	1 (ref)		1 (ref)		1 (ref)	
Already known	2.24 (1.46-3.42)	<0.001	0.58 (0.18-1.84)	0.353	2.60 (1.42-4.75)	0.002
Diagnosed at baseline	3.37 (1.91-5.95)	<0.001	3.71 (0.58-23.7)	0.165	4.38 (1.2-16.0)	0.025

BMI, body mass index. Results are expressed as multivariate-adjusted odds ratio and (95% confidence interval). Statistical analysis using polytomous logistic regression using the "never" group as reference, using all variables in the table as covariates plus the number of medicines at baseline.

Supplementary table 6: multivariate analysis of the factors associated with changes in polyactive substances ($5+$ active substances/day) status between baseline (2003-2006) and follow-up (2009-2012), Colaus study, Switzerland, 4679 participants.

	Initiation	P-value	Quitting	P-value	Maintenance	P-value
N (\% total)	404 (8.6)		156 (3.3)		260 (5.6)	
Gender						
Woman	1 (ref)		1 (ref)		1 (ref)	
Man	0.57 (0.45-0.72)	<0.001	0.69 (0.38-1.26)	0.224	0.78 (0.49-1.26)	0.313
Age group						
[35-50[1 (ref)		1 (ref)		1 (ref)	
[50-65]	1.78 (1.37-2.32)	<0.001	1.35 (0.71-2.58)	0.360	1.65 (0.89-3.05)	0.109
[65-75]	2.66 (1.92-3.68)	<0.001	1.25 (0.57-2.74)	0.585	2.62 (1.32-5.22)	0.006
p -value for trend	<0.001		0.571		0.003	
BMI categories						
Normal	1 (ref)		1 (ref)		1 (ref)	
Overweight	1.64 (1.28-2.10)	<0.001	1.15 (0.65-2.05)	0.631	1.37 (0.83-2.27)	0.213
Obese	2.00 (1.46-2.73)	<0.001	1.19 (0.54-2.63)	0.666	2.07 (1.12-3.82)	0.020
p -value for trend	<0.001		0.575		0.014	
Education						
High	1 (ref.)		1 (ref.)		1 (ref.)	
Middle	1.04 (0.73-1.48)	0.825	1.25 (0.59-2.65)	0.560	1.95 (0.96-3.94)	0.064
Low	1.19 (0.87-1.62)	0.274	1.06 (0.53-2.10)	0.871	1.80 (0.95-3.42)	0.073
p-value for trend	0.201		0.986		0.166	
Marital status						
Living alone	1 (ref)		1 (ref)		1 (ref)	
Living in couple	1.03 (0.83-1.29)	0.773	0.97 (0.59-1.59)	0.898	1.08 (0.71-1.64)	0.717
Born in Switzerland						
No	1 (ref)		1 (ref)		1 (ref)	
Yes	0.97 (0.77-1.23)	0.828	0.87 (0.52-1.47)	0.600	0.82 (0.53-1.28)	0.381
Smoking status						
Never	1 (ref)		1 (ref)		1 (ref)	

Former	1.52 (1.18-1.95)	0.001	0.88 (0.5-1.53)	0.649	1.19 (0.74-1.91)	0.465
Current	2.14 (1.63-2.81)	<0.001	0.87 (0.45-1.7)	0.688	1.81 (1.04-3.14)	0.035
p-value for trend	<0.001		0.600		0.057	
Physically active						
No	1 (ref)		1 (ref)		1 (ref)	
Yes	0.91 (0.73-1.13)	0.391	1.03 (0.62-1.72)	0.916	1.30 (0.85-1.98)	0.224
Hypertension						
None	1 (ref)		1 (ref)		1 (ref)	
Already known	2.72 (2.13-3.49)	<0.001	1.34 (0.75-2.38)	0.321	4.1 (2.54-6.61)	<0.001
Diagnosed at baseline	1.53 (1.11-2.10)	0.009	1.28 (0.55-2.96)	0.566	0.89 (0.39-2.00)	0.769
Dyslipidemia						
None	1 (ref.)		1 (ref.)		1 (ref.)	
Already known	1.20 (0.93-1.54)	0.155	0.74 (0.41-1.33)	0.310	1.50 (0.93-2.42)	0.100
Diagnosed at baseline	0.96 (0.72-1.27)	0.761	1.15 (0.60-2.18)	0.676	1.17 (0.65-2.11)	0.609
Diabetes						
None	1 (ref)		1 (ref)		1 (ref)	
Already known	2.51 (1.64-3.83)	<0.001	0.60 (0.21-1.77)	0.359	2.60 (1.38-4.90)	0.003
Diagnosed at baseline	3.34 (1.92-5.81)	<0.001	2.22 (0.36-13.9)	0.392	3.13 (0.87-11.2)	0.080

