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ABSTRACT
In this paper we propose a model for micro gas flows con-

sisting of the Navier-Stokes-Fourier equations (NSF) extended by
a description of molecular collisions with solid boundaries and
discontinuous velocity slip and temperature jump boundarycon-
ditions. By considering the molecular collisions with the solid
boundaries in gas flows we capture some of the near wall ef-
fects that the conventional NSF with linear stress/strain-rate and
heat-flux/temperature-gradient relationships seem to be unable
to describe.

The model that we propose incorporates the molecular col-
lisions with solid boundaries as an extension to the conventional
definition of the average travelling distance of molecules before
experiencing intermolecular collisions (the mean free path). By
considering both of these types of collisions we obtain an effec-
tive mean free path expression, which varies with distance to sur-
faces. The effective mean free path is proposed to be used to
obtain new definitions of effective viscosity and effectivethermal
conductivity, which will extend the applicability of NSF equa-
tions to higher Knudsen numbers.

We show results of simple flow cases that are solved using
this extended NSF model and discuss limitations to the model
due to various assumptions. We also mention interesting ideas
for further development of the model based on a more detailed
gas description.

∗Address all correspondence to this author.

NOMENCLATURE
cp Specific heat capacity at constant pressure [J/(kg·K)]
h Channel width [m]
k Thermal conductivity [W/(m·K)]

L Characteristic length scale [m]
l Free path [m]
P Probability function of collisionless molecular flight [-]

p Probability density of collisionless molecular flight [-]
R Specific gas constant [J/(kg·K)]
Us Slip velocity [m/s]

T Absolute temperature [K]
Tj Temperature jump [K]

x Cartesian coordinate tangential to wall [m]
y Cartesian coordinate normal to wall [m]
θ Zenith angle [radians]

λ Mean free path [m]
µ Dynamic viscosity [kg/(m·s)]
ρ Mass density [kg/m3]

σT Thermal accommodation coefficient [-]
σU Tangential momentum accommodation coefficient [-]
Pr Prandtl number [-]

Xeff Effective value
Xuc Unconfined value (Conventional)
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INTRODUCTION
As our interest in micro-gas-flow applications is growing

with improved manufacturing capabilities it is also realised that
conventional flow modelling methods, consisting of the Navier-
Stokes-Fourier (NSF) equations with no-velocity-slip andno-
temperature-jump boundary conditions, fail for such cases. This
is because micro-gas-flows differ from macro-gas-flows withre-
spect to the relatively large ratio of the confining boundarysur-
face area to the volume of the confined gas, which means that
certain surface effects must be taken into account. These surface
effects considerably influence the flow in the near-wall region,
the Knudsen-layer, which is about one to two mean free paths
(MFP) wide. The MFP-expression referred to in this paper is
derived for molecules with extended potentials, and in terms of
dynamic viscosity [1]:

λuc =
µuc

ρ

√

π
2RT

. (1)

The key parameter, the Knudsen number (Kn), is then:

Kn =
λuc

L
, (2)

where we use the channel width,h, as the value ofL since only
planar wall cases are evaluated in this paper.

Modelling of surface effects in the Knudsen-layer should
ideally be performed using detailed kinetic theory. However an
approximate extension to the NSF model would be less time-
consuming and less demanding of computational capacity.

Surface effects for rarefied gases up to Kn≈ 0.1 can be mod-
elled by applying the boundary conditions of velocity-slipand
temperature-jump. Above Kn≈ 0.1 non-linear relationships for
shear-stress and heat-flux also need to be applied to NSF to ac-
count for the surface effects, as the Knudsen-layer covers an even
larger part of the flow-domain.

The model in this paper extends the validity of NSF beyond
Kn ≈ 0.1 by incorporating non-linear constitutive relationships
together with first order boundary conditions, which is achieved
by describing molecular behaviour in the near-wall regions. The
non-linear constitutive relationships are derived by using new
definitions of geometry-dependentviscosity and thermal conduc-
tivity which are based on our model of a shortening of the MFP
due to wall collisions. This proposed definition of the MFP is
geometry-dependent and referred to as the effective mean free
path,λeff.

