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Abstract Natural gas hydrates are considered a potential resource for gas production on industrial
scales. Gas hydrates contribute to the strength and stiffness of the hydrate-bearing sediments. During gas
production, the geomechanical stability of the sediment is compromised. Due to the potential geotechnical
risks and process management issues, the mechanical behavior of the gas hydrate-bearing sediments needs
to be carefully considered. In this study, we describe a coupling concept that simplifies the mathematical
description of the complex interactions occurring during gas production by isolating the effects of sediment
deformation and hydrate phase changes. Central to this coupling concept is the assumption that the soil
grains form the load-bearing solid skeleton, while the gas hydrate enhances the mechanical properties of
this skeleton. We focus on testing this coupling concept in capturing the overall impact of geomechanics
on gas production behavior though numerical simulation of a high-pressure isotropic compression
experiment combined with methane hydrate formation and dissociation. We consider a linear-elastic
stress-strain relationship because it is uniquely defined and easy to calibrate. Since, in reality, the
geomechanical response of the hydrate-bearing sediment is typically inelastic and is characterized by a
significant shear-volumetric coupling, we control the experiment very carefully in order to keep the sample
deformations small and well within the assumptions of poroelasticity. The closely coordinated experimental
and numerical procedures enable us to validate the proposed simplified geomechanics-to-flow coupling,
and set an important precursor toward enhancing our coupled hydro-geomechanical hydrate reservoir
simulator with more suitable elastoplastic constitutive models.

1. Introduction

Methane hydrates are crystalline solids formed from water molecules enclathrating methane molecules.
Methane hydrates are thermodynamically stable under conditions of low temperatures and high pressures.
If warmed or depressurized, methane hydrates destabilize and dissociate into water and methane gas. Natu-
ral gas hydrates occur in permafrost regions and the deep sea, usually in soils or sediments at considerable
depth when methane is available in sufficient amounts. Natural gas hydrates are considered to be a promis-
ing energy resource. It is widely believed that the energy content of methane occurring in hydrate form is
immense, possibly exceeding the combined energy content of all other conventional fossil fuels [Pi~nero
et al., 2013; Burwicz et al., 2011; Archer et al., 2009; Milkov, 2004; Kvenvolden, 1993].

Several methods have been proposed for production of natural gas from gas hydrate reservoirs, e.g., ther-
mal stimulation, depressurization, and chemical activation [Moridis et al., 2009, 2011; Park et al., 2006; Lee
et al., 2003]. Currently, depressurization is deemed the most mature approach. Consequently, significant
research and development effort has been directed toward assessing the potential of depressurization as a
primary driving force for natural gas production from gas hydrate reservoirs. Recent field trials, onshore
below the Alaskan permafrost and in the Nankai Trough offshore Japan were both essentially depressuriza-
tion tests; the Japanese test used only depressurization [Yamamoto, 2013, 2015; David, 2013], while, the
Alaskan test was combined with N2:CO2 injection [Anderson et al., 2014; Schoderbek et al., 2013].

In the earlier gas production studies, several mathematical models [e.g., Tsypkin, 1991; Ahmadi et al., 2004;
Yousif, 1991; Sun et al., 2005; Liu and Flemings, 2007; Moridis, 2003; Moridis et al., 2007] and numerical
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simulators (e.g., MH21-HYDRES Kurihara et al. [2009], STOMP-HYD White and McGrail [2006], UMSICHT HyRes
Janicki et al. [2011], and TOUGH-HYDRATE Moridis et al. [2008]) were developed, which focused on hydrate
phase change and fluid flow rather than on the geomechanical behavior. Over the years, it has become
increasingly clear that the geomechanical effects associated with these gas production methods cannot be
ignored. Recent field trials have shown that large deformation and sand production are relevant risks for
natural gas production from gas hydrate-bearing sediments [Schoderbek et al., 2013; Yamamoto, 2013,
2015], and reliable simulation tools are needed for risk assessment and production strategy development.
Coupling between solid deformation and fluid transport lays the foundation for the simulation of the
thermo-hydro-chemo-mechanical behavior of gas hydrate-bearing sediment during gas production, and
the experimental validation of the coupling relationships is extremely important for adding certainty to pre-
dictive simulation of production scenarios and sediment mechanical behavior in general. Several mathe-
matical and numerical tools [e.g., Klar et al., 2010; Kimoto et al., 2010; Rutqvist, 2011; Hyodo et al., 2014;
Gupta et al., 2015] have since been developed to study gas production in gas hydrate reservoirs in a cou-
pled thermo-chemo-hydro-geomechanical framework.