BMI, body mass index. Results are expressed as multivariate-adjusted odds ratio and (95% confidence interval). Statistical analysis using polytomous logistic regression using the "never" group as reference and using all variables in the table as covariates plus the number of medicines at baseline.

Supplemental figure 1: sampling flowchart

Supplemental figure 2: definition of reported and newly diagnosed hypertension. SBP, systolic blood pressure; DBP, diastolic blood pressure. The same process was used for dyslipidemia and diabetes

Reported hypertension

Supplemental figure 2: definition of reported and newly diagnosed hypertension. SBP, systolic blood pressure; DBP, diastolic blood pressure. The same process was used for dyslipidemia and diabetes

Reported hypertension

Yes No

Supplementary 1 : ATC codes of drugs combining active substances.

ATC code	Designation
A03C	antispasmodics in combination with psycholeptics
A03D	antispasmodics in combination with analgesics
A03E	antispasmodics and anticholinergics in combination with other drugs
A05C	drugs for bile therapy and lipotropics in combination
C02L	antihypertensives and diuretics in combination
CO2N	combinations of antihypertensives
C03E	diuretics and potassium-sparing agents in combination
C07F	beta blocking agents, other combinations
C09B	ACE inhibitors, combinations
C09D	angiotensin II antagonists, combinations
C10B	lipid modifying agents, combinations
D06C	antibiotics and chemotherapeutics, combinations
D07B	corticosteroids, combinations with antiseptics
D07C	corticosteroids, combinations with antibiotics
D07X	corticosteroids, other combinations
G01B	antiinfectives/antiseptics in combination with corticosteroids
G03E	androgens and female sex hormones in combination
G03F	progestogens and estrogens in combination
J01R	combinations of antibacterials
M01B	antiinflammatory/antirheumatic agents in combination
N06C	psycholeptics and psychoanaleptics in combination
R05F	cough suppressants and expectorants, combinations
S01C	antiinflammatory agents and antiinfectives in combination
SO2C	corticosteroids and antiinfectives in combination
S03C	corticosteroids and antiinfectives in combination
A10BD	combinations of oral blood glucose lowering drugs
C03AB	thiazides and potassium in combination
C03AH	thiazides, combinations with psycholeptics and/or analgesics
C03AX	thiazides, combinations with other drugs
C03BB	sulfonamides and potassium in combination
C03BK	sulfonamides, combinations with other drugs
C03CB	sulfonamides and potassium in combination
G02AC	ergot alkaloids and oxytocin incl. analogues, in combination
G03AA	progestogens and estrogens, fixed combinations
G03CC	estrogens, combinations with other drugs
J01EE	combinations of sulfonamides and trimethoprim, incl. derivatives
J04AM	combinations of drugs for treatment of tuberculosis
J05AR	antivirals for treatment of HIV infections, combinations
N01AG	barbiturates in combination with other drugs
NO2AG	opioids in combination with antispasmodics
NO2AJ	opioids in combination with non-opioid analgesics
R03AK	adrenergics in combination with corticosteroids or other drugs, excl. anticholinergics
R03AL	adrenergics in combination with anticholinergics
S01BB	corticosteroids and mydriatics in combination

Supplementary table 4: multivariate analysis of the factors associated with changes in polyactive substances (5+ active substances/day) status between baseline (2003-2006) and follow-up (2009-2012), Colaus study, Switzerland, 4679 participants.

