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1 Introduction   

Interest in natural gas hydrates has been steadily increasing over the last few decades, with the 

understanding that exploitation of this abundant unconventional source may help meet the ever-

increasing energy demand and assist in reduction of CO2 emission (by replacing coal). Unfortunately, 

conventional technologies for oil and gas exploitation are not fully appropriate for the specific 

exploitation of gas hydrate. Consequently, the technology chain, from exploration through production 

to monitoring, needs to be further developed and adapted to the specific properties and conditions 

associated with gas hydrates, in order to allow for a commercially and environmentally sound 

extraction of gas from gas hydrate deposits. 

Various academic groups and companies within the European region have been heavily involved in 

theoretical and applied research of gas hydrate for more than a decade. To demonstrate this, Fig. 1.1 

shows a selection of leading European institutes that are actively involved in gas hydrate research. A 

significant number of these institutes have been strongly involved in recent worldwide exploitation of 

gas hydrate, which are shown in Fig. 1.2 and summarized in Table 1.1. Despite the state of knowledge, 

no field trials have been carried out so far in European waters.  

MIGRATE (COST action ES1405) aims to pool together expertise of a large number of European 

research groups and industrial players to advance gas-hydrate related activity with the ultimate goal 

of preparing the setting for a field production test in European waters.  

This MIGRATE report presents an overview of current technologies related to gas hydrate exploration 

(Chapter 2), production (Chapter 3) and monitoring (Chapter 4), with an emphasis on European 

activity. This requires covering various activities within different disciplines, all of which contribute to 

the technology development needed for future cost-effective gas production. The report points out 

future research and work areas (Chapter 5) that would bridge existing knowledge gaps, through 

multinational collaboration and interdisciplinary approaches.  

 

Table 1.1: Completed field tests  

Year Location Description 
Duration 

(h) 

Gas 

production 

rate 

(Nm3/h) 

Water 

production 

rate 

(Nm3/h) 

Total gas 

production 

(Nm3) 

Total water 

production 

(Nm3) 

2002 Mallik 5L-38, Canada Thermal stimulation 124 4 --- 470 --- 

2007 Mallik 2L-38, Canada Short pre-test by 

depressurization 

12.5 70 --- 830 20 

2008 Mallik 2L-38, Canada Depressurization 144 60-700 0.2-0.6 13000 --- 

2011 Qilian Mountain, China Depressurization + 

thermal stimulation 

101 1 --- 95 --- 

2012 Prudhoe Bay, Alaska CO2-injection (N2:CO2 

77:23%) by 

depressurization  

936   24000 180 

2013 Nankai Trough, Japan Offshore field test by 

depressurization 

144 840  120000 1100 
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Figure 1.1: Selection of leading European institutes actively involved in gas hydrate research 

 

 

Figure 1.2: Previous production filed test sites 

 

2 Exploration  

2.1 Basin Modeling  

2.1.1 Petroleum Systems modeling and its premises for modeling gas hydrate scenarios 

Gas hydrates are pressure/temperature controlled accumulations of – mostly – methane which occur 

in sediments at relatively shallow depth. Their existence and (distribution) is of interest for the oil and 

gas industry due to two main reasons: while gas hydrate accumulations might become a source of 

energy, they also represent a hazard for drilling and oil/gas transport via pipelines. 

Petroleum systems modeling software – typically simulating generation, expulsion, migration, 

accumulation and hydrocarbon losses in conventional petroleum systems – can also be used to predict 
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the extent of the gas hydrate stability zone (GHSZ) through geologic time and the formation timing and 

amounts of gas hydrates within sediments located in the GHSZ. 

As petroleum generation is a function of temperature and time, thermal history modeling is a primary 

goal of petroleum systems modeling. Pore pressure and overpressure modeling is another inherent 

function required to determine compaction behavior, and therefore widely used for pore pressure 

predictions. This means that the physical parameters that control the formation and dissociation of 

gas hydrates are also the most important parameters of modeling conventional petroleum systems.  

The process of oil and gas generation from organic matter is commonly represented by chemical kinetic 

equations, which determine the dependency of the process on temperature and time. As thermogenic 

gas is often not generated directly, but is obtained from a process of secondary cracking of previously 

generated oil, secondary cracking kinetics play a critical role for accurate petroleum property 

predictions. Biogenic gas generation usually occurs at shallower depths and much lower temperatures 

than thermogenic gas generation. It is commonly simulated by special kinetic reactions available in 

petroleum systems modeling. 

The principle controlling physical rock property for petroleum migration is capillary entry pressure, 

which offers a resistive force to the movement of petroleum and in effect defines a seal. Different 

approaches are in use for petroleum migration modeling due to lack of "perfect solutions"; that is, no 

single method will work for every task and model. The most widely used approaches are Flowpath, 

Darcy, Invasion Percolation and Hybrid methods. 

 

2.1.2 Characteristics of modeling gas hydrates 

The thermal and pressure conditions which control the presence and extent of a gas hydrates stability 

zone (GHSZ) can change rapidly through geological time. As a result, a GHSZ can be created and then 

disappear again in cycles of thousands or even hundreds of years. This means that gas hydrate 

accumulations are also only very short-lived on a geological time scale. 

In addition to higher temporal resolution during modeling, higher spatial resolution is also required. 

The GHSZ is typically up to several hundred meters thick and is independent of the stratigraphy, i.e. of 

the layer boundaries in a petroleum systems model. High-resolution gridding is therefore required to 

define the extent of the GHSZ more accurately and to enable gas hydrate accumulations to be 

meaningfully modeled. The PetroMod simulators have therefore been enhanced (Pinero et al., 2016) 

to enable minimum cell thicknesses of 10 cm to be used. Beyond that, they offer a minimum time span 

of 100 years for high resolution modeling in time. 

When free gas migrates into the GHSZ, gas hydrates form in the pore space and change the bulk 

properties of the surrounding lithology. This affects the thermal properties, as the hydrate fills the 

available pore space with material that has different properties than water. It also affects properties 

such as porosity and permeability which control the ability of fluids to migrate into the cells. If sufficient 

amounts of gas are present, hydrate saturations can be high enough to block further flow. These 

effects can all be assessed with PSM simulators. 
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2.1.3 Workflow of gas hydrate modeling with PetroMod 

The use PetroMod models with gas hydrates modeling is rather straightforward, without special need 

for changes. If the pressure/temperature (PT) conditions are appropriate, the extent of the GHSZ is 

calculated through geologic time, and if biogenic and/or thermogenic gas is generated within or 

migrates into the GHSZ, gas hydrates form and dissociate through geologic time. 

The overall workflow can be divided into three main analysis steps: 

I. Gas Hydrate Stability Zone (GHSZ) calculation and calibration: 

• Set up a standard input model (2D or 3D) and run its simulation in the PetroMod Simulator; 

• Display and analyze results (e.g. existence and dynamic of the GHSZ) in PetroMod Viewer; 

• Check calibration match with known data, if available. 

II. Gas Hydrate formation calculation and calibration; 

• Adjust the resolution of the models grid to match the spatial dynamic of the GHSZ; 

• Adjust the temporal resolution of the model to match the dynamic of the GHSZ through time; 

• For (onshore) models in arctic climate regions define permafrost limits; 

• Enable formation of gas hydrate in specific lithologies and adjust values for salinity (open water 

as well as porewater) and a grid-cells minimum gas saturation if necessary; 

• Select additional overlays and select the migration method; 

• Re-run the simulation; 

• Check calibration with known data if available. 

 

 

III. Model refinement 

• Adjust the PVT conditions of gas hydrate formation and gas hydrate parameters via PetroMod 

editors; 

• Add special kinetic reactions to mimic a biogenic generation of gas via the PetroMod editors.  

2.1.4 Analyzing a petroleum systems model showing gas hydrate accumulations 

A resulting model - either in 2D or in 3D - can show the existence of the GHSZ and its evolution in space 

and time. In case of an existing GHSZ, the formation of gas hydrate accumulations can be shown 

through time as well as the decay of these accumulations if PT conditions change. Because PetroMod 

can track the generation, migration and accumulation of single hydrocarbon components, it is also 

possible to follow the pathways of a hydrocarbon component of interest through space and time. 

Fig. 2.1 shows a PetroMod 3D model located within the Alaska North Slope. Therein conventional as 

well as gas hydrate accumulations can be observed. Furthermore, it is shown that a biogenic methane 

fills up the gas hydrate accumulations while the conventional accumulations are dominated by 

thermogenic methane. 
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Figure 2.1: Alaska North Slope 3D petroleum systems model showing gas hydrate accumulations (blue) in the 
GHSZ, conventional accumulations (green) and tracked biogenically vs. thermogenically sourced methane. 

 

2.1.5 The possible future of gas hydrate modeling 

To increase the quality of modeling gas hydrate scenarios, some improvements of modeling software 

are necessary. Further increasing the possible resolution in time and space would result in a more 

detailed view and outlook of the evolution of gas hydrate accumulations.  

An option to display BSR(s) as surface(s) within simulated scenarios would improve the understanding 

of gas hydrate scenarios in general by displaying multiple BSRs. Last, but not least, it is of vital interest 

to treat gas hydrates as a physical phase on its own to better distinguish them from the liquid and 

vapor phases of conventional petroleum systems modeling. 

2.2 Geophysics  

Usually gas hydrate reservoirs are found at continental slopes where seafloor dips towards the abyssal 

plains (Kvenvolden, 1993; Wallmann et al., 2012). Natural gas expulsion points towards larger 

accumulations of free gas as a first hint for possible hydrate reservoirs (Judd and Hovland, 2007). Water 

column imaging capabilities developed for multibeam acquisition systems nowadays allow a rapid 

mapping of prospective areas (Schneider von Deimling and Papenberg, 2012). However production of 

hydrate reservoirs (Wallmann and Bialas, 2009) need to be well separated from natural leakage 

systems to avoid uncontrolled elusion of gas. A reasonable sealing overburden need to be confirmed 

to protect against formation of artificial leakage out of the reservoir once hydrate dissolution has been 
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stimulated. With respect to optimal production rates of dissolved methane porosity of hydrate bearing 

layers is another issue. Therefore, coarse grained sandy reservoir rocks overlain by clay provide the 

best environment. Due to the unconsolidated sediment matrix of the host rock, slope stability is an 

issue in terms of seafloor installations and possible deepening of the seafloor above the production 

site (Zander et al., 2017).  

Geophysical investigations provide a key technology aiming for lateral imaging of dedicated gas 

hydrate reservoirs, distribution of free gas and related migration pathways. Thereby geophysical 

techniques try to make use of the anomalous physical properties related to emplacement of gas 

hydrates (increased sound velocities, increased density, modified elastic modulus, increased 

resistivity) and free gas (reduced sound velocity, reduced density, modified elastic modulus, increased 

resistivity) compared to the unaltered matrix sediment. The most sensible tools available for the 

remote and areal observation of these physical parameters are seismic and controlled source 

electromagnetic measurements.  

2.2.1 Seismic methods 

A first identifier for gas hydrate occurrence is the bottom-simulating reflector (BSR) (Kvenvolden, 1988; 

MacKay et al., 1994). The BSR is caused by the negative impedance contrast caused by free gas 

accumulated underneath the gas hydrate seal above (MacKay et al., 1994). Thereby the BSR 

documents the lower boundary of the gas hydrate stability zone (GHSZ). These events are visible in 

standard exploration configurations with low source frequencies (e.g. large airgun arrays, up to about 

100 Hz) and standard multichannel streamer (MCS) configurations (min. 12.5 m group offset). However 

improved resolutions like vertical seismic profiles (VSP, onshore examples) show lateral variations in 

reflection strength and continuity of the BSR (Bellefleur et al., 2006). Due to increased source 

frequencies (up to about 350 Hz) and increased streamer resolution (group offset of 1.5 m) such effects 

become visible in marine data as well. Focusing on the production of gas hydrates the plumbing system 

of methane is of high importance. Not only the provision of free gas for the hydrate formation but also 

natural gas migration pathways are important to judge on the tightness of the desired reservoir (Koch 

et al., 2016; Krabbenhoeft et al., 2013). 3D high resolution seismic imaging tools like the recent P-Cable 

development are capable to provide migrated sub-bottom images down to 6 m by 6 m gridded volumes 

(Bialas, 2013; Bialas and Brückmann, 2009; Petersen et al., 2010). Such volume observations are 

required to estimate hydrate distribution and hence available volumes as well as to investigate vertical 

migration pathways through the GHSZ. Due to their gas content, such chimneys are described as 

blanking zones on seismic sections. They may link the BSR to active gas expulsion sites at the seafloor 

bypassing free gas through the hydrate stability field (Hustoft et al., 2009; Judd and Hovland, 2007; 

Klaucke et al., 2015; Koch et al., 2016; Talukder, 2012). They may occur at the top termination of open 

fractures now originating within the GHSZ and they may be terminated by inverted reflection events 

well beyond the seafloor when the gas transport got stuck for various reasons (Koch et al., 2016; Plaza-

Faverola et al., 2014). During gas production chimneys could result into uncontrolled gas emissions 

and need to be avoided. As the vertical orientation might not be straight, 3D images are required in 

order to not lose track of such structures when investigating a possible production site. 
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Another approach in 2D seismic investigations is the application of deep towed multichannel 

streamers. The idea is to increase resolution by reducing the offset between receiver and target 

(Breitzke and Bialas, 2003; Talukder et al., 2007) or both source with receiver and target (Gettrust et 

al., 2004; Marsset et al., 2014). Thereby reducing the Fresnel Zone the lateral resolution is increased. 

