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ABSTRACT
OBJECTIVE
To determine whether educational attainment is a 
causal risk factor in the development of coronary heart 
disease.
DESIGN
Mendelian randomisation study, using genetic data as 
proxies for education to minimise confounding.
SETTING
The main analysis used genetic data from two large 
consortia (CARDIoGRAMplusC4D and SSGAC), 
comprising 112 studies from predominantly 
high income countries. Findings from mendelian 
randomisation analyses were then compared against 
results from traditional observational studies 
(164 170 participants). Finally, genetic data from six 
additional consortia were analysed to investigate 
whether longer education can causally alter the 
common cardiovascular risk factors.
PARTICIPANTS
The main analysis was of 543 733 men and 
women (from CARDIoGRAMplusC4D and SSGAC), 
predominantly of European origin.
EXPOSURE
A one standard deviation increase in the genetic 
predisposition towards higher education (3.6 years 
of additional schooling), measured by 162 genetic 
variants that have been previously associated with 
education.
MAIN OUTCOME MEASURE
Combined fatal and non-fatal coronary heart disease 
(63 746 events in CARDIoGRAMplusC4D).

RESULTS
Genetic predisposition towards 3.6 years of additional 
education was associated with a one third lower 
risk of coronary heart disease (odds ratio 0.67, 95% 
confidence interval 0.59 to 0.77; P=3×10−8). This was 
comparable to findings from traditional observational 
studies (prevalence odds ratio 0.73, 0.68 to 0.78; 
incidence odds ratio 0.80, 0.76 to 0.83). Sensitivity 
analyses were consistent with a causal interpretation 
in which major bias from genetic pleiotropy was 
unlikely, although this remains an untestable 
possibility. Genetic predisposition towards longer 
education was additionally associated with less 
smoking, lower body mass index, and a favourable 
blood lipid profile.
CONCLUSIONS
This mendelian randomisation study found support 
for the hypothesis that low education is a causal risk 
factor in the development of coronary heart disease. 
Potential mechanisms could include smoking, body 
mass index, and blood lipids. In conjunction with 
the results from studies with other designs, these 
findings suggest that increasing education may result 
in substantial health benefits.

Introduction
Coronary heart disease (CHD) is the leading cause 
of death globally. Whereas the causal effects of 
risk factors such as smoking, high blood pressure, 
and raised low density lipoprotein cholesterol are 
generally accepted and reflected in disease prevention 
strategies, substantial uncertainty still surrounds 
other potential factors. Decades of observational 
studies have consistently associated socioeconomic 
factors such as higher education with decreased risk 
of CHD.1-4 However, this association may not stem 
from an underlying causal effect but may arise owing 
to the methodological limitations of traditional 
observational research.5 6 Clarifying whether the 
association between education and CHD is causal 
has widespread implications for our understanding 
of the causes of CHD, as well as for the potential 
development of novel population based approaches 
to its prevention. Unfortunately, randomised 
controlled trials are practically infeasible in this 
area, given the long (approximately 50 year) interval 
between exposure and outcome. Improving causal 
inference through other study designs is therefore 
necessary.

Mendelian randomisation analysis uses genetic 
variants associated with a risk factor (for example, 
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What is already known on this topic
Many observational studies have found that people who spend more time in 
educational settings subsequently develop less coronary heart disease
However, whether this association is causal is not clear, partly because 
randomised controlled trials are practically infeasible in this area
Few studies have applied mendelian randomisation to investigate how exposure 
to socioeconomic risk factors might causally change the risk of disease 
occurrence
No such study has done sensitivity analyses around genetic pleiotropy

What this study adds
Increasing the number of years that people spend in the educational system 
may lower their risk of subsequently developing coronary heart disease by a 
substantial degree
These findings should stimulate policy discussions about increasing educational 
attainment in the general population to improve population health
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education) to make causal inferences about how 
environmental changes to the same risk factor would 
alter the risk of disease (for example, CHD).7 Comparing 
the risk of disease across participants who have been 
grouped by their genotype enables the causal effect 
of a risk factor to be approximated with substantially 
less bias than in a traditional observational analysis. 
Genetic markers of a risk factor are largely independent 
of confounders that may otherwise cause bias, as 
genetic variants are randomly allocated before birth.8 
This, as well as the non-modifiable nature of genetic 
variants, provides an analogy to trials, in which 
exposure is allocated randomly and is non-modifiable 
by subsequent disease.8