	Initiation	P -value	Quitting	P-value	Maintenance	P-value
N (\% total)	404 (8.6)		156 (3.3)		260 (5.6)	
Gender						
Woman	1 (ref)		1 (ref)		1 (ref)	
Man	0.59 (0.46-0.75)	<0.001	0.31 (0.21-0.47)	<0.001	0.52 (0.37-0.72)	<0.001
Age group						
[35-50]	1 (ref)		1 (ref)		1 (ref)	
[50-65]	1.85 (1.39-2.47)	<0.001	3.14 (2.06-4.81)	<0.001	4.07 (2.47-6.71)	<0.001
[65-75]	4.16 (2.98-5.81)	<0.001	4.13 (2.40-7.10)	<0.001	10.2 (5.99-17.3)	<0.001
p -value for trend	<0.001		<0.001		<0.001	
BMI categories						
Normal	1 (ref)		1 (ref)		1 (ref)	
Overweight	1.92 (1.46-2.52)	<0.001	1.08 (0.75-1.58)	0.672	1.69 (1.16-2.45)	0.006
Obese	2.23 (1.61-3.10)	<0.001	1.03 (0.60-1.77)	0.901	2.18 (1.44-3.32)	<0.001
p -value for trend	<0.001		0.693		<0.001	
Education						
High	1 (ref.)		1 (ref.)		1 (ref.)	
Middle	0.90 (0.60-1.34)	0.594	1.07 (0.65-1.78)	0.789	1.84 (1.04-3.25)	0.036
Low	1.39 (0.98-1.95)	0.063	0.96 (0.60-1.53)	0.867	1.78 (1.05-3.01)	0.032
p -value for trend	0.006		0.683		0.117	
Marital status						
Living alone	1 (ref)		1 (ref)		1 (ref)	
Living in couple	0.86 (0.68-1.10)	0.226	0.93 (0.66-1.30)	0.654	0.74 (0.55-1.01)	0.059
Born in Switzerland						
No	1 (ref)		1 (ref)		1 (ref)	
Yes	0.91 (0.71-1.16)	0.458	0.96 (0.67-1.38)	0.845	0.73 (0.53-1.00)	0.047
Smoking status						
Never	1 (ref)		1 (ref)		1 (ref)	
Former	1.49 (1.14-1.96)	0.004	1.15 (0.79-1.68)	0.476	1.53 (1.09-2.16)	0.014
Current	2.11 (1.58-2.83)	<0.001	1.19 (0.78-1.82)	0.411	1.68 (1.12-2.51)	0.011

p-value for trend	<0.001		0.341		0.007	
Physically active						
No	1 (ref)		1 (ref)		1 (ref)	
Yes	0.87 (0.69-1.10)	0.254	0.91 (0.65-1.28)	0.602	0.90 (0.67-1.22)	0.495
Hypertension						
None	1 (ref)		1 (ref)		1 (ref)	
Already known	4.03 (3.10-5.25)	<0.001	1.58 (1.06-2.33)	0.023	8.00 (5.52-11.6)	<0.001
Diagnosed at baseline	1.64 (1.16-2.32)	0.005	0.62 (0.34-1.12)	0.112	0.84 (0.44-1.62)	0.603
Dyslipidemia						
None	1 (ref.)		1 (ref.)		1 (ref.)	
Already known	1.68 (1.30-2.19)	<0.001	1.43 (0.95-2.15)	0.086	3.30 (2.35-4.65)	<0.001
Diagnosed at baseline	1.05 (0.78-1.42)	0.748	1.36 (0.90-2.07)	0.144	1.07 (0.68-1.70)	0.764
Diabetes						
None	1 (ref)		1 (ref)		1 (ref)	
Already known	4.04 (2.67-6.10)	<0.001	1.44 (0.56-3.72)	0.450	6.99 (4.50-10.9)	<0.001
Diagnosed at baseline	2.68 (1.55-4.65)	<0.001	1.62 (0.56-4.68)	0.370	1.69 (0.78-3.64)	0.182

BMI, body mass index. Results are expressed as multivariate-adjusted odds ratio and (95% confidence interval). Statistical analysis using polytomous logistic regression using the "never" group as reference and using all variables in the table as covariates.

Supplementary table 5: multivariate analysis of the factors associated with changes in polypharmacy status between baseline (2003-2006) and follow-up (2009-2012), Colaus study, Switzerland, 4679 participants.