In a typical gas hydrate reservoir, the structure of the sediment is expected to change due to two distinct
effects: (1) the changing hydrate saturation, and (2) the sediment deformation. What complicates the matter
further is that the hydrate provides additional strength to the sediment through a cementation-like effect,
thereby, effectively coupling the two inputs; hydrate saturation, and sediment deformation. For any detailed
hydro-geomechanical description of the gas production from gas hydrate-bearing sediments, it is impera-
tive to analyze how the transport processes (i.e., flow and chemical processes) would respond to any given
geomechanical input. As can be expected, this is a rather challenging task due to the complexity of the
interactions. In our model, we simplify the mathematical description of the coupled hydro-geomechanical
processes by conceptualizing that the model can be decomposed into two distinct model blocks: transport-
block and geomechanics-block, with the coupling between the two manifesting as changes in properties of
each model block (see Figure 1). The transport-block solves for the hydrate phase change and the noniso-
thermal, two-phase, two-component flow of water and methane gas, while the geomechanics-block solves
for the sediment displacements. This decomposition is based on the simplifying assumption that the soil
grains constitute the skeleton of the porous matrix, while the gas hydrate enhances the mechanical proper-
ties of this skeleton without actively bearing the load. The relative deformation of the gas hydrate phase
with respect to the soil skeleton is ignored. This assumption allows us to distinguish between the total
porosity and the apparent porosity. The total porosity characterizes the total pore volume, i.e., the volume
not occupied by the soil grains, while the apparent porosity characterizes the actual pore volume which is
available for the fluid flow. The deformation of the hydrate-bearing sediment directly affects only the total
porosity. The evolution of the actual or apparent porosity field is then modeled by scaling the total porosity
with functions of hydrate saturation through simple geometric arguments. To make the physical meaning
clear, the apparent porosity is the actual measured quantity, while the total porosity is a mathematical con-
struct which allows us to isolate the effects of sediment deformation from those of hydrate phase change.
We also assume that those properties of the transport-block which depend on the sediment structure (i.e.,
hydraulic properties like permeability, capillary pressure, specific surface area, tortuosity, etc.) can be mod-
eled as a multiplicative decomposition of functions of total porosity and hydrate saturation. In effect, with
these simplifications, we can describe all feedback from geomechanics-block to the transport-block through
a single transfer variable: total porosity, and this forms a central feature of our coupling concept.

Figure 1. Coupling concept.
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In this study, through numerical simulation of a highly controlled high-pressure triaxial experiment com-
bined with methane hydrate formation and dissociation, we aim to establish whether this coupling concept
is effective in capturing the overall impact of geomechanics on the gas production behavior.

To be able to test the coupling with confidence, there are two important prerequisites: (1) a well-tested
model for the transport-block, and (2) a good enough estimation of the displacement field. The validation
of the transport-block in our hydrate reservoir model was performed in our earlier study [Gupta et al., 2015].
For the second prerequisite, however, we require a suitable constitutive model for describing the stress-
strain response of the hydrate-bearing sediment. A number of nonlinear elastic [e.g., Yu et al., 2011; Miyazaki
et al., 2011a,], elastoplastic [e.g., Klar et al., 2010; Uchida et al., 2012; Sun et al., 2015; Lin et al., 2015], and elas-
toviscoplastic [e.g. Kimoto et al., 2010] constitutive models have been proposed in the recent years to model
the geomechanical behavior of gas hydrate-bearing sediments. The stress strain relation in these models is
quite complex. Variationally consistent formulations result in nonlinear and nonsmooth inequality settings.
These can be reformulated in terms of nonlinear complementarity functions to which semismooth Newton
algorithms as iterative solvers can be applied, which converge locally. To enlarge the local convergence
radius, suitable regularization and damping strategies can be designed [Hager and Wohlmuth, 2009, 2010].
Only in special situations existence and uniqueness is given, and often, only local existence is guaranteed
and path dependent solutions exist. We refer to Mielke [2004, 2009] and the references therein for existence
results at finite strain. However, none of these results can be directly applied to our setting since we have a
fully coupled hydrate system involving more nonlinearities in the bidirectional couplings. Additionally, the
constraints of the system involve inequalities which are nonlinear and nonsmooth, leading to a model with
a large number of parameters which often makes model calibration challenging and unreliable. To the best
of our knowledge, none of these models have been validated in coupled hydro-geomechanical settings in
the context of gas production from gas hydrate reservoirs, and have a large uncertainty associated with
their predictive capabilities in highly dynamic conditions. In this study, it is of particular interest to reduce
the complexity of the geomechanics-block as much as possible in order to reduce the uncertainty associ-
ated with the choice of a constitutive model. We, therefore, chose a uniquely invertible linear-elastic consti-
tutive model in the geomechanics-block of our hydrate reservoir model. We account for the stiffening
effect due to gas hydrates by parameterizing the Young’s modulus as a function of hydrate saturation Sh

[Santamarina and Ruppel, 2010]. We also account for material compressibility with respect to hydrostatic
pressure. The pressure dependence of compressibility and the Sh dependence of Lames parameters intro-
duces a weak nonlinearity in the geomechanics-block. The numerical implementation of the poroelastic
model and the transport-to-geomechanics coupling in our hydrate reservoir model was also validated in
our earlier study [Gupta et al., 2015].

In general, poroelasticity is not a realistic model for the geomechanical description of cemented granular
materials where the stress-strain response is typically nonlinear, and the shear-volumetric coupling (dilat-
ancy) is of particular importance. Therefore, in order to validate our coupling concept within the constraints
stated above, we control our triaxial experiment very carefully in a way that ensures that the assumptions
of poroelasticity remain valid throughout the periods of interest for numerical simulation.

2. Hydrate Reservoir Model

2.1. Mathematical Model
Our model considers kinetic hydrate phase change and nonisothermal, multiphase, multicomponent fluid
flow through poroelastic porous medium. The model assumes that the porous medium is composed of
three components: CH4, H2O, and methane hydrate (CH4 � NhH2O), which are present in three distinct phases:
gaseous, aqueous, and solid. The gaseous phase comprises of methane gas and water vapor. The aqueous
phase comprises of water and dissolved methane. The solid phase comprises of pure methane hydrate and
sand grains. The sand grains are assumed to form a material continuum which provides the skeletal struc-
ture to the porous medium. We shall refer to this as solid matrix. The aqueous, gaseous, and hydrate phases
exist in the void spaces of this solid matrix (see Figure 2).