DISCONTINUOUS BOUNDARY CONDITIONS
Traditionally, according to Gad-el-Hak [2], the reasoningis

made that there cannot exist discontinuities at the gas-solid inter-
face. This reasoning is based on the fact that the gas then would

have infinite gradients of velocity and temperature, which would
correspond to the unphysical effect of infinite viscous stresses
and heat fluxes.

For micro-gas-flows however a state of non-equilibrium ex-
ists in the Knudsen-layers. In addition it is now well accepted
that the use of slip velocity and temperature jump improve the
description of micro-gas-flows [2,3].

The velocity-slip that we adopt in this paper, is the slip-
expression by Maxwell [4] for planar walls:

Us =
2−σU

σU
λ
(

∂U
∂y

)
∣

∣

∣

∣

w
+

3
4

µ
ρT

(

∂T
∂x

)
∣

∣

∣

∣

w
, (3)

where the subscriptw denotes values at the wall. Convention-
ally, the velocity profile is extrapolated over the Knudsen-layer
from flow values taken one MFP away from the wall. The tan-
gential momentum accommodation coefficient,σU , is defined for
tangential momentum exchange of gas molecules with surfaces.
Theoretically this quantity takes a value of 0 for purely specular
reflections and 1 for purely diffusive reflections. Values for σU

have been inferred from experimental comparisons by Arkilic [5]
and have been found to be in the range of 0.75 to 0.85 for argon,
nitrogen and carbon dioxide confined by silicon surfaces.

To illustrate the impact of Maxwell’s slip-velocity, with only
diffusive reflections, on the one-dimensional isothermal NSF
equations we present results of a Couette flow. For this case the
NSF equations reduce to the governing equation:

∂
∂y

(

µuc
∂Ux

∂y

)

= 0, (4)

where it is assumed that the flow is only travelling in thex-
direction and it is non-uniform only in they-direction i.e.Ux =
Ux(y).

The solution method by Vincenti [6] for solving Eqn. (4)
using the first term of the slip boundary condition of Eqn. (3)
then yields:

Ux

Uw
=

y
h

(

1
1+2Kn

)

=
y
h

(

1
1+2λuc/h

)

, (5)

whereUw is the wall velocity andy has its reference origin in the
middle of the channel. The normalised velocity profile is shown
in Fig. 1 together with the more reliable results of Soneet al. [7]
attained by the linearised Boltzmann equation.

The NSF model using Maxwell’s slip velocity boundary
condition shows adequate results in comparison to the result of
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Figure 1. COUETTE FLOW SOLVED USING CONVENTIONAL

NSF COMPARED WITH THE LINEARISED BOLTZMANN EQUATION

SOLVED BY Sone et al. [7] FOR KnA=0.113, KnB=0.339 AND

KnC=1.128. HERE y IS ZERO IN THE CHANNEL CENTRE.

Soneet al. [7] for KnA=0.113. For the cases at higher Kn it is
seen that the NSF velocity-profiles deviate significantly from the
results of Soneet al. [7].

In the next section we outline how a near-wall molecular
description may be adopted into the NSF equations in order to
extend their prediction capabilities to higher Kn.

NON-LINEAR CONSTITUTIVE RELATIONSHIPS
The theory of our proposed non-linear constitutive relation-

ships is based on the view of viscosity as a momentum exchange
between molecules, which is dependent on the time between
molecular collisions and therefore also on the MFP of molec-
ular flights. The relation between the MFP, that is not influenced
by anything but other gas molecules, and the viscosity is estab-
lished in Eqn. (1). However, in micro-gas-flows there is a non-
negligible shortening of the free path due to molecular collisions
with the unyielding walls, which makes it reasonable to use an
effective-MFP instead of the unconfined-MFP. The correspond-
ing effective viscosity is expressed as:

µeff = ρ
λeff

√

π/2RT
. (6)

Through this expression and the definition of the Prandtl num-
ber, Pr = cpµ/k, an effective thermal conductivity,keff, can be
attained by replacingµ andk by their corresponding new effec-
tive definitions as follows:

keff =
cpµeff

Pr
. (7)

Next we will present how the dependent quantity ofλeff can
be defined and state the assumptions involved.