	Initiation	P -value	Quitting	P-value	Maintenance	P-value
N (\% total)	451 (9.7)		97 (1.9)		263 (5.19)	
Gender						
Woman	1 (ref)		1 (ref)		1 (ref)	
Man	0.59 (0.46-0.76)	<0.001	0.79 (0.42-1.49)	0.471	0.94 (0.59-1.49)	0.784
Age group						
[35-50]	1 (ref)		1 (ref)		1 (ref)	
[50-65[2.00 (1.50-2.65)	<0.001	1.05 (0.55-2.01)	0.884	2.06 (1.08-3.91)	0.027
[65-75]	3.12 (2.22-4.39)	<0.001	0.96 (0.43-2.14)	0.919	2.71 (1.34-5.47)	0.005
p -value for trend	<0.001		0.982		0.006	
BMI categories						
Normal	1 (ref)		1 (ref)		1 (ref)	
Overweight	1.65 (1.27-2.13)	<0.001	1.19 (0.66-2.16)	0.559	1.36 (0.83-2.22)	0.222
Obese	1.92 (1.38-2.66)	<0.001	1.26 (0.55-2.92)	0.586	2.16 (1.20-3.88)	0.010
p -value for trend	<0.001		0.466		0.006	
Education						
High	1 (ref.)		1 (ref.)		1 (ref.)	
Middle	1.05 (0.73-1.51)	0.779	1.02 (0.47-2.19)	0.962	2.15 (1.05-4.43)	0.037
Low	1.16 (0.84-1.60)	0.368	1.00 (0.50-2.01)	1.000	2.32 (1.19-4.51)	0.013
p-value for trend	0.327		0.939		0.031	
Marital status						
Living alone	1 (ref)		1 (ref)		1 (ref)	
Living in couple	0.98 (0.78-1.24)	0.872	0.71 (0.43-1.19)	0.199	0.95 (0.63-1.44)	0.825
Born in Switzerland						
No	1 (ref)		1 (ref)		1 (ref)	
Yes	0.99 (0.78-1.26)	0.958	0.74 (0.43-1.27)	0.276	0.68 (0.44-1.04)	0.077
Smoking status						

Never	1 (ref)		1 (ref)	1 (ref)		
Former	1.45 (1.11-1.88)	0.006	1.02 (0.57-1.82)	0.941	1.08 (0.68-1.71)	0.738
Current	2.21 (1.66-2.93)	<0.001	0.79 (0.40-1.58)	0.51	1.50 (0.88-2.57)	0.135
p-value for trend	<0.001		0.560		0.223	
Physically active						
No	1 (ref)		1 (ref)		1 (ref)	
Yes	0.93 (0.74-1.16)	0.506	0.99 (0.58-1.69)	0.978	1.24 (0.82-1.86)	0.310
Hypertension						
None	1 (ref)		1 (ref)		1 (ref)	
Already known	2.08 (1.61-2.70)	<0.001	0.58 (0.32-1.07)	0.079	2.48 (1.56-3.95)	<0.001
Diagnosed at baseline	1.35 (0.97-1.90)	0.076	0.94 (0.39-2.24)	0.882	0.79 (0.35-1.80)	0.573
Dyslipidemia						
None	1 (ref.)		1 (ref.)		1 (ref.)	
Already known	1.14 (0.88-1.49)	0.313	1.15 (0.62-2.12)	0.665	2.22 (1.39-3.52)	0.001
Diagnosed at baseline	1.07 (0.80-1.43)	0.660	1.63 (0.85-3.15)	0.142	1.6 (0.9-2.87)	0.112
Diabetes						
None	1 (ref)		1 (ref)		1 (ref)	
Already known	2.24 (1.46-3.42)	<0.001	0.58 (0.18-1.84)	0.353	2.60 (1.42-4.75)	0.002
Diagnosed at baseline	3.37 (1.91-5.95)	<0.001	3.71 (0.58-23.7)	0.165	4.38 (1.2-16.0)	0.025

BMI, body mass index. Results are expressed as multivariate-adjusted odds ratio and (95% confidence interval). Statistical analysis using polytomous logistic regression using the "never" group as reference, using all variables in the table as covariates plus the number of medicines at baseline.

Supplementary table 6: multivariate analysis of the factors associated with changes in polyactive substances ($5+$ active substances/day) status between baseline (2003-2006) and follow-up (2009-2012), Colaus study, Switzerland, 4679 participants.