Until relatively recently, mendelian randomisation 
analyses have been conducted on single datasets in 
which data on genotype, risk factor, and outcome were 
measured for all participants (known as “one sample 
mendelian randomisation”). However, advanced 
analyses on pleiotropy require larger sample sizes 
to maintain statistical power. This would require 
data pooling across dozens of studies, which is 
administratively difficult to organise. As an alternative, 
summary level data from large genome-wide 
associations study (GWAS) consortia have become 
increasingly available in the public domain. Such data 
can be used to conduct mendelian randomisation 
analyses, whereby gene exposure measures are taken 
from one GWAS and gene outcome measures are taken 
from another GWAS (altogether known as “two sample 
mendelian randomisation”).9 Further methodological 
developments, including mendelian randomisation-
Egger (commonly abbreviated to MR-Egger), weighted 
median mendelian randomisation, and mode based 
methods, can all be used as sensitivity analyses to 
additionally investigate any pleiotropic effects of 
the genetic variants (that is, when genetic variants 
for education exert their influence on heart disease 
through an “off-target” pathway that bypasses the 
education phenotype; see supplementary figure 1 for 
details.91011 The mendelian randomisation method 
has successfully been applied to a range of biological 
and behavioural exposures.12 13 We are aware of 
just two studies that have applied it to investigate 
a socioeconomic exposure: a polygenic score for 
education has previously been associated with the 
development of myopia and dementia.14 15 However, 
these studies did not investigate the possibility of 
genetic pleiotropy.

Our primary research question was “Is there 
genetic support for the hypothesis that education is 
a causal risk factor in the development of CHD, and, 
if so, does education cause changes to conventional 
cardiovascular risk factors that could be mediators 
of this?” We firstly updated traditional observational 
estimates of the association between education and 
risk of CHD from several large studies and consortia. 
Secondly, we applied two sample mendelian 
randomisation analyses to investigate whether people 
with a genetic predisposition towards higher education 
have a lower risk of CHD. A recent GWAS from the 

Social Science Genetic Association Consortium 
(SSGAC) identified a large number of independent 
genetic variants (single nucleotide polymorphisms—
SNPs) associated with educational attainment.16 We 
used 162 such SNPs to mimic the process of randomly 
allocating some participants to more education and 
other participants to less education. To compare 
the CHD risk of participants randomised in such a 
manner, we then used data from the Coronary Artery 
Disease Genome wide Replication and Meta-analysis 
plus the Coronary Artery Disease Genetics Consortium 
(CARDIoGRAMplusC4D) to see whether participants 
with genetic variants for longer education had an 
altered risk of CHD compared with participants with 
genetic variants for shorter education.17 Careful 
consideration of the results from such analyses, as well 
as the wider literature, can support inferences about 
the likely cardiac consequences from environmentally 
acquired alterations to education. We checked the 
robustness of our findings across a range of sensitivity 
analyses and additionally tested for reverse causation 
by checking whether those SNPs that best predict 
CHD also associate with educational outcomes. 
Supplementary figure 2 illustrates the mains steps 
taken in this study.

Methods
Throughout all analyses, we defined education in the 
same way as in the original GWAS analysis, in which 
data from 65 studies were harmonised against the 
International Standard Classification of Education 
1997 classification system (see supplementary 
table  1.3 of the original GWAS study16). After 
harmonisation, self reported educational attainment 
was modelled linearly, expressed as one standard 
deviation (that is, 3.6 years) of additional schooling. 
In this form, one year of vocational education was 
equivalent to one year of academic education, and 
we did not assume any qualitative differences in the 
type of education. We defined CHD as a composite 
of myocardial infarction, acute coronary syndrome, 
chronic stable angina or coronary stenosis of more 
than 50%, or coronary death.

Observational association between education 
and CHD
In traditional observational analysis, we used a 
combination of cross sectional and prospective 
data, collected between 1983 and 2014 (table 1). 
For prevalent CHD cases in cross sectional data, we 
analysed 43 611 participants (1933 cases) from the 
National Health and Nutrition Examination Surveys 
(NHANES) (see supplementary figure 3).26 For incident 
CHD cases in prospective data, we analysed 23 511 
participants (632 cases) from the Health, Alcohol 
and Psychosocial factors In Eastern Europe (HAPIEE) 
study18 and combined this with published estimates 
from 97 048 participants (6522 cases) of the Monica 
Risk, Genetics, Archiving and Monograph (MORGAM) 
study in Europe (see supplementary table 1 for case 
definitions and statistical details).3 19
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Genetic variants associated with education
We retrieved a shortlist of SNPs associated with 
educational attainment from a recent GWAS involving 
405 072 people of European ancestry (table 1).16 For 
our main analysis, we used 162 independent SNPs 
associated (P<5.10−8; linkage disequilibrium r 2<0.1) 
with education in a meta-analysis of the discovery 
(SSGAC) and replication (UK Biobank) datasets. 
Altogether, these 162 SNPs explained 1.8% of the 
variance in education. This is sufficient to generate 
a strong genetic instrument with which to derive 
unbiased causal estimates (see supplementary table 2 
for power calculations). For our secondary analysis, we 
used another set of 72 independent SNPs (at r2<0.1) 
that were associated with education in the discovery 
dataset (SSGAC) alone (293 723 participants; P<5.10−8) 
and that were subsequently found to be directionally 
consistent in an independent replication dataset (UK 
Biobank; see supplementary figure 4 for a summary 
of how SNPs were selected). We decided to use the 
larger set of instruments (with 162 SNPs) in our main 
analysis instead of the smaller set of instruments (with 
72 SNPs) to maintain sufficient statistical power for 
our sensitivity analyses. To avoid potential biases that 
may arise when datasets contributing towards the SNP-
to-exposure and SNP-to-outcome estimates overlap, 
we excluded studies in SSGAC that overlapped with 
CARDIoGRAMplusC4D (full details of these excluded 
studies are provided in supplementary methods 3.1). 
We then checked that the removal of these overlapping 
datasets from SSGAC had no material effect on the SNP-
to-education estimates (see supplementary figures 5 
and 6 for further details).