In addition hybrid systems using surface towed sources and deep towed multichannel streamers 

provide wide-angle reflection surveys, which enable to undershoot strong reflecting near surface 

structures (Breitzke and Bialas, 2003). This ability allows to image vertical migration pathways 

underneath possible gas accumulations in their chimney top. Combined systems of deep towed source 

and receiver on the other hand allow the use of higher frequent sources (Marsset et al., 2014), which 

usually provide lower energy than standard airgun sources. However, due to the reduced offset 

penetration it is good enough to image gas hydrate relevant structures with increased vertical 

resolution. 

Besides reflection seismic characterization, sound velocity anomalies are a second criterion to judge 

on free gas and hydrate distribution in the sediment. While short active length multi-channel reflection 

seismic streamers (in 2D and 3D) are already capable to provide the required images, by use of mid 

size multi purpose vessels they are usually not sensible enough to velocity. This gap can be closed by 

use of ocean-bottom seismometers (OBS) (Crutchley et al., 2016; Petersen et al., 2007). Equipped with 

4 component receivers they provide wide reflection and refraction observations not only for 

compressional waves (Vp) but for converted shear waves (Vs) as well (Bialas et al., 2017; Granli et al., 

1999; Lee and Collett, 1999). Usually deployments of OBS take place together with 2D and 3D profiling 

above gas hydrate reservoirs. Depending on water depth and lateral offsets refraction events are 

usually expected for layers beyond the BSR and the interpretation of OBS events will concentrate on 

wide angle reflections. Correlations of OBS and MCS data enables safe identification of major 

interfaces and guides the definition of a starting model for the velocity-depth distribution used to 

invert for the observed travel times. Velocity anomalies coincident with increased reflection 

amplitudes provide first hints for possible hydrate or gas accumulations. Further information on 

physical parameters are available when converted shear wave events are provided by seismometer 

records. Different dependency on elastic moduli allow to further discretize on free gas and hydrate 

distribution (Yun et al., 2005). Increasing precision on navigation, dense shot coverage and observation 

of 3D airgun signal generation allow for 3D inversion of OBS data, supporting the volume analyses of 

velocity anomalies and implied gas and hydrate distributions. Modern parallel node computing clusters 

allow employment of new processing technologies like full-wave form inversion (Pecher et al., 1996; 

Virieux and Operto, 2009) for OBS data as well. Hereby ray tracing based velocity models are required 

as detailed starting models in order to further improve the velocity depth resolution.  

 

2.2.2 2D & 3D high resolution reflection seismic imaging (P-Cable) 

A new high-resolution multichannel reflection seismic tool has been provided by the invention of the 

so called P-Cable (Plancke and Berndt, 2002) acquisition system. The P-Cable allows for three-

dimensional seismic imaging of the shallow horizons with increased resolution (6 m by 6 m) operating 

from a non-specialized vessel with small crew.  
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Compared to standard reflection seismic applications in 2-D and 3-D the basic difference is that the P-

Cable is built by a cross cable towed perpendicular to the ships heading (Fig. 2.2). Instead of a few 

single streamers the P-Cable uses a large number of short streamer sections towed parallel from the 

cross cable. Drawback is the limited depth penetration due to the short offsets, which limits removal 

of multiple energy. This is well compensated by the reduced costs of the system and the ability to 

operate it even from small multi purpose vessels, the usual academic platform for marine research. 

 

 

 

 

 

Figure 2.2: Schematic drawing of a P-Cable deployment. Descriptions in the figure identify the best grade of 
configuration in terms of navigation aids and hence resulting resolution. However minimum request are GPS 
recordings from the paravanes in order to calculate the cross cable layout. (courtesy of GEOMETRICS, USA). 

Positions of the trawl doors with real coordinates and relative distance to the vessel are provided 

within an online navigation package. Autonomous GPS receivers were mounted on each trawl door 

together with a serial radio link to the vessel. Depending on the grade of configuration compass and/or 

depth readings at each streamer breakout point maybe provided as well. Based on these information 

navigation processing attempts to best calculated the layout of the cross cable and adjacent streamer 
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sections for each shot. In general, a catenary geometry fits the curvature of the cross cable best. 

Standard filter and deconvolution routines prepare the data volume for a 3D migration. 

Resulting seismic sections from the 3D data volume provide a much more detailed image of subsurface 

structures like gas chimneys and sedimentary interfaces than conventional data do (Fig. 2.3 (Petersen 

et al., 2010)). Such resolutions are required to map out BSR distribution and continuity in the hydrate 

stability field. Knowledge of gas migration pathways is a prerequisite in description and safety 

assessment of a possible GH reservoir in order to avoid uncontrolled gas emissions during production. 

No other system can provide such information with reasonable resolution. However, one drawback is 

the missing sensibility of the short offset streamer segments to the velocity field in the subsurface. 

Stacking and migration of the data need to be done for near vertical reflection points only and hence 

can be completed with water sound velocities. Observation of the seismic signals by a suitable number 

of Ocean-Bottom Hydrophones (OBH) or four component Seismometers (OBS) can provide this 

information. 

 

 

Figure 2.3: Comparison of standard 3D seismic and 3D P-Cable data from overlapping records (courtesy WPG 
exploration Ltd., http://www.wgp-group.com; p-Cable Spring Energy report) 

 

2.2.3 High resolution refraction seismic imaging (OBS) 

Besides reflection seismic events (increased amplitudes, inverted amplitudes, BSR, etc.) seismic 

velocity anomalies (p- and s-wave) and corresponding Poisson’s ratios may further support 

identification of gas or hydrate distribution (Tinivella and Accaino, 2000). Simultaneous recording of 

multichannel and ocean-bottom seismometer data allows correlation of events from reflection seismic 

images with near vertical reflection events from OBS records (Fig. 2.4). Thereby travel-time picks taken 

from the OBS records for velocity depth model development can be chosen to fit to the major 

sedimentation packages already. Overlay of the resulting velocity – depth model with multichannel 

http://www.wgp-group.com/
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seismic sections will further support the interpretation of hydrate and free gas distribution in a 

reservoir environment. Besides standard ray tracing and tomographic inversion routines full-waveform 

inversion (Virieux and Operto, 2009) has been extended to refraction seismic applications and supports 

more detailed inversion models in future time. 

 

Figure 2.4: Correlation of near vertical reflection events recorded by an Ocean-Bottom Seismometer (OBS,; left 
hand) and the corresponding multichannel seismic section. 

 

Based on significant impedance contrasts across sediment interfaces compressional waver energy 

converts partly into shear wave components, which were recorded by horizontal receivers of the 

seismometer components of the OBS. Due to the unknown orientation of the seismometer all three 

components need to be evaluated for their amount of shear wave energy, which results in energy 

rotation processing prior to analyses of the radial horizontal component (Wang et al., 2014). For the 

interpretation a p to s conversion is assumed to happen at the reflecting sediment interface (Zillmer 

et al., 2005). Other assumptions could solve the observed travel-times but require unreasonable low 

velocities. Due to the high attenuation of shear waves in unconsolidated sediments high Vp/Vs ratios 

are indicative for the expected low shear wave velocities. Consequently, angles of refraction and 

reflection are small compared to p-wave expansions and therefore the portion of sub-surfaces 

structures imaged by converted shear waves are smaller than by p-waves (Fig. 2.5). Usually the sensor 

distribution is optimized for p-wave recordings resulting in gaps of s-wave coverage. As a result, Vs 

model development for the entire profile results in significant smoothing. Detailed analyses and 

interpretation of conventional shear wave data either request optimized (shorter offset) sensor 

distribution or localized analyses (Fig. 2.5).  

Based on velocity anomalies first estimates on hydrate and free gas distributions along the BSR and 

within the hydrate stability zone are undertaken. Without additional information such estimates can 

be of qualitative value only as a deduction of hydrate saturations strongly depend on the formation 

process. In case of sediment matrix supporting hydrate formation the elastic moduli and hence Vp and 
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Vs are much stronger influenced than with hydrate grains in the pore space (Chaouachi et al., 2015; 

Priest et al., 2009). Making use of their different relation to physical parameters correlation of seismic 

velocity models with electromagnetic investigations (CSEM) provide additional information. Coupling 

seismic and CSEM investigations by transverse functions for their model space enables joint inversion 

with much more detailed information about physical parameters (Heincke et al., 2017) in future time. 

 

 

Figure 2.5: Examples of Vp (upper left) and Vs (lower right) ray coverage of subsurface structures. Ray paths 
used for the inversion of OBS data are overlain on reflection seismic images used to identify the relevant 
sediment interfaces. Due to the low shear wave velocity reflected converted waves can image smaller parts of 
the model space only. However they can contribute to detailed investigations of velocity anomalies and hence 
physical parameters. Picked (black) and computed (colored) travel-times are displayed beyond the seismic 
sections (Bialas et al., 2017). 

 

2.2.4 Marine CSEM Methods 

Additional information on hydrate and gas distributions are provided by application of marine 

controlled source electromagnetic (CSEM) methods (Attias et al., 2016; Hölz et al., 2015). Electrical 

resistivity derived from CSEM data is sensitive to porosity and the electrical properties of the pore 

fluid. As free gas and gas hydrate are electrically resistive, the replacement of saline and therefore 

conductive pore fluids by resistive gas and / or gas hydrate increases the formation bulk resistivity. 

Discrimination between free gas and gas hydrate from electrical resistivity requires additional 

information from e.g. seismic and knowledge of the geological setting. Within the gas hydrate stability 
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zone, free gas will be consumed by gas hydrate formation as long as the gas content exceeds the 

solubility of gas and sufficient water is supplied. According to Liu and Fleming (2007) free gas and gas 

hydrate may coexist within the GHSZ when i) the gas flow and gas pressure from below the GHSZ is 

accordingly high, often indicated by sub-vertical chimney structures in reflection seismic images. ii) 

when all water is depleted due to concentrated hydrate formation, or iii) upward perturbation of the 

P-T boundary caused by advecting warm fluids.  

Small gas and gas hydrate saturations (saturation defined as percentage of pore volume opposing to 

concentration defined as percentage of sediment volume) in the order of a few percent may scatter 

and blank out reflection seismic signals. In contrast, large volumes of gas and gas hydrate in the order 

of >10-20 % are required to significantly increase the bulk resistivity derived from CSEM leaving smaller 

saturations subject to possible misinterpretation due to lithology-controlled porosity changes. 

Electromagnetic field propagation is a diffusive process. Thus, CSEM measurements provide volume 

information useful for resource assessment and lack detailed structural resolution. This promotes the 

combination of seismic and CSEM methods, as they are complementary with respect to their 

information content.  

Marine CSEM Instrumentation 

Both time domain and frequency domain CSEM systems have been developed using either magnetic 

or electric source and receiving dipoles close or on the seafloor. The first marine CSEM experiments 

for the exploration of submarine gas hydrates have been conducted with a time domain, seafloor-

towed, electric dipole-dipole systems developed at the University of Toronto (Edwards, 1997) 

measuring the inline component of the electric fields at offsets of up to 600m sensitive to sediment 

depth of ~200-300m. First case studies have been reported by Yuan and Edwards (2000) and 

Schwalenberg et al. (2005, 2010a, 2010b). An advancement of the Toronto system is the HYDRA system 

developed at the Federal Institute for Geosciences and Natural Resources (BGR). HYDRA is a modular, 

seafloor-towed electric dipole-dipole system with four or more receiver dipoles at offsets up to 1000m. 

It has been recently updated to allow online communication and data transfer during deployments. 

Data have been collected over gas hydrate targets offshore New Zealand (Schwalenberg et al., 2017) 

and in the Black Sea (Schwalenberg et al., 2016).  

A smaller seafloor-towed magnetic dipole-dipole system with short offsets up to 40m has been 

developed at the Woods Hole Oceanic Institute (WHOI), and has been used at a gas hydrate mound in 

the Gulf of Mexico (Ellis at al., 2008). 

The advantages of the seafloor-towed systems are that they can be operated with a small team, 

surveys can be adapted to smaller scale targets, navigation errors are minimized, and data analysis is 

straight forward. The disadvantages are the risk of damage to or loss of the system or parts of it, thus 

surveys are limited to rather smooth sediment (which is typically the case along continental slope 

areas). 