	Initiation	P -value	Quitting	P -value	Maintenance	P-value
N (\% total)	404 (8.6)		156 (3.3)		260 (5.6)	
Gender						
Woman	1 (ref)		1 (ref)		1 (ref)	
Man	0.57 (0.45-0.72)	<0.001	0.69 (0.38-1.26)	0.224	0.78 (0.49-1.26)	0.313
Age group						
[35-50]	1 (ref)		1 (ref)		1 (ref)	
[50-65]	1.78 (1.37-2.32)	<0.001	1.35 (0.71-2.58)	0.360	1.65 (0.89-3.05)	0.109
[65-75]	2.66 (1.92-3.68)	<0.001	1.25 (0.57-2.74)	0.585	2.62 (1.32-5.22)	0.006
p -value for trend	<0.001		0.571		0.003	
BMI categories						
Normal	1 (ref)		1 (ref)		1 (ref)	
Overweight	1.64 (1.28-2.10)	<0.001	1.15 (0.65-2.05)	0.631	1.37 (0.83-2.27)	0.213
Obese	2.00 (1.46-2.73)	<0.001	1.19 (0.54-2.63)	0.666	2.07 (1.12-3.82)	0.020
p -value for trend	<0.001		0.575		0.014	
Education						
High	1 (ref.)		1 (ref.)		1 (ref.)	
Middle	1.04 (0.73-1.48)	0.825	1.25 (0.59-2.65)	0.560	1.95 (0.96-3.94)	0.064
Low	1.19 (0.87-1.62)	0.274	1.06 (0.53-2.10)	0.871	1.80 (0.95-3.42)	0.073
p -value for trend	0.201		0.986		0.166	
Marital status						
Living alone	1 (ref)		1 (ref)		1 (ref)	
Living in couple	1.03 (0.83-1.29)	0.773	0.97 (0.59-1.59)	0.898	1.08 (0.71-1.64)	0.717
Born in Switzerland						
No	1 (ref)		1 (ref)		1 (ref)	
Yes	0.97 (0.77-1.23)	0.828	0.87 (0.52-1.47)	0.600	0.82 (0.53-1.28)	0.381
Smoking status						
Never	1 (ref)		1 (ref)		1 (ref)	

Former	1.52 (1.18-1.95)	0.001	0.88 (0.5-1.53)	0.649	1.19 (0.74-1.91)	0.465
Current	2.14 (1.63-2.81)	<0.001	0.87 (0.45-1.7)	0.688	1.81 (1.04-3.14)	0.035
p -value for trend	<0.001		0.600		0.057	
Physically active						
No	1 (ref)		1 (ref)		1 (ref)	
Yes	0.91 (0.73-1.13)	0.391	1.03 (0.62-1.72)	0.916	1.30 (0.85-1.98)	0.224
Hypertension						
None	1 (ref)		1 (ref)		1 (ref)	
Already known	2.72 (2.13-3.49)	<0.001	1.34 (0.75-2.38)	0.321	4.1 (2.54-6.61)	<0.001
Diagnosed at baseline	1.53 (1.11-2.10)	0.009	1.28 (0.55-2.96)	0.566	0.89 (0.39-2.00)	0.769
Dyslipidemia						
None	1 (ref.)		1 (ref.)		1 (ref.)	
Already known	1.20 (0.93-1.54)	0.155	0.74 (0.41-1.33)	0.310	1.50 (0.93-2.42)	0.100
Diagnosed at baseline	0.96 (0.72-1.27)	0.761	1.15 (0.60-2.18)	0.676	1.17 (0.65-2.11)	0.609
Diabetes						
None	1 (ref)		1 (ref)		1 (ref)	
Already known	2.51 (1.64-3.83)	<0.001	0.60 (0.21-1.77)	0.359	2.60 (1.38-4.90)	0.003
Diagnosed at baseline	3.34 (1.92-5.81)	<0.001	2.22 (0.36-13.9)	0.392	3.13 (0.87-11.2)	0.080

BMI, body mass index. Results are expressed as multivariate-adjusted odds ratio and (95% confidence interval). Statistical analysis using polytomous logistic regression using the "never" group as reference and using all variables in the table as covariates plus the number of medicines at baseline.