Genetic variants associated with CHD
Data on CHD have been contributed by 
CARDIoGRAMplusC4D investigators and have been 
downloaded from www.cardiogramplusc4d.org. For 
each of the 162 SNPs associated with education, we 
retrieved summary level data for either the same SNP 
(115 of 162 SNPs) or for a proxy SNP in high linkage 

disequilibrium (47 of 162 SNPs at r 2>0.8) from datasets 
totalling 63 746 CHD cases and 130 681 controls (see 
supplementary figure 7 for how the education SNPs 
were matched against the CHD GWAS dataset).17 We 
repeated a similar process for our secondary analysis 
using a set of 72 SNPs (supplementary figure 8).

Statistical analyses
Traditional observational analyses
We used Cox proportional hazards and logistic 
regressions to calculate traditional observational 
estimates for incident and prevalent cases, respectively. 
Results were adjusted for age and sex. Further 
methodological details are given in supplementary 
methods 1.

Mendelian randomisation analyses
For all mendelian randomisation analyses, alleles from 
the SSGAC and CARDIoGRAMplusC4D datasets were 
aligned to correspond to an increase in educational 
attainment. To investigate whether education is likely 
to play a causal role in coronary heart disease, we used 
three mendelian randomisation approaches. Firstly, 
we used conventional (also termed ‘inverse variance 
weighted”) mendelian randomisation analyses, by 
regressing the SNP-education associations (exposure) 
against the SNP-CHD associations (outcome), with 
each SNP as one data point (details in supplementary 
methods 3.1).

Secondly, we used three sensitivity analyses to 
investigate to what degree pleiotropic effects might bias 
the mendelian randomisation causal estimates. These 
methods allow some of the mendelian randomisation 
assumptions to be relaxed. For example, mendelian 
randomisation-Egger relies on the InSIDE assumption, 
which requires that the magnitude of any pleiotropic 
effects (from SNPs to CHD, which bypasses education) 
should not be correlated with the magnitude of the 
main effect (from SNP to education).10 Median based 
and mode based methods posit that when looking 
at lots of SNPs (some of which may have pleiotropic 

Table 1 | Details of studies and datasets included in analyses
Analysis/study Risk factor/outcome Participants (CHD cases) Web source (if publicly available)
Traditional observational analysis
NHANES Years of education/non-fatal CHD 43 611 (1933) www.cdc.gov/nchs/nhanes/
HAPIEE18 Years of education/fatal and non-fatal CHD 23 511 (632) –
MORGAM19 Years of education/fatal and non-fatal CHD 97 048 (6522) –
Mendelian randomisation analysis (education to CHD and CHD to education)
SSGAC16 Years of education 349 306 www.thessgac.org/data
CARDIoGRAMplusC4D17 CHD 194 427 (63 746) www.cardiogramplusc4d.org/data-downloads/
Mendelian randomisation analysis (education to conventional cardiovascular risk factors)
TAGC20 Smoking 74 053 www.med.unc.edu/pgc/results-and-downloads
ICBP21 Blood pressure 74 064 www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id=phs000585.v1.p1
GLGC22 LDL cholesterol, HDL cholesterol, and triglycerides 188 577 csg.sph.umich.edu/abecasis/public/lipids2013/
DIAGRAM23 Type 2 diabetes 149 821 diagram-consortium.org
MAGIC24 Glucose 133 010 www.magicinvestigators.org
GIANT25 Body mass index, height 339 224 portals.broadinstitute.org/collaboration/giant/
CARDIoGRAMplusC4D=Coronary Artery Disease Genome wide Replication and Meta-analysis (CARDIoGRAM) plus the Coronary Artery Disease (C4D) Genetics consortium; CHD=coronary heart 
disease; DIAGRAM=Diabetes Genetics Replication and Metaanalysis; GIANT=Genetic Investigation of Anthropometric Traits; GLGC=Global Lipids Genetic Consortium; HAPIEE=Health, Alcohol 
and Psychosocial factors In Eastern Europe; HDL=high density lipoprotein; ICBP=International Consortium for Blood Pressure; MAGIC=Meta-Analyses of Glucose and Insulin-related traits 
Consortium; LDL=low density lipoprotein; MORGAM=Monica Risk, Genetics, Archiving and Monograph; NHANES=National Health and Nutrition Examination Survey; SSGAC=Social Science 
Genetic Association Consortium; TAGC=Tobacco and Genetics Consortium.
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effects on CHD), these pleiotropic effects are likely to 
be comparatively heterogeneous in nature and hence 
less likely to converge on a common median/modal 
estimate. In contrast, valid SNPs with no pleiotropic 
effects are more likely to show more uniform and 
homogeneous effects (on education and thereafter 
CHD), which makes them more likely to cluster towards 
the median/modal point estimate.9 27 These methods 
are fully described in supplementary methods 3.2. 
Consistency of results across a range of methods 
that make different assumptions about pleiotropy 
strengthens causal inference, whereas divergent 
results may indicate that genetic pleiotropy is biasing 
some of these results (described in supplementary 
figure 1).