The nowadays most commonly used marine CSEM approach for gas hydrate research has been 

pioneered by Scripps Institution of Oceanography, and is an adaptation of the experimental setup used 

in the offshore oil and gas industry (Constable, 2010). This setup includes a number of stationary 

seafloor ocean bottom electromagnetic (OBEM) receivers deployed from the vessel along a survey line 
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or on a 3D grid, and a CSEM transmitter with a horizontal electrical  source dipole, typically 50-200m 

long, towed by the research vessel about 50 to 100m above the seafloor. Frequency domain data are 

collected using a modulated wave form (e.g. Myer et al., 2010), and inverted to 2D and 3D resistivity 

models using various transmitter-receiver offsets corresponding to different penetration depth. Gas 

hydrate case studies using this setup have been published by e.g. Weitemeyer et al., (2006, 2010, 

2011), Goswami et al., (2015), and Attias et al., (2016). The advantage of this setup is that large areas 

can be covered and penetration depth can be more than 1000 to 2000m below seafloor. Also inline 

and broadside data can be collected using both orientations of the OBEM receiver dipoles. The 

disadvantage is that navigation errors can be severe, particularly at smaller offsets, and small-scale 

features, i.e. local gas hydrate accumulations, may be overseen. 

An advancement is the Vulcan system developed at Scripps (Constable et al., 2016) consisting of one 

or more three-axial electric dipole receivers towed in the water at offsets of some hundred meters 

behind the source dipole. This setup allows a quick survey progress and penetration depths down to 

~1000m of sediments. Gas hydrate case studies have been reported in Weitemeyer et al. (2010), 

Goswami et al., (2015), Attias et al., (2016), Constable et al. (2016). 

A rather unique CSEM setup for gas hydrate exploration has been developed at GEOMAR using 

stationary seafloor electromagnetic (OBEM) receivers deployed on a 2D line or 3D grid at short offsets, 

and a mobile CSEM source called Sputnik with two 10m long horizontal source dipoles. Sputnik is 

powered and communicates via the deep tow cable which is used to move it along the seafloor by 

lifting up and down the deep-tow cable. The advantage of this setup is a detailed and small-scale 2D 

or 3D data set focusing of target areas of particular interest. The disadvantage is the navigation, i.e. 

transmitter receiver offsets and orientations must be known accurately. 

In summary, various CSEM experimental setups exist capable to focus on different aspects of the gas 

hydrate stability field. CSEM data analysis and interpretation has been significantly improved since 2D 

inversion tools (e.g. Key et al., 2016) and 3D forward modeling codes have become available. Joint 

interpretation of marine CSEM and seismic data highly improves the conclusions on gas hydrate 

resource assessments. While density is a joint physical parameter in the equations solving model 

calculations for seismic velocity and CSEM data joint inversion of these data sets data is a key to further 

constrain resource assessments (Abubakar et al., 2012; Hu et al., 2009). 

 

Laboratory experiments on hydrate formation models further guide how to translate velocity 

anomalies into hydrate and gas concentrations. As relations of velocity and concentration are 

significantly different depending on the relevant hydrate formation model (pore filling, matrix 

supporting) in situ calibration information is necessary (Jing and Xuewei, 2011; Lee and Collett, 1999). 

 

2.3 Drilling 

The drilling process itself is only a part of the final construction of a wellbore. The long-term use of the 

wellbore and its safe operation require pipes which are introduced and cemented within the sediment 

formation. The structure of the well must withstand the pressure difference between the wellbore 
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(e. g. hydrostatic and drilling fluid pressure) and formation (formation pressure) which develops 

throughout the exploitation process. Along the wellbore path, both horizons with overpressure 

(potential fluid inflows from formation) and horizons with underpressure (drilling fluid losses to the 

formation) may exist and must be managed specifically to adapt the drilling parameters accordingly. 

The drilling of the well should therefore be planned in accordance with the anticipated conditions. 

Common state-of-the-art drilling methods from the oil and gas industry are (i) rotary drilling, (ii) coiled 

tubing drilling (CTD), (iii) jetting and (iv) casing drilling. All of these drilling methods may be used for 

drilling a vertical well or in case of directional drilling. This document extends briefly on the first two 

methods.  

The rotary drilling method is characterized by a rotating drill string and a circulating drilling fluid (liquid 

and gaseous and mixtures of fluids and solids). The drill string connects between the drilling tool at the 

downhole and the drilling rig at the surface. Typically, it consists of individual drill pipes and is, 

therefore, also called jointed pipe. A very simple drill string for a vertical well consists of (from the 

bottom up): drill bit, drill collars (DC), heavy weight drill pipes (HWDP) and drill pipe (DP). The drill pipe 

is connected to the rotary drive/drill floor of the drilling rig at the surface. The standard length of a drill 

string component is about 10 m (33 feet). A continuous circular motion of the drilling bit (fixed cutter, 

roller cone or hammer bits) causes breakage of the formation (cuttings) at the bottom of the borehole. 

In a closed circuit, (fresh) drilling fluid is pumped down (inside) the drill pipe to the bit where it removes 

the cuttings from the borehole and carries them through the annular space between the pipe and 

borehole wall to the surface. Drilling fluid on the surface is processed and injected back into the drill 

pipe. Recycling, treatment and conditioning of drilling fluids are appropriate measures to minimize 

operational costs. 

In contrast to standard rotary drilling with jointed pipes, during coiled tubing drilling (CTD) no 

assembling of individual drill pipe components is necessary. Therefore, once started, the drilling fluid 

flow cannot be interrupted. Thus, the CTD method is significantly faster than rotary drilling (two to 

three times) and reduces the running costs compared to the jointed pipe method. As the drill string of 

a CTD cannot be rotated, a bottom hole assembly (BHA) must be attached to control the drill head. In 

many cases, the BHA is similar to that for jointed pipe and consists of (from the bottom up): drill bit, 

drill motor (with orienting tool), usually MWD (measurement-while-drilling) and LWD (logging-while-

drilling) devices (see below) and stabilizers. Drill collars or HWDPs can only be installed directly above 

the BHA. Therefore, it is difficult with directional drilling to apply pressure on the drill bit. The removal 

of cuttings through the annulus may be hampered by the lack of rotation especially in deflected 

wellbores, so that the tubing sections may get stuck. CT drill strings have substantially smaller diameter 

than jointed pipes. CTD is also ideal for underbalanced drilling as the drill string is a closed system and, 

therefore, produced reservoir fluids cannot escape to the string. A CT-well can only be as long as the 

tubing itself. The length of the tubing sections of the coil depends on the diameter. Thinner tubing 

decreases the horizontal drilling distance. 

In general, wellbores are planned and completed according to the geological profile assuming a certain 

depth and diameter of the final casing. The geological profile is used to identify problematic horizons 

(aquifers, formations with overpressure or underpressure, unstable horizons etc.) that need to be 

isolated resulting in a specific well construction (Fig. 2.6). Normally, it consists of standpipe, conductor 

pipe, functional pipe strings as needed and production casing string. 
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Figure 2.6: Illustration of a vertical wellbore completion. Conventional (left) and CTD (right) (Perry et al., 2006). 

 

In the well construction process, the selected pipe strings are cemented in the sediment one after the 

other, leading to a "tight" structure.  Individual cement layers must overlap. The outer diameter of the 

string and the drill bit diameter are standardized by the API (American Petroleum Institute). While the 

initial diameter of the wellbore depends on the geology, the final depth and diameter are determined 

by the expected production rate and the specific application. For example, exploration wells are 

completed with special measuring devices at the depth of the deposit to be explored. Therefore, they 

usually have relatively large diameters. Oil and gas wells often have end diameters of 6 or 8½ inches. 

Smaller diameters (e.g. 4") are mostly used for re-entry drilling (sidetrack). In addition, so called slim-

hole or micro-hole wellbores with diameters of ~1 to 3 inches exist and have already been realized 

with CTD to a depth which is usually sufficient for the exploration of gas hydrate. 

In the past, directional drilling became a state-of-the-art method to control a wellbore trajectory, to 

drill complex geological structures and to make previously unreachable reservoirs accessible. The 

directional drilling includes a controlled drilling to follow a desired wellbore pathway. This can be 

implemented differently, e.g. with steerable drill motors (Push-the-Bit, Point-the-Bit) or by mechanical 

devices within the drill string (whipstock). Due to the high costs of a deep well, new techniques are 

being developed to increase the productivity of a single wellbore. Fig. 2.7 shows possible well profiles 

(short, medium, long). However, drilling very small radii is restricted because of the limited ability to 

withstand the high forces (flexural and frictional) that develop. Very sensitive sensors may detect 

minimal deviations from the planned pathway and are adjustable to maintain the planned wellbore 

trajectory very accurately. In general, one may say that a larger well diameter increases the radius of 

a directional well. 
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Figure 2.7: Schematic diagram of directional drillings (Jahn et al., 2008, Hydrocarbon exploration and 
production). 

Drilling through, and into, a gas hydrate formations entails special requirements on the drilling fluids 

and the sealing between the well and the formation. If directional drilling is the only feasible economic 

alternative, the formation structure has to be stable in both the drilling stage and later at the 

production phase. Currently, there is a lack of corresponding geological and geophysical evaluations. 

Moreover, simulations of the mechanical stressing of gas-hydrate horizontal wells infer that the 

stressing mechanism may be significantly different from that of conventional horizontal wells (e.g. Klar 

et al., 2010).  

In some cases, where the geomechanical properties of a gas hydrate deposit allow, the application of 

hydraulic stimulation might be considered. The effect of this would be to effectively create extra 

permeability around the existing wellbore allowing access to a greater volume of hydrate-rick 

sediment and also allowing faster production of released gas. 

The navigation of the drill bit requires the availability of numerous measurement techniques and high-

tech instruments. Among others, MWD and LWD are common. Usually, modern downhole instruments 

are optimized combinations of MWD and LWD devices, and include additional sensors for 

temperature, pressure and vibration, and others for data measurement allowing fast and safe drilling. 

In addition to indirect methods, in-situ measurements during the drilling phase can give immediate 

information about geological properties of the sediment. Thus, required data for gas hydrates in the 

sediment can be collected. LWD and MWD are both tools that are installed within the drill string and 

take measurements at each survey. In contrast to MWD, which determines the position of the wellbore 

(geometrical navigation), LWD measures formation properties (formation evaluation). LWD allows an 

exact identification of the deposit, even if its position has been known only roughly before the 

beginning of drilling (e.g. from seismic surveys and exploration drilling). LWD also enables navigation 

within the deposit based on reservoir properties (geosteering). Geosteering, with horizontal well, is a 

state-of-the-art tool for the exploitation of thin deposit layers. Moreover, natural gamma ray, 

resistivity log as well as measuring devices with radioactive sources (gamma ray, neutron porosity tool) 

are standard tools for deep drilling. Due to the high safety requirements for using radioactive sources 

they are, however, only used when absolutely necessary. Other available equipment on the market 
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are the NMR (nuclear magnetic resonance), Sonic logs or Acoustic Well Log and formation tester and 

sampler as well as radar navigation and data transmission for control of the drill bit (for directional 

drilling). All of these methods are also suitable for detection of gas hydrates in sediments, and provide 

reliable results. Development of, modern technology will facilitate access to gas hydrate layers of 

several meters in shallow depths, either. In summary, one may say that a combination of several 

measuring method is crucial for a safe identification of gas hydrate layers. The required instruments 

are state-of-the-art and already available on the market for common wellbore diameters (~ 5''). 

Possibly, special equipment must be built for slim-hole or short radius applications. 

Since the drilling is one of the major cost factors in the production of natural gas and, in particular, 

from gas hydrates, new lightweight and very flexible subsea rigs need to be developed. Supposedly, 

none of the gas hydrate deposits will provide high coherent gas reserves, and low production rates can 

be expected only on a temporary basis. Consequently, appropriate considerations for effective drilling 

techniques need to be made, and Europe has at least two such systems: 

1) The MeBo200, developed by Bauer Maschinen GmbH and MARUM (Figure 2.8), may be 

valuable tool of an effective solution scheme.  

           

Figure 2.8: Sketch of the MeBo200 developed by MARUM and BAUER Maschinen GmbH (left) and deployment 
of the MeBo200 (right) (Spagnoli et al., 2015). 

In order to avoid the time-consuming assembly of a drill string from the drillship to the 

seafloor, it is preferable to use drill rigs placed on the seafloor, which safe time and costs. The 

MeBo200 drilling rig will may be lowered to the seafloor and operate remotely from the ship, 

drilling up to 200m into the seafloor. The MeBo200 does not require a special drill ship, as the 

rig itself has the size of a 20 ft container. It is equipped with a rotary drill head and a carousel 

storage and handling system for drill rods. The drill rods are taken from the carousel and 

inserted successively into the drill string. Thus, the wellbore can be drilled in several sections 

directly from the seafloor, and, consequently, the drilling process becomes more cost-effective 
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and independent from bad weather conditions (wind, currents, and waves). The MeBo200 has 

already been used successfully for coring sediments containing gas hydrates. (Spagnoli et al., 

2015). 