We assume that the hydrate cements the sand grains in the mechanical sense (i.e., without forming any
chemical bonds), such that the sand and hydrate together form a composite solid matrix. The relative defor-
mation of the gas hydrate phase with respect to the soil skeleton is ignored. This assumption allows us to
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write a single momentum balance equation for the composite solid phase, instead of separate ones for the
sand and the hydrate phases each. To describe the mechanical behavior of the composite solid matrix, we
make a further simplifying assumption that the sand grains form the primary load-bearing structure, while
the hydrates enhance the mechanical strength and stiffness of this structure without bearing any load
themselves. This assumption is also adopted even after hydrate-bearing soil is loaded during depressuriza-
tion. Because of this, the constitutive law does not consider stress-relaxation term that accounts for the
release of load that has been carried by hydrates as introduced by others [Klar et al., 2010; Uchida et al.,
2012].

Figure 2. Pore-scale to REV-scale.
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We decompose the mathematical model into transport and geomechanics blocks, and isolate the effects of
hydrate phase change and ground deformation through the introduction of the variable total porosity. This
is justified based on the above assumption that the soil grains constitute the primary load-bearing skeleton
of the porous matrix, such that deformation of the hydrate-bearing sediment directly affects only the total
porosity. This assumption allows us to solve for the mass balance of soil and hydrates separately, thus con-
veniently separating hydrate phase change kinetics from sediment deformation. If, for example, we do not
make this assumption, then we would have to solve for the mass balance of soil and hydrate as a single
composite phase leading to a strong coupling between hydrate phase change and geomechanics. The
model decomposition would not be straightforward in this case, and the evolution of porosity field would
be very complex, making the description of the fluid flow and the evolution of the hydraulic properties also
significantly more challenging. One clear advantage of this simplification is that it gives a very modular
structure to the model, with each model-block operating independently, and communicating with each
other through coupling relationships which are neatly resolved with respect to the independent output var-
iables of each model-block (see Figure 1). Another important advantage is that the model decomposition
allows us to use multirate time-stepping schemes, as discussed in Gupta et al. [2016], which can significantly
speed up the calculation, especially for 3-D problems.

The mathematical model is described in detail in Gupta et al. [2015]. A summary of the governing equations
and the constitutive relationships are given in Table 1. The phases occupying the pore space (gaseous,
aqueous, hydrate) are denoted by ‘‘b’’5g;w; h respectively, the mobile phases (gaseous and aqueous) are
denoted by ‘‘a’’ 5g;w, and the mobile molecular components are denoted by ‘‘j’’ 5CH4;H2O. The solid
matrix is designated with the subscript ‘‘s.’’ The sand 1 hydrate composite solid matrix is designated with
the subscript ‘‘sh.’’ ‘‘c’’ is used to denote all phases, i.e., c5g;w; h; and s.

2.2. Primary Variables
The mathematical model consists of the following six governing equations: the mass balance equations (1)–
(4), the momentum balance equation (7) for the composite-solid, and the energy balance equation (8). The
momentum balance equations (5) and (6) for the mobile phases a5g;w give the a-phase velocities directly,
and are thus absorbed in the mass and energy balance equations. We chose the following set of variables
as the primary variables: the gas phase pressure Pg, the aqueous phase saturation Sw, the hydrate phase sat-
uration Sh, the temperature T, the total-porosity /, and, the composite-matrix displacement u. All other vari-
ables can be derived (explicitly or implicitly) from this set of variables using the closure and constitutive
relationships.

2.3. Solution Strategy
We use an iteratively coupled solution strategy. The mathematical model is decomposed into three
parts:

1. transport-block (Ff), comprised of the mass balance equations for CH4, H2O, and Hydrate, and the energy
balance equation,

2. geomechanical-block (Fg), comprised of the momentum balance equation for composite solid phase,
and

3. porosity-equation (F/), comprised of the mass balance equation for the sand phase.

Ff is solved for the variables Pg, Sw, Sh, and T, Fg is solved for displacements u, and F/ is solved for total
porosity /. Ff and F/ are spatially discretized using a fully upwinded cell-centered finite volume method.
Orthogonal grids aligned with the principal axes are defined and a control-volume formulation with two-
point flux approximation (TPFA) is used. Fg is discretized using Galerkin finite element (FEM) method
defined on Q1 elements. An implicit Euler time-stepping scheme is used for marching forward in time. The
solution for a given time step involves two iterative loops, the inner loop and the outer loop. The inner loop
uses Newton’s method and SuperLU [Demmel et al., 1999] linear solver to solve each of Ff; Fg, and F/, thus
taking care of the decoupled solution. The outer loop reintroduces the coupling between Ff; Fg, and F/

through a block Gauss Seidel iterative scheme.

The numerical scheme is implemented in the C11 based DUNE-PDELab framework [Dedner et al., 2012],
and is capable of solving problems in 1-D, 2-D, and 3-D domains.
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Table 1. Summary of the Mathematical Model

Governing Equations Equation No.

Mass balance for each
mobile component
j5CH4;H2O

X
a

@t / qa vj
a Sa

� �� �
1
X

a

r � / qa vj
a Sa va;t

� �� �
5
X

a

r � / Sa Jj
a
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1 _gj

1
X

a

_qj
ma

1 _S
j
ext

(1),(2)

Mass balance for
hydrate phase

@t / qh Shð Þ1r � / qh Sh vh;t
� �

5 _gh (3)

Mass balance for sand
phase

@t ð12/Þ qs½ �1r � ð12/Þ qs vsð Þ5 0 (4)

Momentum balance
for mobile phases
a5g;w

va52K kra
la
rPa2qa gð Þ (Darcy’s Law) (5),(6)