Thirdly, to check whether genetic risk for coronary 
events might be a causal factor for educational 
attainment, we did mendelian randomisation in 
the opposite direction (bidirectional mendelian 
randomisation) using 53 SNPs associated with CHD 
(supplementary methods 3.2.4). Under conditions 
of massive pleiotropy, genetic risk of coronary events 
might also predict educational outcomes.

To investigate potential mechanisms from 
education to CHD, we applied conventional mendelian 
randomisation to investigate whether genetic 
predisposition towards longer education could lead to 
improvements in the established cardiovascular risk 
factors. In this analysis, we discarded 60 SNPs with 
missing data on one of the cardiovascular risk factors 
from the 162 SNP instrument and thus used a smaller 
set of 102 SNPs (details in supplementary methods 3.3 
and supplementary figure 4).

Patient involvement
Patients were not involved in the design or 
implementation of this study. There are no specific 
plans to disseminate the research findings to 
participants, but findings will be returned back to the 
original consortia, so that they can consider further 
dissemination.

Results
Observational analyses
On the basis of NHANES data, each additional 
3.6 years of education (1 SD) was associated with 
27% lower odds of prevalent CHD (odds ratio 0.73, 
95% confidence interval 0.68 to 0.78; illustrated 
in figure  1). In prospective analyses, 3.6 years of 
additional education was associated with a 20% lower 
risk of incident CHD in the HAPIEE and MORGAM 
studies, with a pooled hazard ratio of 0.80 (0.76 
to 0.83). Cohort specific results from MORGAM are 
additionally shown in supplementary figure 9.18 19 
These observational estimates were robust to sensitivity 
analyses accounting for different case definitions, age 
at first CHD event, and potential confounding by other 
measures of socioeconomic position (supplementary 
table 3). We also saw evidence for a dose-response 
relation between the amount of education and risk of 
CHD (supplementary figures 10 and 11).

Genetic association between education and CHD
After integrating two GWAS datasets and examining 
millions of SNPs across the entire genome, we found 
strong evidence for a negative genetic correlation 
between education and CHD (rg=−0.324; rg

2=0.104; 
P=2.1×10−12; further details in supplementary 
methods 2).28 To interpret this, educational outcomes 
can vary as a result of genetic and non-genetic variance. 
Within the domain of genetic variance, approximately 
10% of the genetic variance of education seems to be 
shared with the genetic variance of CHD, whereby this 
correlation is negative. This correlation can arise for 
various reasons, so we next did multiple mendelian 
randomisation analyses to investigate the presence 
and direction of any causal effects.

Causal effect from education to CHD
Using conventional mendelian randomisation analysis, 
1 SD longer education (due to genetic predisposition 
across 162 SNPs) was associated with a 33% lower 
risk of CHD (odds ratio 0.67, 0.59 to 0.77; P=3×10−8). 
Supplementary figure 12 additionally shows 
individual causal estimates from each of the 162 SNPs. 
As expected, sensitivity analyses using mendelian 
randomisation-Egger and weighted median mendelian 
randomisation provided less precise estimates 
than with conventional mendelian randomisation. 
Nonetheless, their causal estimates were similar in 
terms of direction and magnitude, and they were 
unlikely to have happened by chance alone (fig 1). 
We found little evidence of a non-zero intercept from 
the mendelian randomisation-Egger test (intercept 
β=0.004, −0.056 to 0.013; P=0.417), consistent with 
the hypothesis that genetic pleiotropy was not driving 
the result. The mendelian randomisation regression 
slopes are illustrated in supplementary figures 13 and 
14. A secondary set of analyses using a set of 72 SNPs 
instead of 162 SNPs yielded consistent results in terms 
of direction and magnitude (fig 1).

Further sensitivity analyses, using both sets of 
instruments, are reported in supplementary table 
4. Briefly, an analysis that can account for some 
measurement error in our genetic instruments for 
exposure (so-called mendelian randomisation-
Egger+SIMEX) gave similar findings.29 Results from 
modal based mendelian randomisation approaches 
were consistent with the hypothesis that genetic 
pleiotropy was not driving the conventional mendelian 
randomisation result. We also did robustness checks 
by omitting SNPs with higher levels of missing data, 
as well as SNPs that were available in the CHD GWAS 
dataset in the form of a proxy SNP. These gave similar 
results in terms of direction, magnitude, and statistical 
significance. Collectively, all these sensitivity analyses 
make it less likely that the presence of pleiotropic effects, 
or missing data, grossly biased our main causal analysis.