2) The BGS Rockdrill (RD2), seen in Fig. 2.9, is capable of coring up to 55m below sea floor in water 

depths up to 4000m and is operated via its own launch and recovery system (LARS). The system 

can continuously core in 1.7m sections, and can be outfitted with additional sensors such as 

gas-flow meters and down-hole logging tools.  RD2 has been used to sample hydrate-entrained 

sediments from the Sea of Japan in 2013. The maximum coring depth achieved was 32m below 

sea floor and the system can operate for more than 50 hours on a single deployment 

 

 

Figure 2.9: The BGS RD2 System being deployed using dedicated Launch and recovery system 

 

2.4 Logging techniques for marine gas hydrate occurrences    

2.4.1 Basics and overview of field studies 

Dedicated gas hydrate drilling has started with the recognition of the wide-spread abundance of gas 

hydrate along most continental margins and their potential as future energy resource or a contributor 

global climate change. Academic drilling for gas hydrates was initially constrained to expeditions 

conducted under the umbrella of the Ocean Drilling Program (and its following successors Integrated 

Ocean Drilling Program, 2002-2012, and International Ocean Discovery Program, 2013-2023). Logging 
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tools and their operation onboard the drilling vessel ‘JOIDES Resolution’ are provided by contract to 

Schlumberger, the leading European provider of technology for the oil and gas industry. 

The first dedicated wire-line logs for gas hydrates were acquired during ODP Leg 146 (Westbrook et 

al., 1994) and ODP Leg 164 (Paull et al., 1996) with the recognition of elevated p-wave velocity and 

electrical resistivity values as primary proxies for the occurrence of gas hydrate (e.g. Collett and Ladd, 

2000; Collett and Lee, 2012). After ODP Leg 204 (Tréhu et al., 2003) and IODP expedition 311 (Riedel 

et al., 2006) along the southern and northern Cascadia margin, a series of semi-industrial drilling 

expeditions were conducted mostly for exploration of gas hydrates as an energy resource: (1) US Gulf 

of Mexico, Joint Industry Project (e.g. Ruppel et al., 2008; Collett and Boswell, 2012, and references 

therein), (2) Japan, Nankai Trough (e.g. Tsuji et al., 2009; Fujii et al., 2009) with the culmination in the 

first marine gas hydrate production test (e.g. Yamamoto et al., 2014; Yamamoto and Ruppel, 2015), 

(3) India, off the east and west coast of the Indian sub-continent (two expeditions in 2006 (e.g. Kumar 

et al., 2014; Collett et al., 2014) and in 2015 (e.g. Kumar et al., 2016)), (4) China, along the South China 

Sea (four expeditions between 2007 and 2016 (e.g. Shengxiong et al., 2017), see e.g. Matsumoto et al., 

(2011) and references therein), and (5) Korea, Ulleung Basin (two expeditions in 2007 and 2010, e.g. 

Ryu et al., 2013). These expeditions often adapted the same procedures for gas hydrate drilling, coring, 

and logging as developed by ODP and IODP (as e.g. described in Collett et al., 2014; Ryu et al., 2013). 

Operationally, many of these semi-industrial drilling legs were conducted on a contract basis by Fugro 

(with staff from Holland, UK, and US offices) in conjunction with GeoTek Ltd (UK).  

In many of the modern (post-2000) drilling expedition, gas hydrate drilling starts with the acquisition 

of Logging-While Drilling (LWD) logs, often in combination with measurement-while-drilling (MWD) as 

primary safety control (as initially developed for IODP Expedition 311, Riedel et al., 2006). These LWD 

data are then used as the basis to develop coring and additional wire-line (WL) logging programs 

including vertical seismic profiling (VSP). Below, LWD, WL, and the VSP techniques are described and 

a general assessment of the different techniques with resolution limits and pitfalls are given. The 

ultimate use of the log-data is in a site-by-site core-log-seismic integration (e.g. Bahk et al., 2013a,b; 

Tréhu et al., 2004; Fujii et al., 2009), seismic inversion (e.g. Lu and McMechan, 2004; Bellefleur et al., 

2006), and as ground-truth for basin-wide resource assessments (e.g. Collett, 2004; Frye, 2008). 

Approaches to drilling and logging in non-marine, i.e. permafrost environments, are often similar to 

marine environments, but operational challenges require special borehole conditioning efforts. Details 

on these issues can be found e.g. in Goldberg et al., (2010), Dallimore et al. (1999), Dallimore and 

Collett (2005), or Collet et al., (2011). 

2.4.2 Basic logging methods/proxies for gas hydrate 

The most commonly used logs to identify (and quantify) gas hydrates include electrical resistivity, p-

wave and s-wave velocity (also referred to as sonic logs), and resistivity- imaging logs (e.g. Goldberg, 

1997; Goldberg et al., 2010; Collett and Lee, 2011; 2012). Additional logs, such as electromagnetic (e.g. 

Sun and Goldberg, 2005) and nuclear magnetic resonance (e.g. Kleinberg, et al., 2005), are used but 

are less common. Porosity, density, and natural gamma-ray logs are usually acquired combined with 

the above standard log-suite, but are only to be seen in the context of the basic-log data and core 

measurements to provide physical properties of the host-sediments containing gas hydrates. Electrical 
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resistivity logs often rely on the use of Archie’s equation (Archie, 1942) linking porosity of the 

sediments to the formation resistivity with the aim to detect gas hydrates (that act as electrical 

insulator in the sense of a pore-filling material), thus increasing the formation resistivity significantly 

above a (site-specific) background trend. Electrical resistivity logs can be acquired with various tools 

(see e.g. Goldberg et al., 2010 or the ODP logging manual (2004) for details). Borehole imaging is a 

technique in which the electrical resistivity of the borehole wall is measured and displayed as 

unwrapped image data. These image data are useful to detect gas hydrate in fractures and are also 

exploited for structural analyses of the fracture network and stress regime (e.g. Janik et al., 2004; Cook 

et al., 2008) Velocity/Sonic (p- and s-wave) logs are based on measuring the travel time of an emitted 

sonic pulse between a source and a series of receivers mounted on the drill/log string. Sonic data are 

less sensitive to the presence of gas hydrates (especially at low concentrations) than electrical 

resistivity logs, but elevated p-wave velocity values are often used to estimate gas hydrate saturations 

(e.g. Guerin et al., 1999; Shankar and Riedel, 2011). It should be noted that LWD and WL log data are 

susceptible to anisotropy in fracture-dominated environments (e.g. Cook et al., 2010). Most log data 

are naturally measured in a “vertical sense” between pairs of source- and receivers along the drill 

string. With the semi-vertical fracture network seen in some gas hydrate bearing settings (such as cold 

vents), measurements of resistivity and p-wave velocity are affected and yield artificially higher values 

and gas hydrate saturation estimates are too high and need to be corrected for this anisotropic effect 

(e.g. Lee and Collet, 2010; 2013). Porosity logs (measured with a neutron source) provide a basic 

measure of formation properties used to deduce gas hydrate saturations. Porosity is a basic input 

parameter for the Archie equation as well as the rock-physics model used for p- and s-wave velocity 

log data. Density logs measure the sediment bulk density by using a radioactive Cesium source and 

using Compton scattering and photo-electric absorption to link electron density of rocks/sediments to 

bulk density. If grain-density is known, the density-log can be converted to an independent porosity-

log. Natural Gamma ray logs are measuring (passively) the natural gamma ray intensity of the 

sediments. Data are useful for sediment classification and sand-detection, but also as simple tool to 

detect borehole enlargements. 

  

2.4.3 LWD and MWD operation 

LWD tool strings can be operationally complex, and can be combined with different tools to make up 

a tool string often more than 30 meter in lengths. The basic advantage of LWD operations is that 

physical properties are measured directly during drilling (borehole advancement) and thus, sediments 

have not been significantly altered from the drilling process itself. The use of LWD is especially 

important for detecting gas hydrates, as the quality of wire-line logs may be hampered as the drilling 

(and coring) process could have resulted in gas hydrate dissociation, gas release from below the base 

of hydrate stability, or formation damage (hole enlargements). LWD was first implemented for gas 

hydrate research only during ODP Leg 204 in 2002 (Tréhu et al., 2003), but has since then become a 

standard part of all subsequent gas hydrate drilling operations. LWD data offer several other 

advantages: full 360° borehole coverage (e.g. for imaging and fracture detection), information of 

hydrate distribution prior to coring to optimize the use of special coring tools (e.g. pressure cores) or 

other downhole measurements (e.g. temperature or pressure), as well as providing direct means for 
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assessing drilling safety through the use of measurement-while-drilling (MWD) tools, that pulse log-

data up the borehole to the rig-floor for immediate data recovery (though at a reduced sample rate).  

  

2.4.4 Wire-line logging operation 

Wire-line logging is used after a borehole has been drilled (and/or cored) and tools are inserted into 

the borehole using a separate wire-line for continuous measurements of the physical properties of the 

sediments. It should be noted that wire-line logging is typically depth-limited (as described below) to 

ensure drilling safety and tool-recovery. Wire-line logging tools used during the ODP and IODP 

programs are described in the ODP Logging Manual (2004). The “standard” tools deployed for a 

complete log-suite comprise the triple-combo (consisting of tools to measure natural gamma, porosity, 

density, resistivity, and borehole diameter or caliper)  and the Formation-Micro-Scanner (FMS)-sonic 

tools (consisting of tools to measure natural gamma, shear- and p-wave velocity, and to acquire 

borehole resistivity images), combined sometimes with the well-seismic tool (WST) for conducting 

vertical seismic profiles. WL-tools are typically run from the bottom of the hole upwards. Heave-

compensation as part of the wire-line operation ensures that the tool is pulled at a speed to measure 

the physical properties continuously and in regular depth intervals. In generalized terms  WL-tools 

allow measuring physical properties at higher sampling rates and densities as LWD tools as the 

deployment speed is often much slower than used for LWD. However, as the measurements are made 

post-drilling of the borehole, data is highly dependent on hole-size (diameter) and shape. Also, the 

depth-coverage of WL-deployments is smaller than with LWD acquisition as the WL-tools are deployed 

not from the seafloor but from a suspended drill-pipe up to 60 meter below seafloor. Also, borehole 

instabilities may result in reducing of the overall borehole depth as tectonic forces or instable 

sediments fill the bottom of the hole gradually. Conditioning of the borehole (so called wiper-trips) 

may mediate this effect and the use of special borehole fluids (e.g. guar-gum, oil-based drill-muds, or 

heavy drill mud) may overcome these problems. However, the use of heavy mud increases the risk of 

artificially fracturing the formation, if the drill mud is heavier than the surrounding sediment yield 

strengths.  

 

2.4.5 Vertical Seismic Profiling 

One of the fundamental problems in geophysical imaging of gas hydrate is related to the different 

acquisition domains of the geophysical tools: seismic surveys image the subsurface and are acquired 

in time-domain. They can be depth-migrated, but velocity functions are often very smooth and 

coarsely sampled. Logging (and coring) is done by directly measuring data inside the borehole as 

function of meter below rig-floor (which due to heave-compensation of the drill string) is easily 

converted to meter below seafloor (mbsf). In order to provide a direct conversion of depth (in mbsf) 

to two-wave travel time (TWT) of the seismic data, so called check-shot or vertical seismic profile 

surveys are carried out. These surveys are based on deploying geophones inside the borehole (i.e. the 

WST) that are mechanically clamped to the borehole wall while emitting a sound source at the sea-

surface above the borehole, typically with a single airgun deployed from the drill ship. The direct travel 

path of the seismic waves emitted are detected at the geophone and the airgun shots are repeated 
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per station until a stable measurement is achieved, followed by shifting the geophones inside the 

borehole to another depth interval.  The WST tools may contain only a single geophone, but often a 

string of geophones is used for efficiency of the measurements. As the mechanical clamping of the 

geophones to the borehole wall damages the formation, the VSP is usually the last wire-line operation 

in a borehole. VSPs have been applied to almost all gas hydrate drilling during ODP, IODP Legs or other 

national hydrate drilling programs (e.g. Holbrook et al., 1996; Pecher et al., 1997; Tak et al., 2013) or 

Arctic drilling expeditions (Milkereit et al., 2005; Sakai, 1999; Walia et al., 1999). An extension of the 

VSP is possible by shooting the airgun at farther offsets from the borehole, so-called walk-away VSPs 

(e.g. Pecher et al., 2003; Milkereit et al., 2005). These surveys are demanding as a second vessel is 

required for conducting the airgun operation. However, walk-away VSPs are a powerful tool for 

advanced geophysical imaging of the gas hydrate reservoir and to extract additional properties of the 

sub-seafloor formation, foremost s-wave velocities (e.g. Pecher et al., 2010). 

 

2.5 Pressure coring and core-analysis devices 

As part of the Japanese government decision to expand the gas hydrate production research to 

deepwater conditions of Nankai Trough, pressure core sampling and analysis were considered as part 

of the logging program. These investigations were recently reported by Yamamoto (2016): In the 

program the pressure-core analysis and transfer system (PCATS) were used. These tools were 

developed as part of the European HYACE and HYACINTH projects (Schultheiss et al, 2009).  Note that 

there were certain issues with compatibility between the European equipment and the supporting 

Japanese equipment, and certain devices and adjustment had to be made (Yamamoto, 2016). Core 

sampling took place in 2012 in Nankai Trough, between depths of 270 to 330 m below seabed. 15 cores 

of 3.5 m were extracted, out of which 7 lost pressure. The cores were placed in ice-water on board. 

Nondestructive X-ray scanning, p-wave velocity and gamma ray density measurements were 

performed on the cores.  Both onboard and post-cruise tests were performed on the core samples. 