EFFECTIVE MEAN FREE PATH
The method of using transport parameters which are influ-

enced by an effective MFP is traced back to Stops [8]. Stops
proposes an effective-MFP model,λeff(S), which is derived based
on a probability density,

p(r) =
1

λuc
exp(−

r
λuc

), (8)

which describes the distribution of the free path in terms ofthe
flight lengthr. The value of the MFP can then be obtained by
integratingr × p(r), with respect tor, from zero to infinity.

Theλeff(S) model is derived by shortening the upper integra-
tional limit of r from infinity to the distance to the confining wall
as well as using solid-angle-analysis. This is done while tak-
ing into consideration that the integrational path ofr is equally
probable of being distributed in any zenith angle,θ, between
the molecule and the wall. This integration yields the following
λeff(S) expression for molecules in a planar wall confinement:

λeff(S) =
λuc

2

{

1+

(

y
λuc

−1

)

exp

(

−
y

λuc

)

−

(

y
λuc

)2

Ei

(

y
λuc

)

}

+
λuc

2
, (9)

wherey is the normal distance to a wall andEi is the exponential
integral function defined as:

Ei(x) =
Z ∞

1
t−1exp(−xt)dt. (10)

The last term of Eqn. (9) assumes that molecules are uncon-
fined when travelling in the direction opposite to the wall. If
the confining walls are close enough for a considerable amount
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of Knudsen-layer-overlap to occur,λeff(S) is expressed as [9]:

λeff(S) =
λuc

2

{

2+

(

y
λuc

−1

)

exp

(

−
y

λuc

)

−

(

y
λuc

)2

Ei

(

y
λuc

)

+

(

h−y
λuc

−1

)

exp

(

y−h
λuc

)

−

(

h−y
λuc

)2

Ei

(

h−y
λuc

)

}

, (11)

In the next section an expression similar toλeff(S) is derived that
is not dependent on the Ei-function and may therefore be easier
to implement for flow case calculations.

Probability-function based effective-MFP expression
We will use the integrated form of the density functionp(r)

referred to as the probability function,

P(r) =
Z

p(r)dr = C−exp

(

−
r

λuc

)

. (12)

This function describes the probability for a molecule to travel
a distancer + dr between two successive collisions, where the
integration constant,C, is set to one for the probability to range
from zero to one.

This model is derived for a planar-wall-configuration, as
shown in Fig. 2, where the molecules can either travel in the
negativey-direction, wherer = y/cos(θ), or travel in the posi-
tive y-direction, wherer ′ = (h−y)/cos(θ′) if the channel width
is h.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

h−y

r

θ′
y

r ′

θ

Figure 2. A MOLECULE CONFINED BETWEEN TWO PLANAR WALLS

WITH SPACING h. THE PRIME SUPERSCRIPTS DENOTE QUANTI-

TIES CORRESPONDING TO THE RIGHT WALL.

In this description a molecule has an equal possibility to
travel in either positive or negativey-direction. The distribution

of the free path,l , may then be described by usingP as a weight-
ing function as follows:

l =λuc×
1
2

[

P(r)+P(r ′)
]

=λuc×

{

1−
1
2

[

exp

(

−
r

λuc

)

+exp

(

−
r ′

λuc

)]}

. (13)

If the configuration only consists of one wall or the right wall is
at a considerable distance i.e.(h >> y) this expression reduces
to:

l = λuc×P(r) = λuc×

{

1−
1
2

exp

(

−
r

λuc

)}

. (14)

A mean free path depending on the molecule’s distance to
the wall is obtained by averaging the free path with respect to θ
in the range of[0,π/2]. This is done by using the mean integral
theorem,

〈X(θ)〉 =
1

(π/2−0)

Z π/2

0
X(θ)dθ, (15)

on theθ dependent exponential-part of thel -expressions, where
the integrational domain is illustrated in Fig. 3. Using this
averaging-method over the travelling direction is the maindif-
ference in our model compared to the Stops’ method.
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Figure 3. A MOLECULE AT A DISTANCE, y, FROM A PLANAR

WALL. CYLINDRICAL COORDINATES (y,y tan(θ)) INDICATES POSSI-

BLE TRAVELLING DIRECTIONS FOR A MOLECULE TRAVELLING IN

THE NEGATIVE y-DIRECTION.