Causal effect from CHD to education
We found little evidence for the hypothesis that genetic 
liability for CHD risk is associated with educational 
outcomes. Namely, 1-log greater genetic risk of CHD 
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was associated with 2.4 (−16.6 to 21.4) days of longer 
educational attainment. Results were unchanged 
after application of mendelian randomisation-Egger 
and weighted median mendelian randomisation 
(fig 2). The results from individual SNPs are shown in 
supplementary figures 18-20.

Causal effect from education to cardiovascular risk 
factors
To identify potential risk factors that could mediate 
the association between education and CHD, we 
investigated whether genetic predisposition towards 
longer education was associated with established 
cardiovascular risk factors. Table 2 shows that, in 
conventional mendelian randomisation analyses, a 
1 SD longer education (due to genetic predisposition 
across 102 SNPs) was associated with a 35% lower 
odds of smoking, 0.17 lower body mass index, 0.14 
mmol/L lower triglycerides, and 0.15 mmol/L higher 
high density lipoprotein cholesterol, with a P value 
smaller than 0.001 for each of these four outcomes. 
Associations with diabetes and systolic blood pressure 

were in the anticipated direction, but these effects 
may have been due to chance or insufficient statistical 
power (P values 0.05 to 0.08).

Discussion
In this mendelian randomisation study, we found strong 
genetic support for the hypothesis that longer education 
has a causal effect on lowering the risk of coronary 
heart disease. Our findings using genetic data, which 
can be considered as “nature’s randomised trials,”30 
were consistent with data from observational studies, 
and we found little evidence that our results may be 
driven by genetic pleiotropy. More specifically, 3.6 years 
of additional education (similar to an undergraduate 
university degree) is predicted to translate into about a 
one third reduction in the risk of CHD.

Comparison with previous studies
A vast body of observational studies across a range 
of settings show an association between education 
and CHD. In contrast, comparatively few studies have 
explicitly investigated the causality of this association. 
The existing studies on causality come from three 
domains. Firstly, analyses of natural experiments 
have compared mortality before and after changes 
to compulsory schooling laws—for example, by 
looking at mortality rates in countries before and 
after the introduction of national legislation that 
increased minimum education. In the Netherlands, 
such changes were associated with reductions in all 
cause mortality.31 In the UK, the largest study so far 
reported causal effects on improving physical activity, 
body mass index, blood pressure, diabetes, CHD, and 
all cause mortality.32 An extension of this design is to 
compare geographical areas, such as the various states 
in the US. These studies initially suggested a large 
effect on all cause mortality, but this effect disappeared 
when state specific baseline trends were taken into 
account.33 34 In Sweden, an intervention to extend 
compulsory schooling throughout a 13 year transition 
period in a stepped wedge design across multiple 
municipalities reported lower all cause mortality in 
those deaths occurring after age 40 (equivalent to 
hazard ratio of death of 0.86 (0.77 to 0.96) per 3.6 
years of additional education).35

Another source of causal inference comes from 
studies on monozygotic twins. Within each pair, 
both twins are exposed to the same set of genetic 
exposures (and also some environmental exposures, 
called the “shared environment”). Consequently, 
any difference in disease outcome between twins 
cannot arise from genetic effects. If differences in 
outcome associate with differential exposure to non-
shared features of the environment (such as one twin 
pursuing education longer than the other twin), and 
if the magnitude of this association is comparable to 
that seen in the general population, this makes less 
likely the possibility that the observational association 
is confounded by genetic (or shared environmental) 
factors. Although the twin method does not eliminate 
the possibility of confounding from other factors in the 

Observational
  Prevalence (NHANES)
  Incidence (HAPIEE+MORGAM)
Causal
  162 SNPs
    Conventional MR (IVW)
    MR-Egger
    Weighted median MR
  72 SNPs
    Conventional MR (IVW)
    MR-Egger
    Weighted median MR

0.73 (0.68 to 0.78)
0.80 (0.76 to 0.83)

0.67 (0.59 to 0.77)
0.54 (0.31 to 0.93)
0.70 (0.58 to 0.85)

0.60 (0.49 to 0.74)
0.54 (0.26 to 1.11)
0.71 (0.54 to 0.93)

0.2 0.4 0.6 0.8 1.0 1.2

Analysis Risk coe�cient
(95% CI)

Risk coe�cient
(95% CI)

1933
7154

63 746
63 746
63 746

63 746
63 746
63 746

Cases

41 678
113 405

130 681
130 681
130 681

130 681
130 681
130 681

Controls

Fig 1 | Comparison of observational and causal estimates for risk of coronary heart 
disease (CHD), per 3.6 years of educational attainment. Two observational estimates 
are provided according to prevalent and incident CHD cases. Risk coefficient for 
observational incident cases was derived by meta-analysis of hazard ratios from Health, 
Alcohol and Psychosocial factors In Eastern Europe (HAPIEE) and Monica Risk, Genetics, 
Archiving and Monograph (MORGAM) studies. Risk coefficients for observational 
prevalent cases and six causal estimates from mendelian randomisation (MR) are 
all odds ratios (see supplementary methods for full description of each analysis). 
IVW=inverse variance weighted approach; NHANES=National Health and Nutrition 
Examination Survey