Momentum balance
for composite-solid

r � ~r1qm g50 (7)
where, qm is the bulk density given by qm5

X
b

/ Sb qb

� �
1 12/ð Þqs

Energy balance
@t 12/ð Þqs us1

X
b

/ Sb qb ub
� �" #

1
X

a

r � / qa vj
a Sa va;t ha
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5r � kc

effrT 1 _Q h 1
X

a

_qj
ma
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� � (8)

where,

kc
eff 5 12/ð Þkc

s 1
X

a

X
j

/ vj
a Sa kc

a

� �
1/ Sh kc

h

ha5

ðT

Tref

Cpa dT

uc5

ðT

Tref

Cvc dT

Closure relationships
Relationship between

phase pressures
Pg2Pw5Pc Sweð Þ (9)

Summation
relationships

X
b

Sb51 (10)

8a:
X

j

vj
a51 (11),(12)

Constitutive relationships
1. Vapor-liquid equilibrium

Using Henry’s Law and Raoult’s Law for ideal gas-liquid solutions,
For dissolved

methane:
vCH4

w 5HðTÞ vCH4
g Pg

For water vapor: vH2
g O5vH2 O

w

Psat
H2 OðTÞ

Pg

where, H(T) is the Henry’s constant for methane dissolved in water calculated using the empirical relation from
NIST database [Sander, 2015], and Psat

H2 O is saturated water vapor pressure calculated using Antoine’s equation.
2. Diffusive mass-transfer flux

Fick’s law: Jj
a52sDa qarvj

a

� �
where, Da is the binary diffusion coefficient. Dg is estimated using the empirical relationship proposed by Stattery

and Bird [1958] for low density binary CH42H2O system. Dw is estimated using the Wilke-Chang correlation
[Himmelblau, 1964] for dilute associated liquid mixtures is used.

3. Hydrate phase change kinetics
Nonequilibrium phase change of methane hydrate is modeled by the Kim-Bishnoi kinetic model [Kim et al., 1987].
Gas generation rate _gCH4 5kreac MCH4 Ars Pe2fg

� �
(13)

where, kreac is the rate of kinetic phase-change, Pe is the hydrate equilibrium pressure, modeled as [Kamath, 1984],

Pe5A1 exp A22 A3
T

� �
, (14)

fg is the gas fugacity calculated using the Peng-Robinson EoS for methane gas, and, Ars is the specific reaction sur-
face area modeled as Ars5Cr As , where, As is the total surface area and Cr is the ratio of the active reaction sur-
face to the total surface area. As and Cr are modeled using the correlations proposed by Yousif [1991] and Sun
and Mohanty [2006], respectively.

Water generation rate _gH2 O
5 _g CH4 NHyd

MH2 O

MCH4

(15)

Hydrate consumption
rate

2 _gHyd
5 _gCH4 MHyd

MCH4

(16)

Heat of hydrate
dissociation

_Qh5
2 _g Hyd

MHyd
B12 B2

T

� � (17)

4. Properties of the fluid-matrix interaction
Capillary pressure Pc5Pc0 � f Pc

Sh
Shð Þ � f Pc

/ /ð Þ (18)

where, Pc0 is capillary pressure for undeformed, unhydrated solid matrix, given by Brooks-Corey relationship,

Pc05Pentry S 21=kBC
we , (19)

and, f Pc
Sh

Shð Þ and f Pc
/ /ð Þ are scaling factors to account for the effects of Sh [Rockhold et al., 2002] and / (Civan’s

power law correlation Civan [2000]) respectively,

f Pc
Sh

5 12Shð Þ2
3kBC 21

3kBC and, f Pc
/ 5

/0
/

12/
12/0

� �2 (20)

Intrinsic permeability K5K0 � f K
Sh

Shð Þ � f K
/ /ð Þ (21)
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3. Material and Methods

We performed a controlled triaxial volumetric strain test on a sand sample in which methane hydrate was
first formed under controlled effective stress and then dissociated via depressurization under controlled
total stress. Gas hydrate in our experiment was initially formed by pressurizing partially water-saturated
sand with gaseous methane to reach a gas hydrate saturation of 0.4, and remaining methane gas was
replaced with seawater before the sample was depressurized stepwise. Confining and axial loads in the tri-
axial testing were applied isotropically and were carefully controlled to keep the deformation of the sample
small and well within the assumptions of poroelasticity.

3.1. Experimental Setup and Components
Experiments were carried out in the custom-made high-pressure apparatus NESSI (Natural Environment
Simulator for Subseafloor Interactions) [Deusner et al., 2012], which is equipped with a triaxial cell
mounted in a 40 L stainless steel vessel (APS GmbH Wille Geotechnik, Rosdorf, Germany). The sample
sleeve is made from FKM, other wetted parts of the setup are made of stainless steel. Salt water medium
was stored in reservoir bottles (DURAN, Wertheim, Germany) prior to use in experiments, and the seawa-
ter medium was pressurized in an additional pressure vessel (Parr Instrument GmbH, Frankfurt, Ger-
many) to allow fast transfer into the sample vessel. Fluid pressure in the sample vessel was adjusted with
a back-pressure regulator valve (TESCOM Europe, Selmsdorf, Germany). Experiments were carried out in
upflow mode with injection of CH4 gas and seawater medium at the bottom of the sample prior to and
after gas hydrate formation (Figure 3a), respectively, and fluid discharge at the top of the sample during
depressurization (Figure 3b). Axial and confining stresses, and the sample volume changes were moni-
tored throughout the experimental period. Axial and confining stresses were controlled using high-
precision hydraulic pumps and actuators (VPC 400, APS GmbH Wille Geotechnik, Rosdorf, Germany), and
changes in hydraulic fluid volumes were converted to calculate sample volume changes. Pore pressure
was measured in the influent and the effluent fluid streams close to the sample top and bottom. The
experiment was carried out under constant temperature conditions. Temperature control was achieved
with a thermostat system (T1200, Lauda, Lauda-K€onigshofen, Germany). Produced gas mass flow was
analyzed with mass flow controllers (EL FLOW, Bronkhorst, Kamen, Germany). For control purposes, bulk
effluent fluids were also collected inside 100 L gas tight TEDLAR sampling bags (CEL Scientific, Santa Fe
Springs CA, USA). The sampling bags were mounted inside water filled containers. After expansion of the
effluent fluids at atmospheric pressure, the overall volume was measured as volume of water displaced
from these containers.