Fig. 2.10 shows the various investigation performed onboard and post-cruise, as reported by 

Yamamoto (2016).  
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Figure 2.10: Flowchart of test and analyses performed on PCATS core samples (Yamamoto, 2016). 

 

 

Most interesting, from geomechanics point of view, are the PCATS Tri-Axial tests (Fig. 2.11). In these 

tests, a short undisturbed sample is transferred from the core into a triaxial apparatus without any 

hand-touch under the in-situ pressure conditions. The apparatus allows for both small strain and large 

strain geotechnical testing, as well as direct flow measurements of permeability (Priest et al., 2015). 
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The system allows for testing under hydrostatic (pressure cell) of 25 MPa. It is composed of several 

interconnected sections: (i) the lower motor driven manipulator which pushes the sample from the (ii) 

Trixial transfer vessel (TTV) to a membrane and then to the (iii) test cell, against an upper (iv) motor-

driven manipulator. The apparatus is capable of performing a Resonance Column (RC) test by torsional 

vibrations with strain smaller than 10-4, providing (through analysis) the small strain (elastic) shear 

stiffness, Gmax. For large strain shearing, the system allow independent control of the pressure cell, 

water pressure and deviator stress. Control degassing is also possible with evaluation of methane 

mass. Gradient induced vertical flow through the soil sample allows evaluation of the sediment 

permeability.     

 

Figure 2.11: Schematic representation of the PCATS Triaxial (Priest et al., 2015). 

 

2.6 Core analysis and Petrophysics 

Core analysis relates the measurable physical properties of relevant lithological parameters like 

porosity, permeability, hydrate saturation, etc. However, drill cores from hydrate bearing reservoirs 

are difficult and expensive to acquire with preserved in-situ conditions. Furthermore, they cannot 
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provide the complete picture of the dependencies of physical properties on hydrate saturation as 

would be possible from geophysical field measurements. Therefore, a number of European research 

centers have been trying to provide relationship between measurable physical properties and hydrate 

saturations in different conditions, using various techniques, among which are: 

• In GFZ:  

o SEPP, which can measure electrical impedance from mHz to 4 MHz and the sonic wave 

velocity on hydrate bearing samples (diameter 30mm, length up to 60mm), where 

hydrate is formed from ice. 

o LARS which can provide hydrate-bearing sediments from methane dissolved in water 

up to saturations of 90% for production experiments on a dm-scale (diameter 46 cm, 

length 135cm); it allows to monitor the hydrate generation phase and the production 

experiment with electrical resistivity tomography (ERT) and seismic wave tomography 

(SWT) 

• In the national oceanography center at Southampton:  

o An ultrasonic rig which measures the sonic properties in ultrasonic frequency and 

resistivity at 80 Hz. It can use sample of 5cm in diameter and 2cm in radius. Hydrate 

can be formed using both excess gas and excess water method. 

o Pulse Tube which can be used to measure p-wave velocity and attenuation in a 

frequency range of 3 KHz to 10 KHz. It can contain and handle bigger samples of 

approximately 6-7 cm in diameter and 0.66 m in height. The resistivity measurements 

are still to be implemented in this. 

 

3 Production technologies 

3.1 General 

The formation of marine gas hydrates involves the concentration of remarkable volumes of natural 

gas, such that the dissociation of 1 m3 of methane hydrate results in the release of 165 -190 m3 of free 

gas. The release of gas from hydrates may be induced by one of the following three methods or by 

their combination: (i) increasing the temperature, (ii) decreasing the pressure in the geological 

formation, and (iii) chemical activation, notably by CO2 injection, which exchanges with and releases 

CH4 molecules from the hydrate structures. All of these techniques have been shown capable of 

producing methane in field tests. Depressurization and CO2 injection are the most promising methods 

in economic terms, and the latter has the advantage of being an important incentive for Carbon dioxide 

Capture and Storage (CCS) technology and research.  

To date, three successful production field tests have been undertaken in permafrost environments, 

and one test in marine settings, which demonstrated that methane extraction and production from 

submarine gas hydrate reservoirs is viable. The Geological Survey of Canada NRCan conducted three 

international trial projects for gas hydrate production at the Mallik site, Mackenzie Delta, Canada 

(1998, 2002, 2007/2008), including thermal and pressure reduction experiments. The projects focused 

on gas hydrates as an environmentally friendly source of energy for North America. An assessment on 
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geological hazards from gas hydrates and their climate change implication was carried out. In 2012, 

ConocoPhillips, the US Department of Energy (DOE), and the Japan Oil, Gas and Metal National 

Corporation (JOGMEC) conducted the Ignik Sikumi field trial at the Alaska North Slope, USA to 

investigate the potential of CO2 storage through CO2-CH4 exchange technology. The consortium 

succeeded in demonstrating the feasibility of injecting mixed gas to exchange CO2 for CH4. However, 

they concluded that while the tested technique may have applications in selected settings, 

depressurization techniques remain the most promising process for methane production. 

Furthermore, the first deep water test was performed at a depth of 1 km in spring 2013 in order to 

produce methane from gas hydrate reservoir of 60 m thickness at a sediment depth of 270 m. Using a 

technique of pressure reduction, the Japanese MH21 Research Consortium (established by the 

Ministry of Economic, Trade and Industry (METI)) produced about 20,000 m3 of gas per day over a 

period of 6 days. A key problem in developing production technologies is poor knowledge of the 

geomechanics of sediments bearing gas hydrates. This became obvious during generally successful 

field tests in the Nankai Trough and below permafrost in Alaska, both of which had been severely 

impaired by sediment mobilization and uncontrolled sand production (see section 3.2.4 for more 

details). Currently, the required standards and technical inspection systems for such geotechnical 

investigations do not exist.  

Worldwide, different technological approaches for the optimized exploitation of gas hydrate deposits 

are being evaluated and compared by means of dynamic system simulations and analysis (see section 

3.2 for more details). 

3.2 Gas hydrate simulators and geomechnical aspects 

Gas hydrate numerical simulators are central tools, used within the research community and industry, 

to both study and simulate gas production methods and to evaluate geotechnical risk associated with 

hydrate dissociation. Numerical simulations allow for better understanding of the behavior of gas 

hydrate-bearing sediments during gas extraction and hence constitute a vital step towards realization 

of long-term gas production for the future. Unlike conventional deposits, modeling and simulation of 

gas hydrate bearing sediments is far more complicated, as it entails coupled Thermo-Hydro-

Mechanical-Chemical (THMC) processes.  

Throughout the last decade a significant advancement has been made with respect to various 

components of gas hydrate simulators. This section overviews different aspects involved in simulators, 

with specific emphasis on the geomechnical aspects including the various test methods.  

One may identify the various components involved in Gas hydrate bearing sediments simulators and 

the associate field to which they relate, as provided in Table 3.1. 

Table 3.2 mark a few notable simulators used for hydrate production together with identification of 

the main features involved in the simulator. As can be seen, only 3 simulators include features of 

mechanical deformation, either through direct coupling or by semi-coupling, as demonstrated in the 

flowcharts shown in Figs. 3.1 and 3.2.  

The following subsections focus on the required elements within the mechanical component aiming 

for representation of the deformation and yielding of gas hydrate bearing sediments.  
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Table 3.1: Components involved in gas hydrate simulators and the relevant research field. 

Component Description Discipline and Research field 

Two phase flow (Hydro) Retention curves, permeability 

models. 

Hydrology/ Soil physics / Fluid 

mechanics / Petroleum 

Engineering. 

Thermal flow (Thermal)  Thermal conductivity models;  Petroleum Engineering 

Hydrate Dissociation 

(Chemical) 

Hydrate equilibrium pressures and 
temperatures; energies for phase 
transitions; Kinetic expressions for 
gas hydrate and gas reactions. 

Chemistry and Chemical 

Engineering. 

Deformation and yielding 

(Mechanical) 

Stiffness; strength and yield function; 

plastic flow; stress relaxation; sand 

migration. 

Geotechnical Engineering 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Fluid-thermal-mechanical coupled model of 

TOUGH-HYDRATE & FLAC semi-coupled simulator. 

Figure 3.2: Flow chart of a single timestep in the 

explicitly coupled simulator of Klar et al. (2013). 
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Table 3.2: Simulators for gas hydrate bearing sediments. 

Simulator Fluid Thermal Deformation Sand 
migration 

TOUGHT-HYDRATE1 Yes Yes No No 

MH21-HYDRES2 Yes Yes No No 

STOMP-HYD3 Yes Yes No No 

TOUGH-HYDRATE & FLAC4 Yes Yes Semi-
coupled 

No 

Klar and Soga (2005,2010)5,6 Yes No Yes No 

Kimoto et al. (2010)7 Yes Yes Yes No 

UMSICHT HyReS8 Yes Yes No No 

Klar et al. (2013)9 Yes Yes Yes No 

Gupta et al. (2015)10 Yes Yes Yes No 

Uchida et al. (2016)11 Yes Yes Yes Yes 

Qorbani and Kvamme (2017) 12 Yes Yes Yes No 
1 Moridis, G. J. (2003). Numerical Studies of Gas Production From Methane Hydrates. SPE Journal, 8(04), 359–370 
2 Kurihara, M., Sato, A., Funatsu, K., Ouchi, H., Yamamoto, K., Numasawa, M., … Ashford, D. I. (2010). Analysis of Production Data for 

2007/2008 Mallik Gas Hydrate Production Tests in Canada. In International Oil and Gas Conference and Exhibition in China. Society of 
Petroleum Engineers.  

3 White, M. D., & Oostrom, M. (2006). STOMP Subsurface Transport Over Multiple Phase: User’s Guide. Pacific Northwest National 
Laboratory, Washington. 

4 Rutqvist, J., & Moridis, G. J. (2008). Coupled Hydrologic, Thermal and Geomechanical Analysis of Well Bore Stability in Hydrate-Bearing 
Sediments. In Offshore Technology Conference. Offshore Technology Conference.  

5Klar, A., & Soga, K. (2005). Coupled deformation-flow analysis for methane hydrate production by depressurized wells. In 3rd International 
Biot Conference on Poromechanics, May 25-27, 2005, Oklahoma City (pp. 653–659). 

6 Klar, A., Soga, K., & Ng, M. Y. A. (2010). Coupled deformation–flow analysis for methane hydrate extraction. Geotechnique, 60(10), 765–
776.  

7 Kimoto, S., Oka, F., & Fushita, T. (2010). A chemo–thermo–mechanically coupled analysis of ground deformation induced by gas hydrate 
dissociation. International Journal of Mechanical Sciences, 52(2), 365–376. doi:http://dx.doi.org/10.1016/j.ijmecsci.2009.10.008 

8 Janicki, G., Schlüter, S., Hennig, T., Lyko, H., & Deerberg, G. (2011). Simulation of Methane Recovery from Gas Hydrates Combined with 
Storing Carbon Dioxide as Hydrates. Journal of Geological Research, 2011, 1–15.  

9 Klar, A., Uchida, S., Soga, K., & Yamamoto, K. (2013). Explicitly Coupled Thermal Flow Mechanical Formulation for Gas-Hydrate Sediments. 
SPE Journal, 18(02), 196–206. doi:10.2118/162859-PA 

10Gupta, S., Helmig, R., & Wohlmuth, B. (2015). Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate 
reservoirs. Computational Geosciences, 19(5), 1063–1088.  

11Uchida, S., Klar, A., & Yamamoto, K. (2016). Sand production model in gas hydrate-bearing sediments. International Journal of Rock 
Mechanics and Mining Sciences. 

12Qorbani, K. & Kvamme B. (2017) “Using a Reactive Transport Simulator to Simulate CH4 Production from Bear Island Basin in the  Barents 
Sea Utilizing the Depressurization Method,” Energies  10(187); doi:10.3390/en10020187 

 

3.2.1 Main features of the mechanical behavior of gas hydrate bearing sediments  

Determination of the mechanical properties of gas hydrate-bearing sediments is an essential 

prerequisite to evaluate a hydrate accumulation for potential gas production, to predict slope 

instability, or even methane release. The mechanical behavior is represented in a simulator using a 

constitutive model, which is the framework which expresses changes in stresses due to strain 

increments (resulting from deformation). Advanced constitutive models may characterize the global 

behavior as a whole. However, more often than not, the response is characterized by individual terms 

and concepts such as elastic stiffness, strength, plastic flow. Fig. 3.3 shows conceptual stress strain and 

volumetric strain vs shear strain curves as function of hydrate saturation, together with identification 

of the various terms. Stiffness refers to the ratio of stress increase due to deformation. Strength refers 
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to the ultimate deviatoric stress (q) that a material can sustain. Dilatancy refers to the material 

tendency to increase its volume under shearing1.  

Increasing hydrate saturation 

q

εd

q:εd  stress-strain

v=1+e

εd

v:εd  volume-strain

(a) stiffness

(b) strength

(c) dilatancy

softening

 

Figure 3.3: Illustration of typical response to gas hydrate bearing sediment to triaxial testing. 