Conventional MR (IVW)
MR-Egger
Weighted median MR

2.41 (-16.56 to 21.38)
6.63 (-37.68 to 50.94)
-0.60 (-22.69 to 21.49)

-40 -20 0 20 40 60

Analysis Days of schooling
(95% CI)

Days of schooling
(95% CI)

Fig 2 | Association of genetic liability to coronary 
heart disease (CHD) (exposure) on numbers of days of 
schooling (outcome). Causal estimates are expressed as 
difference in days of education per 1-log unit increase in 
risk of CHD as instrumented by 53 SNPs. Supplementary 
methods 3.2 details each mendelian randomisation (MR) 
analysis. IVW=inverse variance weighted approach
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non-shared environment, it is a design with which to 
eliminate the possibility of confounding from genetic 
factors. Twin studies conducted in Denmark initially 
found evidence both for and against causal effects 
from education to mortality and CHD incidence.3637 
The largest study to date from Sweden (which has 
twice the statistical power of the previous largest 
study) found strong evidence for causal effects.38 
There, the association between years of education and 
lifespan did not attenuate at all when the conventional 
population based analysis was compared against 
the between twin analysis. Hence the twin literature 
suggests that, although only a handful of sufficiently 
powered studies exist, shared environmental factors 
(such as parenting) are not likely to cause substantial 
confounding. It also suggests that confounding from 
genetic factors (such as genetic differences in drive, 
motivation, personality, or innate intellect, all of which 
may predispose towards longer education) might not 
account for the observational associations between 
education and disease.

A parallel domain of research, using data from 
millions of non-identical siblings (that sometimes 
reached 100 times larger sample sizes than the twin 
studies), has also observed little attenuation of the 
association between education and subsequent 
mortality when comparing the general population 
analysis with the within sibling analysis.39 40 As with 
twin studies, this also suggests that environmental and 
genetic factors shared by the siblings are unlikely to 
confound the observational association seen between 
education and disease. Although twin and sibling 
studies both leave open the possibility of confounding 
from non-shared environmental factors, taken together 
with our results (using an entirely different method), 
the wider body of evidence is more compatible with 
a causal interpretation, suggesting that increasing 
education may lead to a reduction in CHD.

Finally, some recent studies have also looked at 
specific genetic variants for education. An association 
was found between parental longevity and genetic 
markers for education in their offspring.41 However, 
causal directions and pleiotropy were not tested in 
this study. Others have used conventional mendelian 

randomisation and found that genetic variants for 
education predict myopia and dementia.14 However, 
these studies did not investigate pleiotropy of their 
genetic instruments. No mendelian randomisation 
studies of socioeconomic exposures have investigated 
any other disease outcome, such as cardiovascular 
diseases. Furthermore, most of the other designs listed 
above (including natural experiments and twin and 
sibling designs) have reported outcomes for all cause 
mortality. Few have reported cardiovascular mortality, 
and virtually none have reported fatal/non-fatal CHD, 
as we have.

Strengths and limitations
Our study has important strengths. We investigated 
the causality of the association between an easily 
measured socioeconomic factor (education) and a 
common disease (coronary heart disease). We applied 
the mendelian randomisation design, which in 
conjunction with findings from other study designs 
should improve our understanding of causality by 
reducing bias from confounding. By integrating 
summary level data from more than half a million 
individuals, our study was well powered to derive 
robust causal effect estimates and also powered for 
multiple sensitivity analyses (which typically require 
larger sample sizes). We used recent state of the art 
methodological developments to thoroughly explore 
the possibility of pleiotropy in our genetic variants, for 
which we found little evidence.

Our study also has some limitations. Firstly, the 
genetic variants associated with education may 
instead mark more generic biological pathways 
(such as vascular supply or mitochondrial function), 
which could enhance systemic fitness, thereby 
leading to parallel increases in cognitive and cardiac 
function.42 43 Under this scenario, which violates the 
InSIDE assumption, policy interventions to increase 
education may not translate into lower incidence 
of heart disease. However, such a scenario is less 
likely to lead to the consistent set of results we found 
across our sensitivity analyses, as this would require 
that pleiotropy occurs in a scenario in which the 
InSIDE assumption is violated (so that mendelian 