Table 1. (continued)

Governing Equations Equation No.

where, K0 is intrinsic permeability of the undeformed, unhydrated solid matrix, and, f K
Sh

Shð Þ and f K
/ /ð Þ are scaling

factors to account for the effects of Sh [Rockhold et al., 2002] and / [Civan, 2000] respectively,

f K
Sh

5 12Shð Þ
19
6 and, f K

/ 5 /
/0

f Pc
/

� �22 (22)

Relative
permeabilities

Relative permeabilities of the mobile phases are modeled using Brooks-Corey model in conjunction with the
Burdine theorem [Burdine, 1953], as

krw5S
213kBC

kBC
we and, krg5 12Sweð Þ2 12S

21kBC
kBC

we

� 	
where, Swe5 Sw

12Sh

(23)

Hydraulic tortuosity s5/n where, 1 � n � 3 (24)
5. Poro-elasticity

Effective stress
principle

Effective stress concept introduced by Terzaghi [1925] and modified by Biot [1941] is used.

~r5~r 01abiot
Sg Pg 1Sw Pw

Sg 1Sw

� �
~I (25)

where, ~r is the total stress acting on the bulk porous medium, and ~r 0 is the effective stress acting on the
composite skeleton.

abiot is the Biot-Willis constant [Biot and Willis, 1957].
Linear elastic law ~r 052 Gsh ~�1kshðtr ~�Þ~I (26)

where, ~� is the linearized strain, given by ~�5 1
2 ru1rT uð Þ (27)

and, Gsh and ksh are the Lame’s parameters.
Young’s modulus Young’s modulus Esh is modeled using the parameterization proposed by Santamarina and Ruppel [2010]:

Esh5Es1Sc
h Eh

where, Es and Eh are the Young’s modulus of hydrate-free sand and hydrate, respectively. (28)
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3.2. Sample Preparation and Mounting
The sediment sample was prepared from quartz sand (initial sample porosity: 0.35, grain size: 0:120:6 mm,
G20TEAS, Schlingmeier, Schw€ulper, Germany), which was mixed with deionized water to achieve a final
water saturation of 0.4 relative to the initial sample porosity. The partially water-saturated and thoroughly

a) Gas hydrate formation

b) Depressurization and gas production

Figure 3. Simplified flow schemes for relevant period. (a) Gas hydrate formation. (b) Depressurization and gas production.
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homogenized sediment was filled into the
triaxial sample cell to obtain final sample
dimensions of 360 mm in height and
80 mm in diameter. The sample geometry
was assured using a sample forming
device. The sample was cooled to 28C after
the triaxial cell was mounted inside the
pressure vessel. Initial water permeability
of the gas hydrate-free sediment was esti-
mated to be 5310210 m2.

3.3. Experimental Procedure
3.3.1. Gas Hydrate Formation
Prior to the gas hydrate formation, the
partially water-saturated sediment sam-
ple was isotropically consolidated to
1 MPa effective stress under drained
conditions. It should be noted that the
apparent effective stress is monitored
and controlled as differential pressure

between the confining hydraulic fluid pressure of the reactor and the gas pressure in the sample
pore space. Measurements and control algorithms do not take into account the changes in effective
stress due to changes in water saturation and capillary pressure. Thus, only the apparent effective
stress is directly accessible from experimental procedures. The sample was flushed with CH4 gas to
replace air with methane. The sample was, subsequently, pressurized with CH4 gas to approximately
12.5 MPa (Figure 3a). During pressurization with CH4 gas and throughout the overall gas hydrate for-
mation period, formation stress condition of 1 MPa effective stress were maintained using an auto-
mated control algorithm. The formation process was continuously monitored by logging the CH4 gas
pressure. Mass balances and volume saturations were calculated based on CH4 gas pressure and initial
mass and volume values. Gas hydrate formation was terminated after 1.84 mol of CH4-hydrate had been
formed after approximately 6 days, corresponding to CH4-hydrate saturation of 0.39. The sample was
cooled to 258C and stress control was switched to constant total isotropic stress control at approximately
9 MPa before the sample pore space was depressurized to atmospheric pressure and the remaining CH4

gas in the pore space was released. System repressurization and water saturation of the pore space was
achieved by instant filling and repressurization with pre-cooled 218C saltwater medium according to the
seawater composition. Hydrate dissociation during the brief period of depressurization was minimized by
taking advantage of the anomalous self-preservation effect, which reaches an optimum close to the cho-
sen temperature [Stern et al., 2003]. After completion of the gas-water fluid exchange, the sample temper-
ature was readjusted to 28C.
3.3.2. Depressurization and Gas Production
The sample pore space was depressurized and gas produced by stepwise decrease of back pressure at con-
stant isotropic total stress (Figure 3b). Overall fluid production (water and CH4 gas) was monitored after
depressurization at atmospheric pressure after temperature equilibration.

4. Numerical Simulation

The overall experiment was carried out in four steps, viz., (1) preconsolidation, (2) gas hydrate formation, (3)
pore-fluid exchange, and (4) depressurization, as described in section 3. During steps 1 and 2, the sample was
maintained under a defined effective loading with the confining and the axial stresses were controlled to
remain 10 bar above the pore pressure. During steps 3 and 4, the total isotropic stress was controlled to
remain at a constant level (see Figure 4). The experiment was performed over a total period of about 16.8
days. The periods of interest for this simulation are: (1) from Day – 3 to Day – 10, corresponding to gas
hydrate formation, and (2) from Day-12:8 to Day-13:8, corresponding to depressurization and gas produc-
tion. We simulate both of these periods separately.