These mechanical properties (i.e. stiffness, strength and dilatancy) have been the subject of series of 

studies over the last decade (e.g. Ebinuma et al., 2005; Priest et al., 2009; Winters et al., 2007; Yun et 

al., 2007; Santamarina and Ruppel, 2008; Miyazaki et al., 2012; Zhang et al., 2012; Ghiassian and Grozic, 

2010, Pinkert and Grozic, 2014). Regardless of the hydrate formation method all have shown the 

general trends presented in Fig. 3.3.  

The existence of hydrate does not only change stiffness, yielding and plastic flow, but also introduces 

further complexity due to its dissociation. For example, in case the hydrate is stressed (either due to 

historic events or due to well construction or depressurization) its dissociation will be accompanied by 

stress relaxation (see Fig. 3.4). The behavior of hydrate bearing sediments under dissociation 

conditions has not been studied thoroughly in laboratories, nor do all the simulators contain 

components that represent dissociation induced stress relaxation. Yet, it appears it may be of crucial 

importance to the overall mechanical behavior of the sediment surrounding a gas hydrate well. For 

example, Klar et al. (2013) have demonstrated how stress relaxation due to hydrate dissociation leads 

to a cycle of loading and unloading of shear stresses along interfaces between layers, even if the well 

depressurization sequence is monotonic. It is speculated that this may also be the reason for the 

excessive sand production seen in the field trials. This highlights the importance of expanding the 

laboratory studies for understanding the mechanical response of the material under dissociation 

process and not only under fixed hydrate saturation. Moreover, methodologies and studies should be 

developed and carried out to answer the question whether the hydrate is stressed in-situ.   

                                                      
1 Compaction due to shearing is also relevant. One may view both dilatancy and compaction as kinematic characteristics of the 

plastic flow (i.e. as plastic volumetric strains due to shearing).  
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Figure 3.4: Stress relaxation due to hydrate dissociation 

3.2.2 Experimental investigations of geo-mechanical properties  

The various properties mentioned in section 3.2.1 (e.g. stiffness, strength, and dilatancy) are 

commonly investigated and studies using artificial hydrate-bearing specimens, due to the high cost and 

complication involved with extraction of undisturbed samples. Laboratory formation of hydrate-

bearing soils has the advantage that it allows repeatable and well characterized sample compositions. 

Although hydrate can be formed under controlled laboratory conditions, there is still uncertainty with 

respect to the hydrate growth pattern, its distribution, and in-situ stresses within natural sediments. 

Therefore, various laboratory hydrate formation techniques have been adopted in different 

investigations, each of which describes different micromechanical interaction between the hydrate 

and the soil skeleton, in which the hydrate grows either in the grain contacts or randomly within the 

pore space.  

Existing laboratory hydrate formation techniques, involved in sample preparation for mechanical 

testing, may be divided into 3 main groups: (i) "Pore filling", (ii) "Load bearing", and (iii) "Grain contact 

hydrate". The morphology of each group is illustrated in Fig. 3.5. In the case of pore filling morphology, 

the elastic stiffness (associated with small-strains and deformation) is hardly affected by the presence 

of hydrate since the soil particles are free to move and rotate. Nonetheless, with the development of 

deformation and inelastic behavior, the hydrate particles contribute to the overall mechanical 

response. In the case of load-bearing morphology, the hydrate supports the soil structure but with only 

little kinematic constraints on the particle displacement (to rotate). In a grain contact (usually termed 

cemented2) hydrate structure, the hydrate closely interacts with the soil particles and thus creates a 

significantly stiffer and stronger sediment. 

                                                      
2 The distinction is made herein results from the recent identification that, from mechanical point of view, the hydrate does not cement the 
particles, but merely alters their kinematic response to shearing (Pinkert, 2016).  
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Figure 3.5: Morphology of hydrate formation in artificial soil samples. 

Pore filling samples may be obtained by two different preparation schemes. One possible scheme is to 

form hydrate by injection of water into a sample with an initial limited gas, until the gas is fully 

dissolved and water pore pressure reached its target back pressure (e.g. Priest et al., 2009). The second 

approach is to inject gas-water solution (e.g. Tohidi et al., 2001; Yun et al. 2007). Pore filling samples 

are obtained when the hydrate saturation is below 40%. The same process may be used to create load 

bearing samples, only with higher concentrations of gas. Alternatively, one may use the ice-seeding 

approach to form load bearing samples (e.g. Masui et al., 2005; Priest et al., 2005). In the ice-seeding 

approach, the soil is mixed with crushed ice prior to the sample assembling. While applying the cell 

and back pressures to the sample, gas is percolated through the sample, resulting in hydrate formation 

with the water/ice. In the case of "grain contact hydrate", a partly saturated soil is first brought to a 

certain stress level. Due to capillary forces, water are found near grain contacts, therefore when gas is 

injected under stable hydrate conditions, hydrate is formed near grain contacts. Clearly, this formation 

method depends on the grain size distribution and retention curve characteristics. It is believed that 

pore filling represents best the true morphology of offshore sediments, yet is poses more difficulties 

than others in the preparation process.  

Constitutive models for hydrate-bearing sediment characterization should generally be developed 

based on large amount of data, which commonly involve test results from various laboratories. In order 

to obtain comparable test results and reduce their uncertainties, the following aspects should be taken 

into consideration in sample preparation (hydrate formation method) and documented in detail: 

• Hydrate morphology in the pore space. 

• Sample homogeneity. 

• Thermodynamic conditions. 

• Formation time. 

• Stress history. 

In addition, in order to evaluate the hydrate effect on the hydrate-bearing sediment, proper 

characterization of an equivalent free-hydrate sample should be carried out, and calculations 

regarding the hydrate content calculation (saturation) should be clarified with all relevant parameters 

(e.g., hydrate stoichiometric number etc.). 

Laboratory geotechnical investigations are taking place in various institutions around Europe. Table 

3.3 lists these laboratories with related capabilities on fields of Geomechanics, Geophysics and Pore-

scale observations.  
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Table 3.3: Laboratories in Europe and capabilities on Geomechanics and Geophysics testing, and Pore-scale 
observations. 

Institute  Country Geomechanics Geophysics Pore-scale observations 

University of 
Southampton 

United 
Kingdom 

- Triaxial apparatus 
- Resonant Column  
 

- Ultrasonic 
measurements 

- Resonant Column  
- Tomography 

 

Technion IIT 
(Lab under 
construction) 

Israel - Triaxal apparatus + 
double wall cell system 

- 1D (Oedometric) 
apparatus 

- Ultrasonic 
measurements 

 

Ecole des 
ponts 
ParisTech 

France 
 

- Triaxal apparatus 
- MRI observations 

- Ultrasonic 
measurements 

- X-ray Tomography 

Gottingen 
University  

Germany   - X-ray Tomography 
- Cryo-SEM 
- Fast X-ray Crystal Size 

Determination (FXCSD) 
- Raman spectroscopy 

GEOMAR Kiel Germany - Flow-through Triaxal 
apparatus + ERT 

- Flow-through Triaxial 
apparatus + X-ray CT 

- ERT - Raman microscopy 
- MRI 
- X-ray CT 

Helmotz GFZ, 
Potsdam 

Germany - Direct Shear apparatus - Ultrasonic 
measurements 

- Electrical resistivity 

 

IFREMER, 
France 

France 
 

- Triaxal apparatus - Resistivity 
Tomography 

 

Physics and 
Technology, 
University of 
Bergen 

Norway  - Ultrasonic 
measurements 

- Electrical resistivity 
- MRI 

 

3.2.3 Constitutive models for hydrate bearing soil 

Constitutive laws (or models) are the set of mathematical rules aiming to represent the sediment 

mechanical behavior in terms of stress changes (increments) due to strain increments and other state 

variables, such as hydrate saturation, void ratio, stress level etc., 𝛿𝜎𝑖𝑗 = 𝑓(𝜎𝑖𝑗, 𝑠ℎ, 𝑒, 𝛿𝜖𝑖𝑗). The main 

focus of early years studies to identify the hydrate effect on sediment stiffness, strength and dilatancy, 

related to the common use of elastic-perfectly plastic constitutive laws, in which yielding is 

represented by a single (fixed in stress space) yield loci answering the Mohr-Coulomb … together with 

a non-associative flow rule. Yet the experimental data (new and old) hold valuable information that 

can assist in developing more unified constitutive frameworks. For example, Pinkert and Grozic (2014) 

used a comprehensive optimization approach over the entire stress strain curve of more than 30 test 

results to develop and calibrate a unified (deviatoric strain) hardening model that incorporates the 

effect of hydrate. The advantage of the model is that it recognizes the relative contribution of the 

hydrate, and hence allows for determination of the behavior based on pre-analysis of sediment 

skeleton-related parameters using only standard drained triaxial test results on saturated sand 

(without hydrate). The model, however, lacks consideration of hydrate induced stress relaxation.  
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Another good example, is the Methane Hydrate Critical State (MHCS) developed by Uchida et al. 

(2012). The model follows the ideas of critical state soil mechanics (Roscoe et al., 1958), which 

represents soil strength and stiffness by deviatoric and volumetric yielding. The model was found to 

reasonably represent the geomechanical behavior of both hydrate-bearing and hydrate-free 

sediments as shown in Fig. 3.6. 

Axial strain (%)

D
ev

ia
to

r 
st

re
ss

 (
M

P
a)

0

1

2

3

4

5

6

7

151050

Masui et al. (2007) MHCS model
V

o
lu

m
et

ri
c 

st
ra

in
 (

%
)

Axial strain (%)

Sh=0.08

151050
-4

-2

0

2

4

6

8

Sh=0

 

Figure. 3.6: Drained triaxial tests on Nanaki hydrate-bearing sediments conducted by Masui et al. (2007) and 

the MHCS model simulations. 

The key features of the MHCS model are: (i) to incorporate the strength enhancement due to hydrates 

by enlargement of the hydrate-free yield surface, which implicitly induces a greater dilatancy; (ii) to 

represent smooth transition from linear-elastic to plastic behavior; (iii) to capture shear-induced 

degradation of the geomechanical contribution from hydrates; and (iv) elastic stiffness increase due to 

hydrates. The model has been further developed by other researchers to include the effect of the 

intermediate principal stress (Lin et al., 2015) and state-dependent dilatancy equation (Shen et al., 

2016). 

 

 
Another interesting approach has been developed in Barcelona, in which a unified critical state model 

CASM (Clay and Sand Model; Yu, 1998) is adopted for hydrate bearing sand representation, due to its 

simplicity and flexibility in describing the shape of the yield surface and its ability predicting the 

mechanical behavior of sands. CASM is formulated in terms of the state parameter concept introduced 

by Been and Jefferies (1985) and uses the stress-dilatancy relationship proposed by Rowe (1962).  

The changes in the mechanical properties of the sediment due to hydrate is included as a densification 

process in CASM. This densification process is proportional to hydrate saturation and results in a 

decrease of the available porosity and increase in the sediment composite bulk moduli. Hydrate-CASM 

considers changes on sediment properties via (i) variation of the initial available void ratio, (ii) decrease 

of the swelling line slope, (iii) reduction of the state parameter value, and (iv) a widening of the size of 

the yield surface. The subloading concept (Hashiguchi, 1989) has also been implemented in the 

formulation to consider plastic deformations inside the yield surface, and to provide a smooth 

transition from elastic to elasto-plastic behavior.  
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Hydrate-CASM has been validated against triaxial test experimental data. The model reproduces fairly 

successfully key features of synthetic methane hydrate bearing sediments (MHBS) mechanical 

behavior, like increases in stiffness, strength, and dilatancy as can be seen in Fig. 3.7. 

 

 

Figure. 3.7: Comparison between Hydrate-CASM predictions and experimental results for synthetic MHBS with 
different hydrate morphologies: Stress-strain behavior and volumetric response of a) cementing hydrates 
specimens, and b) pore-filling hydrate specimens, after Masui et al. (2005) 

 

 

Recently, Pinkert (2016) have also used Rowe (1962) theory and examined its validity for hydrate 

bearing sands. This theory describes the relation between stresses and plastic flow prior to peak 

strength. Using the experimental data of Hyodo et al. (2013) and Masui (2005), Pinkert found that, all 

of the tests results fall on the same line when conducting Rowe stress-dilatancy analysis regardless of 

the hydrate saturation or formation method (as long as the sand is the same). This indicates that the 

presence of hydrate merely changes the kinematic of deformation (plastic flow) and does not 

contribute to the strength in the form of "cohesion" as believed by many.  Fig. 3.8 shows the analysis 

of Pinkert (2016). This finding highlights the importance of understanding the kinematic interaction 

between hydrate and sediment skeleton, and the need to expand the testing to other conditions than 

triaxial compression. Based on the earlier recognition of Pinkert (2016) [by private communication], 

with respect to the non-cohesive nature of hydrate-bearing sediments, Uchida et al., (2016) re-

evaluated the MHCS model and found (by a sensitivity analysis and comparison to existing triaxial test 

data) that the parameters defining the plastic flow are the most dominant ones, suggesting also that 
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cohesion is not needed in order to fit the experimental results. Lack of true “cohesion” was also 

discovered independently through direct observation, using CT scans by Chaouachi et al. (2015), as 

shown in Fig. 3.9.   
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Figure 3.8: Analysis of Pinkert (2016): (a) Deviatoric stress and volumetric strain versus axial strain in drained 
triaxial tests of hydrate-bearing Toyoura sands Ta, Tb and Tc; digitized from Hyodo et al. (2013) (solid line) and 
polynomial curved fitted (dashed line, for continuous derivation purpose); (b) Examination of test results using 

stress-dilatancy analysis by Rowe (1962) - solid line represents the Rowe expression based on cvf which was 

obtained from optimization with all hydrate saturations (including zero). 
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Figure 3.9: CT image showing a thin water layer remaining between gas hydrate (white) and sediment grains; 
after Chaouachi et al. (2015).  