Table 2 | Causal effects from 3.6 years of education to 10 cardiovascular risk factors
Outcome Causal effect (95% CI)* P value
Binary traits
Smoking status 0.65 (0.54 to 0.79) ≤0.001
Diabetes mellitus, type 2 0.75 (0.56 to 1.01) 0.057
Continuous traits
Systolic blood pressure −1.36 (−2.85 to 0.12) mm Hg 0.075
Diastolic blood pressure −0.23 (−1.22 to 0.76) mm Hg 0.645
Low density lipoprotein cholesterol −0.03 (−0.10 to 0.05) mmol/L 0.513
High density lipoprotein cholesterol 0.15 (0.07 to 0.23) mmol/L ≤0.001
Triglycerides −0.14 (−0.22 to −0.06) mmol/L ≤0.001
Glucose −0.02 (−0.08 to 0.03) mmol/L 0.441
Body mass index −0.17 (−0.26 to −0.08) ≤0.001
Height 0.06 (−0.03 to 0.16) cm 0.208
All analyses are based on a common set of 102 single nucleotide polymorphisms associated with education, available in eight genome-wide association 
study consortia (see supplementary methods 3.3).
*Estimates are expressed as absolute values for continuous risk factors and as odds ratios for binary traits; both correspond to 1 standard deviation 
longer education (equivalent to 3.6 years of schooling).
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randomisation-Egger is biased), at least 50% of the 
information comes from SNPs with highly pleiotropic 
effects on heart disease, and these pleiotropic effects 
occurred in such a way as to make the causal estimates 
on heart disease seem very similar to one another. 
No definitive tests exist with which to verify such 
assumptions, meaning that triangulation of data from 
other sources and subjective judgment are needed to 
evaluate the plausibility of gross pleiotropic bias.44 We 
believe such pleiotropy to be unlikely for four reasons. 
Firstly, the effects from genetic pleiotropy would 
have to coincide with the non-genetic associations 
observed in studies of monozygotic twins; secondly, 
they would also have to coincide with the non-
genetic associations observed in natural experiments. 
Thirdly, if education and CHD share some of their 
underlying genome-wide genetic architecture (as seen 
in our LD score regression), and if most of the top 
hits for education are strongly pleiotropic for CHD, 
then one might imagine the top hits for CHD to also 
pick up some of these pleiotropic traits. However, 
our reverse direction mendelian randomisation 
found a null estimate. Fourthly, despite gaps in our 
understanding of the biological mechanisms through 
which these 162 SNPs influence education, they are 
disproportionately found in genomic regions that 
regulate brain development, they are enriched for 
biological pathways involved in neural development, 
and they are preferentially expressed in neural 
tissue.16 As these 162 SNPs do not seem to have any 
expression or enrichment in cardiovascular tissues, 
this further narrows the scope for pleiotropy: any 
potential pleiotropy might have to exert a large effect 
on CHD via predominantly neurological pathways (for 
example, behaviours associated with obesity), rather 
than via global or systemic measures of fitness (such 
as mitochondrial function). Therefore, on balance, we 
believe that the scenario in which gross pleiotropy 
invalidates our sensitivity analysis is less consistent 
with the broader body of evidence, in comparison with 
the scenario in which our sensitivity analyses are valid. 
If our main and sensitivity analyses are valid, then 
policy interventions that mirror prolonged exposure 
to education (as indexed by our genetic instruments) 
should, on balance, probably prevent heart disease.

A second limitation is that to arrive at such a policy 
recommendation one would have to assume that 
genetic predisposition towards higher educational 
attainment causes the same behavioural and 
physiological consequences as environmentally 
acquired changes to educational attainment, such as 
from a policy intervention. It may be, however, that a 
year of additional education from genetic causes could 
trigger a different set of biological and behavioural 
mechanisms compared with a year of additional 
education resulting from policy change. We know very 
little about the mechanisms of these genetic effects. In 
the analyses we did in this study, we found some initial 
evidence that some of these genetic effects may be 
mediated via common cardiovascular factors such as 
smoking, body mass index, and lipids. In keeping with 

this, policy changes to education in the US and UK have 
also estimated some causal effects on smoking, body 
mass index, blood pressure, and diabetes,32 45 which 
are broadly consistent with our findings. Few studies 
have measured the causal effects of policy interventions 
on blood lipids. Although a randomised controlled 
trial of education is difficult for CHD outcomes, owing 
to approximately 50 years of lag, future research 
using real life interventions may be able to measure 
effects on potential mediators, as these occur much 
sooner. A second response to this overall limitation is 
the analogy to other exposures (such as low density 
lipoprotein cholesterol and systolic blood pressure), 
for which genetic effects have mirrored findings from 
environmentally acquired changes (such as from 
randomised controlled trials of drug therapies.4647). 
Taken together, although our study makes no direct 
inference on what health effects may stem from a policy 
intervention that successfully increases education, we 
are cautiously optimistic that such a policy should lead 
to reductions in heart disease.

As a third limitation, we assumed the absence of 
dynastic effects, an assumption that is broken when 
parental genes associate with parental behaviours 
that directly cause a health outcome in the child.48 
For example, parents with a genetic predisposition 
towards higher education may choose to feed their 
children a better diet. However, parental educational 
attainment has been shown to be a poor predictor of 
conventional cardiovascular risk factors in children.49 
Fourthly, our observational and genetic data originate 
predominantly from samples of European origin in high 
income countries. We are thus unable to generalise 
these estimates to other populations, particularly to 
low income countries where cardiovascular diseases 
are less common. However, it may well be expected 
that socioeconomic factors mirror the pattern seen 
for other cardiovascular risk factors, whereby similar 
effects are typically seen across the world. For example, 
in the INTERHEART study, regional heterogeneity in 
the magnitude of associations was just as large for 
some conventional cardiovascular risk factors (eg, 
hypertension I2=85%, obesity I2=92%),50 as it was for 
some psychosocial risk factors (eg, depression I2=85%, 
general stress I2=79%).51 Fifthly, we do not know 
whether increasing education for the people with the 
least education will be as cardioprotective as increasing 
education for those with above average education. 
Nonetheless, a scenario of dose-response across the 
broad educational gradient is compatible with, firstly, 
the linear relation seen in the observational data. 
Secondly, it is also compatible with the concordance of 
findings from our study (which measures the average 
effect across the entire population) alongside the 
findings from studies of raising the school leaving 
age (which measure the effect among those with least 
education only).