The mean integral theorem is evaluated by Simpson’s nu-
merical integration with 4 subintervals, which for the casewith
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two walls yields:

λeff =λuc−
λuc

22

[

exp

(

−
y

λuc

)

+exp

(

−
h−y
λuc

)

+4
2

∑
i=1

exp

(

−
y

cos((2i −1)π/8)λuc

)

+4
2

∑
i=1

exp

(

−
h−y

cos((2i −1)π/8)λuc

)

+2 exp

(

−
y

cos(π/4)λuc

)

+2 exp

(

−
h−y

cos(π/4)λuc

)]

. (16)

For the one-wall case, Eqn. (16) reduces to:

λeff =λuc−
λuc

22

[

exp

(

−
y

λuc

)

+4
2

∑
i=1

exp

(

−
y

cos((2i −1)π/8)λuc

)

+2 exp

(

−
y

cos(π/4)λuc

)]

. (17)

The result of the effective-MFP-model, for one wall given in
Eqn. (17), is presented in Fig. 4. The present model shows that
the model fulfilles the basic requirements of:

λeff(0) =
λuc

2
, λeff(∞) = λuc. (18)

The requirement at the wall can be realised by considering the
average of the equal probability of a molecule travelling inthe
direction towards the confining wall, yielding a contribution of 0,
as of travelling into the bulk of the flow, yielding a contribution
of λuc. The requirement for molecules far away from the wall
states that the effective-MFP should approach the conventional
and unconfined-value.

The results of the effective-MFP-model for two walls, given
in Eqn. (16), is presented in Fig. 5 for the twoKn= λuc/h= 0.25
and 1. As seen in the results ofKn= 0.25, both models are quite
similar and have a near wall value that fulfills the first basicre-
quirement of Eqn. (18) and they almost approach the unconfined
value in the bulk. ForKn = 1 the models show slightly different
results. For this case theλeff-models has near wall values that are
lower thanλuc/2 and the bulk values are considerably lower than
λuc, which is consistent with that the effective-MFP-profiles are
relatively flat compared to the 0.25 Kn case.

In the next section we will present simple test cases using
the presentλeff-model.
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TEST CASE RESULTS
In this section the isothermal Couette and Poiseuille cases

are solved analytically with NSF using aµeff derived from the
presentλeff-model. We compare these results with the conven-
tional NSF and solutions to the linearised Boltzmann equation
by Ohwadaet al. [10] and Soneet al. [7]. The Poiseuille flow
solution by Ohwadaet al. gave good results on the prediction of
mass flow rate in microchannel when compared to experiments
for Kn up to 0.5.

Couette flow
Here we study the same Couette case as above, but using an

effective viscosity from our effective-MFP model instead of the
corresponding unconfined value. Since the flow only varies in
they direction the governing equation is given by:

∂
∂y

(

µeff
∂Ux

∂y

)

= 0, (19)

wherey has its reference origin in the middle of the channel. The
two velocity boundary conditions are:

Ux(h/2) =
2−σU

σU
λeff

∂Ux

∂y

∣

∣

∣

∣

w
and Ux(0) = 0, (20)

whereσU=1. The velocity profile can then be expressed by:

Ux

Uw
=

F(y)−F(0)

F(h/2)+ λeff(h/2) f (h/2)−F(0)
, (21)

where

f (y) =
1

µeff(y)
and F(y) =

Z

1
µeff(y)

dy. (22)