Figure 4. Overview of the measured pressure and stresses over time.
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4.1. Computational Domain
Assuming that the sand sample is axially symmetric, a 2-D radial plane of dimensions 360 mm 3 40 mm is
chosen as the computational domain. The dimensions correspond to the physical size of the sample. The
domain is discretized into 72 3 8 cells.

4.2. Test-setting
4.2.1. Gas Hydrate Formation Period
The schematic of the hydrate formation test is shown in Figure 5. The schematic also shows the initial and
boundary conditions. The simulation is run until tend 5 604,800 s (i.e., 7 days) using a maximum time step
size of 120 s.
4.2.2. Depressurization and Gas Production Period
The schematic of the depressurization test is shown in Figure 6. The schematic also shows the initial and
boundary conditions. The simulation is run until tend 5 86,400 s (i.e., 1 day) using a maximum time step size
of 120 s.

4.3. Properties and Parameters
The material properties and model parameters chosen for this simulation are listed in Table 2. The values of
the thermal conductivities, specific heat capacities, dynamic viscosities, and densities for each phase are
chosen from standard literature, the references to which are included in the table. The Brooks-Corey param-
eters are chosen from the range of typically expected values for sand samples.

Table 2. Material Properties and Model Parameters

Thermal Conductivities Ref.
kc

g 20:8863102210:24231023T20:69931026T 210:12231028T 3 W�m21 � K21 Roder [1985]
kc

w 0:3834 lnðTÞ21:581 W�m21 � K21 Wagner and Kretzschmar [2008]
kc

h 2.1 W�m21 � K21 Sloan and Koh [2007]
kc

s 1.9 W�m21 � K21 Esmaeilzadeh et al. [2008]
Specific heat capacities

Cpg DCpres
g ð123813:13T17:931024T 2

26:8631027T 3Þ
J�kg21 � K21 Peng and Robinson [1976];

Esmaeilzadeh et al. [2008]
Cvg Cpg1RCH4 J�kg21 � K21

Cpw 4186 J�kg21 � K21 Wagner and Kretzschmar [2008]

Cvw Cpw 1RH2 O J�kg21 � K21

Cvh 2700 J�kg21 � K21 Sloan and Koh [2007]

Cvs 800 J�kg21 � K21 Esmaeilzadeh et al. [2008]

Dynamic viscosities
lg 10:431026 273:151162

T1162

� �
T

273:15

� �1:5 Pa�s Friend et al. [1989]

lw 0:001792 exp ½21:9424:80 273:15
T

� �
16:74 273:15

T

� �2� Pa�s Wagner and Kretzschmar [2008]

Densities
qg

Pg

zRg T
kg�m23 Peng and Robinson [1976]

qw vapor: 0:0022 Pg

T kg�m23 Wagner and Kretzschmar [2008]
liquid: 1000 kg�m23 Wagner and Kretzschmar [2008]

qh 900 kg�m23 Sloan and Koh [2007]
qs 2100 kg�m23

Hydraulic properties
kBC 1.2 Helmig [2016]
Pentry 50 kPa Helmig [2016]

Hydrate kinetics
kreac Formation: 0:2310211 mol�m22�

Dissociation: 3:2310210 Pa21 � s21

NHyd 5.75
Pe;0 A15106; A2538:98; A358533:8 Pa Kamath and Holder [1987]
_Qh B1556599; B2516:744 W �m23 Esmaeilzadeh et al. [2008]

Poroelasticity parameters
abiot 0.8 Verruijt [2008]
msh 0.15 Miyazaki et al. [2011b]

Formation dissociation
Es 32 160 MPa
Eh 250 360 MPa
c 1 3
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The most important properties and parameters relevant to the simulation of the experimental data arise
from (1) the hydrate-phase-change kinetics, and (2) the poroelastic behavior of the hydrate-bearing
sediments.

Figure 5. Test setting for the gas hydrate formation period. (a) The sample and the initial conditions, and (b) the 2-D computational
domain and the boundary conditions.

Figure 6. Test setting for the depressurization and gas production period. (a) The sample and the initial conditions, and (b) the 2-D com-
putational domain and the boundary conditions.
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The hydrate phase-change is modeled by
equations (13), (15)–(17). The hydrate-
phase equilibrium pressure Pe in equation
(13) is modeled in accordance with the
findings of Kamath [1984]. For hydrates in
pure water, the equilibrium pressure
depends only on the temperature. How-
ever, for hydrates in sea water (which is
the case for our sample), the equilibrium
pressure also depends on the salinity, as
shown in Figure 7. We account for the
effect of salinity on the hydrate equilib-
rium pressure through linear curve fitting
on dissociation pressure versus salinity
curve.

The reaction surface area, Ars, in equation
(13), describes the surface area available
for the kinetic-reaction, and puts a limit
on the mass transfer during hydrate for-
mation and dissociation. As the hydrate
saturation in the pore-space increases, the

availability of free surface for hydrate formation to occur decreases, and vice versa. Additionally, for hydrate
formation, availability of both gas and water in sufficient quantities in the pore-space is a necessary condi-
tion. This behavior of Ars is modeled using the parameterization proposed by Sun and Mohanty [2006].

The rate of reaction, kreac, is a free parameter in our simulation which is used to calibrate the hydrate-
kinetics model with respect to the experimental data. In the table we can see that the values of kreac, for
both hydrate formation as well as dissociation periods, lie well within the range reported in the literature.