3.2.4 Particle migration 

In March 2013, the world’s first trial of gas production from offshore hydrate-bearing sediments by 

depressurization method was conducted at the Eastern Nankai Trough site, Japan. While the operation 

was successful in producing gas, after six days it suddenly encountered a large amount of sand 

migration into the well, a phenomenon known as ‘sand production’, leading to a premature 

termination of the operation. This incident has highlighted the importance of development of sand 

migration model within hydrate-bearing sediments for developing of mitigation schemes.  

Uchida et al. (2016) provided a comprehensive analytical formulation that entails sand migration 

problem within gas hydrate-bearing sediments, including features of grain detachment, migration, 

sediment deformation and hydrate dissociation. The formulation is thermo-hydro-mechanically 

coupled such that grain detachment causes stress reduction, sediment shear deformation induces 

grain detachment and grain flow alters multiphase fluid pressure and temperature profiles. Using the 

developed formulation, the effect of various operational methods on sand production in hydrate-

bearing sediments during gas production were investigated numerically. It was found that, out of the 

different operational methods investigated, lowering depressurization rate was the most effective in 

reducing sand production for a given gas production. 

One exception in which sand production has deceased is the trial at the Ignik Sikumi, Alaska in 2012, 

which was conducted by chemical activation followed by depressurization. During the trial, initial sand 

production ceased after two weeks while CH4 gas production continued for five weeks. The mitigation 

of sand production was attributed to mechanical or hydraulic effects through the formation of CO2-

rich gas hydrates. This test showed the favorable effect of CO2 hydrate formation, and highlighted the 

need to incorporate chemo-processes into existing thermo-hydro-mechanical formulations. Uchida, 

Deusner, Klar and Haeckel (2016) presented an analytical formulation to capture the coupled thermo-
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hydro-chemo-mechanical behavior of gas hydrate-bearing sediments during gas production via CO2 

injection. The key features of the formulation include hydrate formation and dissociation, gas 

dissolution and multiphase flow for both CH4 and CO2, facilitating CH4-CO2 hydrate conversion. 

3.2.5 Gas hydrates hosted in carbonate sediments 

Carbonate sediments comprise the second largest depositional system on earth and accumulate in 

large quantities in deep pelagic environments and along kilometre-wide marine carbonate platforms 

that are distal from continental sediment and nutrient flux. Shallow marine carbonate platform 

environments do not have the pressure/temperature conditions conducive to the formation of gas 

hydrates. Nevertheless, when these carbonate environments are found in deeper water and colder 

temperature, conditions become favourable for the formation of gas hydrates. These carbonate 

prospects have been overlooked although they may hold considerable resources. 

In most cases, gas hydrate reservoirs were tested in non-carbonate sediments deposited in offshore 

river delta environments, e.g., Mackenzie Delta, Bay of Bengal, continental slopes and oceanic troughs 

(Taiwan, Japan). The sediments in these environments consist of varying proportions of siliciclastic 

sand (quartz and accessory feldspar grains), clays and some authigenic carbonate. Carbonate 

sediments have rarely been sampled and tested for the presence of gas hydrates and are generally 

overlooked as potential gas hydrates exploration targets. To become viable repositories of gas 

hydrates in areas where biogenic or thermogenic gas has migrated close to the seabed, carbonate 

sediments need to have porosity and grains size characteristics that are similar to tested non-

carbonate sediments as well as conditions where pressure and temperature are conducive to the 

formation of gas hydrates.  

These conditions can be met in unconsolidated to poorly consolidated carbonate sands in the following 

environments: 

1. Drowned carbonate platform: A change in environmental conditions, such as increased 

nutrient supply and influx of clay or rapid sea-level rise can result in the termination of 

carbonate production and drowning of the carbonate platform (Gatt & Gluyas, 2012).  

2. By-passing of carbonate sand: Carbonate platforms where carbonate production is stimulated 

and increased by a moderate rise in sea-level. In these cases, carbonate sands are shed to 

deeper slope environments and troughs during periods of high carbonate production. 

Grains in non-carbonate environments (e.g. quartz sand) are usually modeled as well-sorted, rounded 

to well-rounded spheres with a cubic grain packing that would produce a maximum porosity of 47%. 

In contrast, typical carbonate sand grains may comprise benthic foraminifera, bivalve, echinoid and 

coralline red algal clasts which have variable morphologies ranging from spherical, lenticular to 

irregular-shaped grains with a surface texture that varies from well-rounded to angular. Voids in 

carbonate grains may include mouldic and intragranular porosity (Figure 3.10). These variable grain 

morphologies and voids differ from quartz sand fabric and can produce higher levels of porosity and 

permeability which affect the level of sand production and gas extraction. Carbonate grains may also 

be deposited in water which is close to carbonate saturation, resulting in early cementation which can 

have a stabilizing effect in reducing sand production. 
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Figure 3.10: Cryogenic SEM photomicrograph of a fractured section through a foraminifera test within sediment 
(IODP Leg 311, Cascadia Margin, core sample U1327, from approximately 9 m deep in the sdiment). Authigenic 
pyrite framboids [bright] are present both within the test and in the surrounding ice-mud matrix. Water-ice [dark 
grey] largely fills the chambers of the test (Rochelle, unpublished information). 

 

4 Monitoring 

Technological advancement and increasing environmental awareness have led to an enhanced 

dissemination of monitoring approaches. Nowadays, monitoring of the environment is considered an 

essential tool related to the economic, ecologic and safe use of energy resources and its legacies (c.f. 

CCS legislation, CCS-directive, European Parliament, Council of the European Union, 2009), and will 

apply to methane hydrates as a new energy source as well. Therefore, a comprehensive monitoring 

scheme is a prerequisite for social acceptance and official permission.  

Monitoring activities should ideally be conducted throughout the whole process, starting with vessel-

based overview and baseline measurements to find and quantify natural seepage during the 

exploration phase, continuing during drilling and intensifying during exploitation as pointed out in, and 

defined by, the mining codes for marine mining by the International Seabed Authority ISA 

(https://www.isa.org.jm/mining-code; last visited 03 May 2017). Even in the post-production phase, 

https://www.isa.org.jm/mining-code
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abandonment monitoring is an important task to detect environmental hazards at an early stage, i.e. 

gas ebullition or sediment movement, potentially emerging from the disused production sites.  

This section presents a selection of potential multi-parameter monitoring techniques and concepts for 

continuous monitoring in the water column and at the seabed around a methane hydrate production 

site. These techniques and concepts match those of scientific-oriented production tests where 

monitoring still serves to increase the general understanding. Monitoring related to commercial 

production is, status today, not (legally) defined and might be site-specific.  

The following selection neither covers survey based (acoustical) geophysical reservoir monitoring, nor 

pore water analysis and does not describe borehole monitoring options (i.e. logging while drilling) 

except for an introduction to distributed fiber optic sensing. All of these mark additional monitoring 

options suitable for answering specific questions on different spatial and temporal scales. 

 

4.1 General 

Monitoring of the environment is an essential task when dealing with the economic, ecologic and safe 

use of sub-marine methane hydrates as a new energy source. Therefore, a comprehensive monitoring 

scheme is a basic requirement for social acceptance and official permission.  

Monitoring activities should ideally be conducted throughout the whole process, starting with vessel-

based overview and baseline measurements to find and quantify natural seepage during the 

exploration phase, continuing during drilling and intensifying during the exploitation and production 

phase. Even in the post-production phase, abandonment monitoring is an important task to avoid 

environmental hazards potentially emerging from the disused production sites.  

In the following sections, a suitable monitoring concept will be addressed, and technologies, which are 

used for monitoring in the water column and at the seabed around a methane hydrate field site will 

be discussed. 

4.1.1 Basic Concepts of Modular and Scalable Monitoring Networks 

Permanent monitoring systems, deployed on the seabed in a methane hydrate field, are a suitable 

method to address measuring challenges. As exemplarily visualized in Fig 4.1, several nodes equipped 

with different sensor suites form a monitoring network at the seabed and communicate with each 

other. The individual stationary nodes should be placed at characteristic and significant points, which 

are for example in direct vicinity of the drilling well, where the sediment structure is disrupted due to 

the drilling process or at natural faults in the hydrate field.  

At least one node should be placed outside and upstream every activity of the methane hydrate field 

(c.f. the upper left node in Fig. 4.1). This reference node will monitor the baseline during the whole 

process. It is important to decide whether any parameter change detected by the monitoring system 

around the center of activity is caused by, or originates from, changes of the outer conditions, or if it 

is due to production action. The latter would point to a potential hazard and requires closer 

investigations, e.g. by means of triggered and dedicated surveys.  
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Figure 4.1: Exemplary installation setup of a monitoring network at the seabed (courtesy of Kongsberg Maritime 
Underwater Positioning and Monitoring, Fietzek et al., 2016). 
 

All data recorded by the network will be collected through a small data processing unit (DPU) mounted 

on each node. Besides storing the raw data the DPU condenses and interprets the data directly at the 

sea bed. It is not only communicating with the other nodes of the network by acoustic means, but also 

with the “topside”, such as a vessel, an unmanned surface vehicle or a buoy, to regularly transmit 

status information. If the status shows a leakage alarm, the raw data from the relevant node can also 

be accessed from the topside. All other data will be stored at the seabed and can be used for extended 

post-processing and interpretation after a recovery of the nodes during maintenance tasks. Data 

handling and management is an essential step at all levels of an integrated monitoring system. 

Furthermore, advanced data products from a monitoring system can be generated by transferring their 

data into site-specific predictive models. 

Apart from the reference node(s), the described network is placed in direct vicinity of the production 

well and in the near field. As shown in Fig. 4.2, also the mid and far field of the reservoir should be 

included in the monitoring scheme and targeted with reasonable sensor-platform combinations to 

gather the “full picture” of the hydrate field. Monitoring large areas cannot be achieved by stationary 

platforms equipped with point sensors alone. Different sensors on submersible mobile platforms like 

ROVs, AUVs or Gliders are more suitable to monitor water column and sediment surface, because 

these platforms can flexibly cover lager areas. These measurements can be supplemented by vessel-

based monitoring using sonar systems for e.g. gas bubble detection. All these different kind of 

platforms can be connected and integrated into the monitoring network. All data, independent of its 
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origin from a stationary monitoring node or a mobile platform survey, should be collected, fused and 

processed to obtain advanced data products as an output (Fietzek et al., 2016).  This finally provides 

the targeted situation awareness of the environment under investigation. 

 

 

 

Figure 4.2: Monitoring solutions adapted to the distance from the production well (courtesy of Kongsberg 
Maritime Underwater Positioning and Monitoring). 
 

4.1.2 Monitoring Technologies - Stationary Lander Systems and Point Sensors  

In a lander-based monitoring system, all the proposed nodes are stationary observatories at the 

seabed and mainly function as versatile carriers for diverse sensors. The landers have a unified design, 

provide a networking capability, are modular and scalable. Especially at the seabed environmental 

monitoring represents a great challenge, because all systems need to perform reliably under extreme 

conditions (high pressures up to several hundred bar), in a cold and corrosive environment and under 

energy limitation. During a long-term deployment, changes of the environmental factors (e.g. currents) 

might influence the effectiveness of the monitoring.  

Beside sensors, every lander should comprise a DPU for collecting, processing and storing the data as 

well as acoustic transmitters for communicating with other nodes or the topside, a sufficient quantity 

of battery packs, and a possibility for safe, reliable and economic launch and recovery. All sensors need 

to be maintained on a regular (up to yearly) basis and battery packs substituted.  

In general, any sensor can be mounted on a lander system and integrated into the monitoring network. 

Every node or platform can be equipped with different sensors according to the requirements, which 

were determined in advance, e.g. during a pre-survey of the site. Later adaptations of the payload 

composition can also be realized during maintenance tasks and the measuring configuration changed 

by command from the topsite (c.f. preceding section). 

To every single sensor on every single node an individual measurement schedule can be assigned, 

depending on the monitoring challenge for every parameter (e.g. if long-term changes during the 



 

46 

 

whole production process, seasonal background cycles or a tidal cycle should be monitored) or on its 

power consumption.  

