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Key Points

e focus on variability of North Equatorial Undercurrent e Atlantic Meridional Mode (AMM) associated with e Atlantic Zonal
(NEUC) meridional shift and anomalous intensity of NEUC

Model data

@ high-resolution (0.1°) tropical Atlantic nest
(TRATLO1) within global ocean model
NEMO-ORCAOQ5

@ coupled with biogeochemical model
@ CORE forcing for time period 1958 to 2007
(Dutell et al., 2014)
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Fig. 3: (a-e) JJA mean of TRATLO1 horizontal velocities (arrows)

within 100m to 400m depth and NEUC Y ,, (green line) from 1958 to

2007. Shading marks (a) JJA mean of TRATLO1 zonal velocities from o
1958 to 2007 and JJA mean of TRATLO1 zonal velocity anomalies

within 100m to 400m depth during years of (b) positive AMM events,

(c) negative AMM events, (d) positive AZM events, (e) negative AZM

events. All zonal velocity anomalies are calculated with respect to the

JJA mean from 1958 to 2007.

~Fig. 2: First (b) and second (a) empirical orthogonal function of
.. reanalysis (NOAA) Sea Surface Temperature (SST). March to

<« May mean of AMM index (c; Servain 1991) and June to August
" mean of AZM index (d; Zebiak 1993) estimated from TRATLO1
SST. Black boxes mark region for index calculation.
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Do the Atlantic climate modes impact the ventilation of the
eastern tropical North Atlantic oxygen minimum zone?

Impact of Atlantic Climate Modes on the NEUC

SFB 754

Mode (AZM) associated with

anomalous intensity of NEUC

Estimation of NEUC central location Y ps & intensity INT
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the Atlantic NEUC Is an eastward
zonal undercurrent within 100m
to 500m depth - during June to
August (JJA) 1t Is centered
around 4.8°N and has a averaged
Intensity of 5.6Sv

positive AMM events: NEUC Is
shifted southward (Fig. 3b and 4
a,p) and weakens up to -1.5Sv
(Fig. 4 c,d)

negative AMM events: NEUC Is
shifted northward (Fig. 3b and 4
a,b) and slightly intensifies (Fig. 4
c,d)

Intensity anomalies during
negative AMM events are weaker
compared to positive AMM
events (Fig. 4d)

no anomalous meridional shift of
NEUC during AZM events (Fig.
3d,e and 4 e,f)

NEUC Intensity strengthens
(weakens) up to 1Sv (-1Sv)
during positive (negative) AZM
events

u(z,y, z,t) dy dz

Equ. 1 & 2: Central location Y ;, and intensity
(1) INT calculated according to Hsin (2016). Where

x IS longitude, tis time, z is depth, y is latitude,

and w is zonal velocity (only positive values for

NEUC).

(2) Integration limits for NEUC are the sigma-level of
top (bottom) of flow Z, = 24.5 kg m= (Z, = 24.5
kg m™3), the southern (northern) limit of flow Y=

3.6°N (Y =5°N), and the half-mean-width of
flow W = 2°.
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Fig. 4: JJA mean of NEUC Y., (a, e) and INT (c, g) (bold
lines) + corresponding standard deviations (thin lines) for all
years from 1958 to 2007 (black), for years of only positive
(red) and negative (blue) AMM (a,c) and AZM (e,g) events.
JJA anomalies of NEUC Y, (b,f) and INT (d,h) with respect

to the JJA mean from 1958 to 2007 for positive (red) and
negative (blue) AMM (b,d) and AZM (f,h) events.

Outlook

repeat analysis for nNECC and
NEC

correlation of variability of the
water mass distributions in and the
ventilation of the ETNA OMZ

correlation with Sverdrup relation

comparison to observational and
reanalysis data
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