Potential mechanisms
The mechanisms that might mediate the association 
between education and CHD remain relatively 
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unknown. Traditional observational associations have 
estimated that the association between education and 
CHD attenuates by around 30-45% after statistical 
adjustment for health behaviours and conventional 
cardiovascular risk factors (including smoking, blood 
pressure, and cholesterol); however, measurement error 
in such analyses can underestimate their mediating 
effect. This suggests that these factors could account for 
perhaps half of the association between education and 
CHD.2 52 Our study found genetic predisposition towards 
longer education to associate with improved smoking, 
body mass index, and blood lipid profiles (with some 
borderline results for blood pressure and risk of diabetes). 
The degree of mediation should now be formally 
assessed with more extensive methods—for example, 
by applying two step mendelian randomisation.53 54 
If conventional risk factors do not completely account 
for the mechanism between education and CHD, then 
additional mechanistic hypotheses for investigations 
are needed. These could include education leading to 
improved use of healthcare services (from better health 
knowledge or fewer financial barriers to accessing care) 
or better job prospects, income, material conditions, 
social ranking and/or diet, all factors associated with 
education and CHD, many of which might be amenable 
to intervention.4

What our study adds
After exposure to a socioeconomic factor, there is 
often a long latency period before the occurrence 
of common diseases (in this example, around 50 
years). Consequently, this line of research is not 
particularly amenable to randomised controlled trials, 
which would otherwise settle questions of causality. 
This does not mean that these associations are less 
worthy of investigation, particularly as large point 
estimates open up the possibility of potentially large 
public health gains. The solution is to triangulate 
evidence from multiple study designs, each with its 
own strengths and weaknesses. The limited studies 
to date have suggested that a causal effect between 
socioeconomic exposures and all cause mortality is 
more likely than not to exist. Our study adds to this 
evidence by using an entirely new technique, which 
also suggests that a causal effect is more likely than not 
to exist between education and CHD.

Implications for researchers
The main question for future research is “What 
mechanisms account for the strong association 
seen between genetic predisposition towards longer 
education and substantially lower risk of CHD?” Were 
it to be found that a health behaviour (such as diet) 
is an important mediator, then interventions on diet 
could become the cornerstone of policies designed to 
reduce health inequalities.

More molecular research is needed to delineate the 
mechanism, pleiotropic or not, through which these 162 
education SNPs associate with cardiac outcomes. This 
could elucidate new causal mechanisms for CHD which, 
in turn, could lead to insights for potential drug discovery.

Implications for clinicians and policymakers
Although uncertainty remains around the precise 
function of each of the 162 SNPs, their degree of 
pleiotropy with cardiac traits, and the mechanisms 
by which these genetic variants exert their 
cardioprotective influence, conclusions can still be 
drawn from the current body of evidence. Firstly, 
policies that increase education probably lead to 
non-health benefits, such as increased economic 
productivity, higher voter turnout, better governance, 
and improved life satisfaction.5556 Secondly, very little 
evidence exists to suggest that increasing education 
might subsequently harm health or wellbeing. 
Thirdly, although rigorous scientific debate needs to 
continue on the health consequences of increasing 
education, the current balance of opinion seems 
to weigh towards the side on which increasing 
education will probably improve a range of health 
outcomes (either to a smaller or larger degree). Little 
discussion has taken place about how to increase 
education in a manner that is practical, acceptable, 
affordable, and sustainable. Although our data make 
no claims on this, we note that interventions should 
be accompanied by careful monitoring for unforeseen 
side effects, especially in those people who may not 
thrive when forced into extended educational settings, 
which may otherwise aggravate health inequalities. To 
briefly begin this discussion, one can imagine a range 
of policies by analogy to how clinicians, public health 
practitioners, and policymakers encourage patients 
to stop smoking: by raising awareness (for example, 
mass marketing campaigns, personalised letters, 
or individual counselling), convenience of access 
(for example, changing the geographical dispersion 
of educational establishments or opportunities for 
flexible education), and/or finance (for example, 
tuition fees, accommodation costs, or stipends). 
One can also consider complementing some of 
these population level policies with individual level 
interventions (for example, advising adolescents on 
whether to pursue higher education).

Conclusion
Our mendelian randomisation analyses found genetic 
support for the hypothesis that longer education plays 
a causal role in lowering the risk of coronary heart 
disease. Although completely ruling out possible 
pleiotropic effects is difficult, the sensitivity tests 
available to us gave little evidence that these could 
have driven our findings. In conjunction with the 
results from other study designs, increasing education 
is likely to lead to health benefits.
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