The results of Eqn. (21) are shown in Fig. 6. Here it is seen
that the extended-NSF-model shows a slightly lower velocity-
profile but with a similar curvature to the results of Soneet al.[7]
for the cases of KnA and KnB. In the case of KnC the extended-
NSF-model shows a slightly higher velocity-profile but a similar
curvature relative to the results by Soneet al. [7].
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Figure 6. COUETTE FLOW RESULTS USING CONVENTIONAL NSF

AND NSF USING µeff. SOLUTIONS ARE COMPARED WITH THE LIN-

EARISED BOLTZMANN SOLUTION OF Sone et al.[7] FOR KnA=0.113,

KnB=0.339 AND KnC=1.128. HERE y = 0 IS THE CHANNEL CENTRE.

Poiseuille flow
Now we study the Poiseuille flow case represented by the

following governing equation:

∂
∂y

(

µeff
∂Ux

∂y

)

=
∂p
∂x

, (23)

wherey has its reference origin in the middle of the channel and
x at the inlet. The two velocity boundary conditions are:

Ux(h/2) =
2−σU

σU
λeff

∂Ux

∂y

∣

∣

∣

∣

w
and

∂Ux

∂y

∣

∣

∣

∣

y=0
= 0, (24)

whereσU=1. The velocity profile is then described by:

Ux

U0
=

1
U0

∂p
∂x

[

G(y)−
λeff(h/2)

µeff(h/2)

h
2
−G(h/2)

]

, (25)

where

G(y) =
Z

y
µeff(y)

dy and U0 = −
h2

8µuc

∂p
∂x

. (26)
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The velocity profiles obtained from Eqn. (25) are repre-
sented in Fig. 7 together with results obtained by Ohwadaet
al. [10] using the linearised Boltzmann equation. We also com-
pare our present results with the conventional NSF using thecon-
ventional boundary conditions of Eqn. (23) and Eqn. (24) with
the effective values replaced by unconfined values. The solution
of the conventional NSF is given by:

Ux

U0
= 1−4y/h+4Kn= 1−4y/h+4λuc/h, (27)

where the solution method is from [11].
In Fig. 7 we show the results by Ohwadaet al.[10], the NSF

using µeff and the conventual NSF. It is seen that the conven-
tional NSF and NSF usingµeff deviates slightly from the results
by Ohwadaet al. [10] for KnA=0.113. For KnB=0.451 the con-
ventional NSF deviates significantly from the results by Ohwada
et al. [10] while NSF usingµeff show better results. None of the
NSF models describe the results of Ohwadaet al. [10] well for
KnC=0.903.
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Figure 7. POISEUILLE FLOW RESULTS USING CONVENTIONAL

NSF AND NSF USING µeff. SOLUTIONS ARE COMPARED WITH THE

LINEARISED BOLTZMANN EQUATION SOLVED BY Ohwada et al. [10]
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CHANNEL CENTRE.

CONCLUSIONS
The need to justify whichλeff-value should be used in the

velocity-slip condition still remains. However, it is seenthat this
extension to NFS by using an effective-viscosity manages tocap-
ture the shape of the velocity profile of the comparison-dataand
the near wall velocity values up to Kn≈ 0.5. We therefore pro-
pose further investigation of this extended-NSF-model formore
complex cases involving heat transfer and more difficult geome-
tries such as cylindrical Couette flows. It is also of interest to
investigate the the ability to model rarefied gas flows above Kn
≈ 0.5 using second order boundary conditions.

Possible improvements to the effective-MFP-model
We consider that our effective-MFP-model reproduces the

results of Stops’ effective-MFP-model quite well, which isex-
pected because they are both derived based on a similar descrip-
tion. Interesting continuation of this work would be to extend the
validity of the effective-MFP to curved surfaces, althoughcurva-
ture that is small in comparison with the width of the Knudsen-
layer will have a negligible impact on the effective-MFP expres-
sion. Another interesting area of continuation of this workis to
include more physical consistency to the model such as to distin-
guish between intermolecular collisions and molecular collisions
with solid boundaries. This distinction may be easier to imple-
ment in the present model than in Stops’ model.
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