The poroelastic behavior of the hydrate-bearing sediment is characterized by three parameters, viz., Biot’s
constant abiot, Poisson ratio msh, and Young’s modulus Esh. Biot’s constant is chosen from a range of typically
expected values. The Poisson’s ratio is assumed to be a constant independent of the hydrate saturation fol-
lowing the experimental studies by Miyazaki et al. [2011b]; Lee et al. [2010a]. The Young’s modulus is mod-
eled using the parameterization proposed by Santamarina and Ruppel [2010], given by equation (28). The
Young’s modulus Esh is a free parameter which is used to calibrate the poroelasticity model with respect to
the experimental data.

4.4. Simulation Results
As discussed above, we essentially chose one free parameter in kinetics, i.e., kreac, and one free parameter in
linear-elasticity, which is Esh, to calibrate the kinetic and the mechanical models separately. With these cali-
brated models, we simulate numerically the coupled (thermo-chemo)-hydro-geomechanical response of
the sand sample in triaxial test-setting using our gas hydrate reservoir model. The numerical results,
together with the corresponding experimental data, are plotted in Figure 9 for the gas hydrate formation
period, and in Figure 8 for the hydrate dissociation period.

In the gas hydrate formation period, methane gas in the free pore space is continuously consumed and
average bulk gas pressure is decreased (see Figure 9a). Clearly, the rate of gas hydrate formation is not con-
stant. In the beginning, after the sample is pressurized at constant isotropic effective stress, gas hydrate for-
mation from free methane gas and pore water is fast, but the rate of formation steadily decreases due to
mass transfer limitations and shrinking reaction surfaces. In accordance to that, after pressurization the gas
hydrate saturation increases rapidly and the water saturation decreases proportionally (Figure 9b). Note
that the reported values of phase saturations are calculated based on initial values and gas pressure meas-
urements. The volumetric strain shows a fast positive response during early gas hydrate formation at rela-
tively low gas hydrate saturations, and sample stiffness increases at higher gas hydrate saturations (Figure 9c).
The fast volumetric strain response that occurs at constant apparent effective stress results from changes in

Figure 7. Effect of salinity on hydrate stability curve (at Tbath528C).
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Figure 8. Comparison of the simulation results with the experimental results for the depressurization and gas production period.
(a) Gas pressure Pg at depressurization boundary (at z 5 0). (b) Cumulative gas production over time. (c) Total volumetric strain in the
sample over time. Note: ‘‘1’’ value indicates compression. (d) Temperature in the sample over time.
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water saturation and, thus, capillary pressure, which is not monitored experimentally, but considered in the
numerical simulation.

During the gas hydrate dissociation period, pressure is decreased step-wise until methane hydrates become
unstable at the respective P-/T-conditions. Figure 8a shows the numerically computed gas phase pressure in the

Figure 9. Comparison of the simulation results with the experimental results for the gas hydrate formation period. (a) Average gas pres-
sure Pg in the domain over time. (b) Average Sw and Sh in the domain over time. (c) Total volumetric strain in the sample over time. Note:
‘‘1’’ value indicates compression.
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sample. The gas production is plotted in Figure 8b. With the onset of gas hydrate dissociation after reaching the
hydrate stability boundary, pressure is maintained at a relatively constant level because hydrate dissociation and
gas production equilibrate dependent on experimental and technical conditions.

Volumetric strain during gas hydrate dissociation, plotted in Figure 8c, is dependent on effective stress and gas
hydrate saturation through the sample stiffness, which decreases with the ongoing gas hydrate dissociation and
gas production.

Figure 8d shows the numerically computed temperature profile of the sample during dissociation. The model
predicts that subcooling from gas hydrate dissociation is quite small, which is expected since the experiment
was performed under isothermal temperature control.

5. Discussion and Outlook

In our combined experimental-numerical study, we consider dynamic gas hydrate formation and dissociation
in sandy sediment under isotropic compressive loading and show that a simplified coupling concept is capa-
ble of reproducing the essential bulk physical behavior, including volumetric strain and gas production.

The assumption that the soil is the primary load-bearing constituent is central to our model concept. This
assumption is most reasonable for the pore-filling hydrates with low saturations where the hydrates form
by nucleating on sediment grain boundaries and grow freely into pore spaces without entering the pore-
throats. For hydrates formed in partially water saturated sands, as is the case in our experiment, it is well
known that the hydrates nucleate preferentially in the pore-throats and contribute to the sediment stiffness
already at low gas hydrate saturations. For hydrate saturations between 0:25 and 0:4, the hydrates are
expected to transition toward a load-bearing habit [Waite et al., 2009]. In our experiment, we obtain a maxi-
mum hydrate saturation of� 0:4. Our numerical results suggest that in well-consolidated sands, our assumption
of soil forming the primary load-bearing skeleton remains valid even for hydrate saturations which lie in the
transition zone between pore-filling and load-bearing habits. We hypothesize that this is because in well-consol-
idated sands, the deformation of hydrates relative to the soil skeleton is quite small in the transition zone. How-
ever, for higher hydrate saturations where hydrates become fully load-bearing, we expect strong limitations to
this coupling concept. Furthermore, for massive hydrates with saturations exceeding 0.8, we even expect that
the hydrate and the soil phases can no longer be modeled as a single composite phase, and new model con-
cepts are necessary to consistently describe the interface conditions between the hydrate and the soil phase
boundaries.

Our experiment was focused on analyzing deformation under variable gas hydrate saturation, and a wide
range of effective stress loading, controlled between 1 and 9 MPa. To limit the bulk sample deformation
and relative grain-to-grain movement only isotropic stresses were applied. Gas hydrates were formed after
isotropic consolidation to 1 MPa using the excess-gas-method [Chong et al., 2016; Choi et al., 2014; Jin et al.,
2012; Priest et al., 2009]. After gas hydrate formation, the remaining gas was fully replaced with seawater.
After gas-seawater replacement, the sample was equilibrated for approximately 5 days to allow for gas
hydrate alteration before the sample was depressurized. A poroelasticity framework was chosen for describ-
ing the mechanical behavior of the sediment in order to minimize the uncertainties arising from unknown
mechanical behavior of gas hydrate-bearing sediments. The deliberate choice of a simple constitutive law
with a limited number of parameters, in contrast to using more complex elastoplastic modeling approaches,
is justified by the design of the experimental test case. It is important to note that, within the constraints of
small-strain deformations and pore-filling hydrates, the coupling concept presented here does not depend
on the stress-strain constitutive law as such. The concept of poroelasticity is, therefore, sufficient to test the
validity of our coupling concept provided that the design of the experiment ensures that the sample defor-
mations remain small and well within elastic limit. For large deformations, the coupling concept is not vali-
dated so far.

To approximate our experimental data, we treated the kinetic term kreac in the transport block as a fitting
parameter. Similarly, we used fitting of the stiffness model parameters to match the experimental volumet-
ric strain behavior. We chose a functional dependence of composite modulus Esh on hydrate saturation Sh

as proposed by Santamarina and Ruppel [2010] and other authors [Rutqvist et al., 2009; Klar et al., 2010,
2013]. Knowledge about mechanical stiffness and strength properties of gas hydrate-bearing sediments is

Geochemistry, Geophysics, Geosystems 10.1002/2017GC006901

GUPTA ET AL. TESTING A HYDRATE RESERVOIR MODEL 3433



still limited. Experimental analysis of mechanical properties is problematic, because it is equally important
to control effective stress conditions and phase saturations, and there are no test procedures available to
guarantee homogeneous gas hydrate saturations and full water saturation. Further, mechanical properties
are strongly dependent on gas hydrate-sediment fabrics and formation procedures, and effects from
dynamic changes in gas hydrate saturation, distributions, and alterations of gas hydrate-sediment fabrics
needs further investigation and development of novel test procedures [Deusner et al., 2016] particularly for
dynamic test scenarios. Overall, the calibrated values for Esh from our study are in accordance with earlier
experimental and numerical studies, which reported Young’s modulus or secant stiffness in a wide range of
approximately 100–400 MPa for relevant gas hydrate concentrations [Brugada et al., 2010; Miyazaki et al.,
2010; Lee et al., 2010b; Yun et al., 2007]. Although the composite modulus Esh was treated as a free fitting
parameter and initialized based on apparent stress-strain behavior during the intervals of known and con-
stant gas hydrate saturations, physically meaningful values for individual modulii Es and Eh were obtained.
Es for the sediment without gas hydrate reflected stiffness behavior typical for loose soil during gas hydrate
formation while the sample was normally consolidated at low effective stress. The results from the numeri-
cal simulation suggest that an apparent step-like increase in bulk composite stiffness (i.e., the change of
apparent Esh from 132 to 183 MPa) occurred during the time interval between the completion of gas
hydrate formation and the start of depressurization. We assume that this response was caused by the high
transient effective stress and the composite sediment consolidation, which could not be avoided during the
gas-water exchange. In order to accomplish the replacement of gas with water sufficiently fast, and to mini-
mize gas hydrate dissociation during the short time interval of gas-water exchange, the confining stress
instead of the apparent effective stress was controlled at a constant value during gas-water exchange. In fit-
ting the model to the experimental data, we adjusted both Es and Eh rather than constraining the effect of
consolidation to one of the parameters a priori. However, the validity of this assumption needs to be further
investigated using advanced geotechnical and microstructural analyses. Furthermore, it needs to be consid-
ered that the poroelasticity model adopted for testing our coupled numerical simulation scheme does not
explicitly consider effective stress-dependent changes in the modulii Es and Eh, which could also contribute
to the apparent differences in Esh during gas hydrate formation and dissociation periods. In our simulation,
the composite modulus Esh depends almost linearly on Sh during gas hydrate formation, while during the
hydrate dissociation period the dependence of Esh on Sh is smaller. Figure 10 shows the volumetric-strain
plotted over time for the depressurization period for different functional dependences of Esh on Sh (i.e.,
c50:5; 1; 2; 3; 5). Our simulation results indicate that an exponent c 5 3 is a reasonable approximation.
Santamarina and Ruppel [2010] suggest that Sh tends to be raised to a power larger than 1, which reduces
the impact on stiffness at low gas hydrate saturations relative to that for high gas hydrate saturations. Since
gas hydrates formed using the excess-gas-method are predominantly located in the pore throats rather
than in the free pore space, the linear and relatively stronger dependence of Esh on Sh during formation
appears reasonable. The weaker dependence of Esh on gas hydrate saturation during dissociation is also

Figure 10. Volumetric strain curves for different functional dependences of Esh on Sh (i.e., c51; 2; 3; 5) for the depressurization and gas
production period. Note: ‘‘1’’ value indicates compression.
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reasonable, since after exchanging gas with water in the pore space, gas hydrate-sediment fabrics were
allowed to alter, and also during dissociation the grain-scale hydrate-sand structure is necessarily changed.
Thus, our results clearly show that dynamic structural transitions in gas hydrate-bearing sediments during
gas hydrate formation, aging, and dissociation can have substantial effects on sediment mechanical proper-
ties. Further combined experimental-numerical studies with the objective to simulate the geomechanical
effects from such dynamic changes in gas hydrate-sediment fabrics are currently ongoing.
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