A division into three monitoring tasks (for methane/dissolved gases, environmental condition and 

deformation) is useful to cover the entire monitoring tasks during gas hydrate production.  With 

respect to methane monitoring, different sensors should be used to determine and quantify gas 

released into the water column. On the one hand, point sensors for direct measurement of dissolved 

gases in water (CH4, CO2, O2) are proven state-of-the art technology. On the other hand, active and 

passive acoustics (hydrophones, sonars, in special cases also echo sounders or cameras) can be used 

for gas bubble detection in the water column over a larger area. Depending on the monitoring 

challenge, sonars can be mounted on a lander system for a horizontal scan, or on a surface platform 

to scan vertically through the whole water column. With respect to the general characterization of 

environmental conditions at the site, further sensors can be used to evaluate important parameters of 

the surrounding water, which are essential for correct interpretation of a possible leakage and 

sediment movement and for generation of a complete environmental model. Sensors of proven 

technology can be used for this task: oceanographic sensors for physical parameters (CTD), currents 

(ADCP, current profiler) as well as turbidity, particle size or biological parameters such as chlorophyll 

fluorescence.  

With respect to deformation monitoring, the seabed needs to be monitored with highly accurate 

methods, since even small deformation and subsidence processes around the production well could 

be a serious indication of an imminent hazard. Sensors for highly accurate pressure and inclinometer 

measurements need to be mounted on several lander systems in the hydrate field. With present 

technology, heading and tilt can be determined with up to approx. 0.1° and 0.05° accuracy respectively. 

In addition, relative positions in the hydrate field can be determined with an LBL (Long Base Line) 

acoustic system. A set of nodes at the seabed (at best every node in the field) is equipped with acoustic 

transponders, between each a baseline is measured. The acoustic range of the transponders is up to 

2000 m (presupposed a more or less smooth seabed without any obstacles between the nodes). From 

the measured distances and by including the pressure measurements, even the smallest seabed 

deformation and subsidence can be determined at absolute accuracies of less than 2 cm. The greater 

the number of transponders in the LBL grid, the higher the positioning accuracy. In addition, known or 

measured sound velocity will help to increase the accuracy of the LBL system as well as a statistical 

post processing like sensor fusion algorithms for estimation of the covariance (repeatability of the 

measurements for each node) and noise suppression.  

In summary, it can be emphasized that with the current technology a comprehensive monitoring and 
alert system atop the seabed is available for submarine mining activities. It should further be 
supported by sub seafloor observations including logging while drilling measurements and acoustic 
surveys.  



 

47 

 

4.1.3 Monitoring Technologies – Distributed Fiber Optic Sensing 

Distributed fiber optic sensing has become a valuable monitoring tool in petroleum engineering in 

recent years, and has even been involved in the monitoring of the few field trial tests mentioned 

earlier, mainly for temperature profiling. This section reviews recent fiber optic sensing developments 

that originated from the European research community, which may be incorporated into the well 

design for well integrity evaluation. In specific, this section reviews recent innovations in the field of 

Brillouin distributed fiber optic sensing of strain. It should be noted that Brillouin scattering may also 

be used to evaluate temperature changes (as been previously considered).   

Strain is a fundamental component of structural mechanics. It provides information on the stress levels 

in elastic systems and on the cumulative damage and fatigue in elasto-plastic systems. Evaluation of 

the induced strain in the production well may well be the most helpful measure of well integrity. 

Brillouin scattering is a nonlinear process (Boyd 2008), in which acoustic phonons interact with a 

propagating light wave resulting in backscattering. Brillouin scattering may occur spontaneously due 

to interaction of thermally (and naturally) induced acoustic waves with an incident light wave, or 

intentionally by stimulating the interaction using a counter propagating light wave. The latter 

approach, of Stimulated Brillouin Scattering (SBS), has the advantage of stronger scattering, allowing 

for more precise measurements, as well as application of more advanced interrogation techniques. In 

principle, both temperature changes and strain (or density) changes affect the Brillouin scattering, and 

hence can be evaluated by measuring and analyzing (in the time and frequency domain) the 

backscattered light.  A comprehensive state of the art review of various interrogation techniques of 

Brillouin distributed sensing can be found in Motil et al. (2016).  The following are a few innovative 

improvements, originating from the European research community, associated with increased spatial 

resolution and dynamic capabilities.  

Conventional BOTDA (Brillouin Optical Time Domain Analysis) is limited to a spatial resolution of 

roughly 1 m, due to constraints on the effective light pulse width. Zadok et al. (2012) have adopted 

concepts from radar technology, and utilized them to establish a new paradigm of high-resolution 

sensing. By using high rate, pseudo-random, phase coding of both the Brillouin pump and the probe 

waves, they were able to restrict the correlation between pump and probe to narrow peaks with 

arbitrary separation. Fig. 4.3 shows the principle of random access distributed sensing. Fig. 4.1a 

illustrates the binary phase modulated Brillouin probe wave complex envelope, propagating in the 

positive z direction (top row). The sign of the optical field randomly alternates in between symbols 

through binary phase modulation. The bottom row of Fig. 4.3a illustrates SBS pump wave complex 

envelope, co-modulated by the same binary phase sequence, and propagating in the opposite 

direction. Fig. 4.3b demonstrates how the product between the pump envelope and the complex 

conjugate of the signal envelope generate a constant driving force, which prevails at discrete peak 

locations only (center), in which the two replicas of the modulation sequence are in correlation. 

Elsewhere, the driving force is oscillating about zero. Fig. 4.3c shows the magnitude of the resulting 

acoustic field, obtained by temporal integration over the driving force. This technique allows for 

considerable improvement in the spatial resolution, to the level of 0.01 m.  
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Figure 4.3: Principles of random access distributed sensing. (a) phase modulation of the probe and pump waves; 
(b) correlation between the coded waves; and (c) the induced acoustic field, allowing for high resolution Brillouin 
sensing (following Zadok et al. 2012). 
 

Slope assisted BOTDA (Peled et al., 2011), allows for Brillouin based dynamic fiber optic sensing. Rather 

than evaluating the complete Brillouin gain spectrum (BGS), a single point (i.e. frequency) positioned 

along the linear, rising or falling, section can be interrogated, thus allowing conversion of amplitude 

changes to Brillouin frequency changes, as seen in Fig. 4.4. The unique feature of the slope assisted 

BOTDA is that it allows evaluation of Brillouin frequency dynamic changes for an arbitrary initial 

Brillouin frequency shift (i.e. for a non-uniformed initially strained fiber). This is achieved by using a 

variable optical frequency probe wave, whose time evolution is tailored to such that wherever it meets 

the counter-propagating pump pulse, their frequency difference sits on the middle of the linear part 

of the local BGS. Peled et al. (2013) were able to demonstrate measurements of strain wave traveling 

at the speed of 4000 m/s.  
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Figure 4.4: Slope assisted Brillouin sensing. A working point, positioned in the center of the linear raising section 
of the BGS, is selected based on a preliminary BOTDA scanning. Temporal changes in strain shift the BGS left of 
right. The amount of shift can be evaluated based on the gain change at the working point (consider a linear 
relation based on the slope), after Peled et al. (2011).  
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The ability to evaluate strain profiles at high resolution and to investigate dynamic wave propagation 

within a given structure, facilitates the possibility of developing static and dynamic strategies for 

wellbore integrity. Stress analysis, similar to that performed within pile foundations (but which relies 

on the spatially distributed strain profile) may allow investigation of both the well structure integrity 

and the condition of the surrounding sediment. Static high resolution sensing may infer on stress 

concentrations and the onset of damage. High resolution distributed sensing may also be incorporated 

into fundamental laboratory studies of stress strain response of hydrate bearing samples, as was 

demonstrated by Uchida et al. (2015) for uniaxial loading of acrylic glass.  

5 Fundamental (multiscale analytical and experimental) research for future 

production R&D 

Hydrates are complex multi-scale and multi-phase systems that can form from various phases, 

including water, hydrate formers adsorbed on mineral surfaces, hydrate formers dissolved in water. 

The number of independent thermodynamic phases is too high to result in any possibility of 

thermodynamic equilibrium in natural systems. Depending on the origin of the hydrate former, 

different hydrate structures can form. 

This non-equilibrium system depends on mass and heat transport processes from micro-scale to 

macro-scale. As a consequence, the properties of the material may be changed on a time scale of 

minutes up to hours and days when samples are collected (for instance when samples are stored and 

confined in a container). These properties are very dependent on the original local state.  

Experiments and modeling on molecular-scale and macro-scale are needed to determine how much 

the samples (phase distribution in the pore, composition, hydrate phases, saturation, geomechanical 

properties) will be affected over time upon changing boundary conditions, or by perturbation during 

recovery or exchange with CO2. Similarly, in terms of mechanical properties, hydrates are hard phases 

in relative sense similar to minerals when compared to liquid phases and/or gas. It is important to 

determine how these properties are modified by the confinement. Also, the fluid flow through the 

pores may affect the compressibility of the pore-hydrates system. 

Mineral surfaces structure water in different way depending on the surface distributions of charge 

atoms. Hydrates former like methane can sometimes be adsorbed inside structured water. In case of 

polar molecules likes H2S, CO2, direct adsorption on mineral surfaces are also possible.  The properties 

of the adsorbed gas molecules are different from the same molecules in gas phase or dissolved in liquid 

water. 

A complementary scheme of experiments and computer modeling is needed to capture the dynamics 

of the multi-scale phase transitions involving hydrates, fluids, mineral surfaces and sediments. Fig. 5.1 

and Table 5.1 describe complementary techniques designed to probe at distinct spatial resolution from 

nano-scale to macro-scale or even field. Phase transitions are by nature nano-scale phenomena 

occurring on a cross interfaces. But associated mass transport is implicitly coupled to higher order 

transport (micro scale, fluid dynamics, larger scale flow).  



 

50 

 

 

 

Figure 5.1: Techniques of investigations for gas hydrate research and type of information obtained as a function 

of spatial resolution 

 

Table 5.1: Experimental techniques used for gas hydrates or gas phase characterization and the type of 
information obtained, the scale probed and the nature of phase investigated. 

Experiments Scale Probed Information 

MRI 300 m  Kinetics/morphology 

MS-Chromatography  Gas phase Composition 

NMR-I ~10 m Bulk Composition/Kinetics 

Raman Brillouin 
spectroscopy 

< m Interface+bulk Thermo/Kinetic/composition 

X-ray diffraction ~ m to 10 m Bulk Structure/composition 

Cryo tomography ~ 5-10 m Bulk 3D morpho 

 

From the above figure and table, it is a clear that there is a need for a cross discipline treatment of 

hydrate bearing sediments, which will reveal the intricate interaction that exists between the various 

components of the systems at their different scales (molecular, soil grain contact, soil skeleton, and 

formation layers). Multiscale analytical and experimental research plan may help discover the 

fundamental mechanisms that govern the system. For example, the validity of artificial hydrate 

formation in soil testing and its implication on the mechanical response characterization is yet clear 

and warrants research. Issues of geological history and stressing may be of high interest for future 

production and may be approached by multiscale cross discipline research. Time scale behavior of the 

quasi-static and dynamic systems may be of interest, relating hydrate recrystallization rate to 

geological and production scales. 
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6 Summary, outlook and conclusions 

One of the promising energy resources, capable of answering mankind’s energy demands for the next 

100 years, is methane hydrate. Throughout the last decade significant research has been conducted 

on various aspects of gas hydrate, leading also to recent, limited in number, onshore and off-shore 

production tests. While members of the academia and industry of Europe have been involved in 

various aspects of the worldwide R&D effort, led by Non-European countries (e.g. Japan, South Korea, 

USA, China, Taiwan, India, New Zealand), they have never collaborated and worked together to 

advance and promote production of gas hydrate from European waters. 

The migrate project (COST Action ES1405) has taken the first steps towards the creation of a European 

network that would integrate expertise from European research groups and industrial players with the 

aim of advancing the potential exploitation of gas hydrate in Europe. As part of this objective, this 

(first) WG2 report overviewed various aspects related to the production of gas from gas hydrate 

bearing sediments, with an emphasis on technologies originated from Europe specifically for gas 

hydrate, and on technologies that could be modified (relatively easy) for the purpose of gas hydrate 

exploration, monitoring and production. In specific, the use of the MeBo200 )developed by Bauer 

Maschinen GmbH and MARUM( as both exploration and production tool may be a valuable solution.  

It is clear that Europe holds tremendous capabilities in key areas of gas hydrate research and 

development (which include: offshore drilling equipment, laboratory testing facilities, numerical 

simulations, and a range of monitoring technologies). Whilst we acknowledge that many technical 

hurdles remain to be overcome in terms of successful hydrate exploitation, if we are to demonstrate 

Europe as a World  leader in the exploitation of gas hydrate resource, then we first need to facilitate 

co-ordination, joint working and information sharing between the many different European groups 

involved.  
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WPG exploration Ltd., http://www.wgp-group.com; P-Cable Spring Energy report) 

Figure 2.4: Correlation of near vertical reflection events recorded by an Ocean-Bottom Seismometer 
(OBS,; left hand) and the corresponding multichannel seismic section. 

Figure 2.5: Examples of Vp (upper left) and Vs (lower right) ray coverage of subsurface structures. Ray 
paths used for the inversion of OBS data are overlain on reflection seismic images used to identify the 
relevant sediment interfaces. Due to the low shear wave velocity reflected converted waves can image 
smaller parts of the model space only. However they can contribute to detailed investigations of 
velocity anomalies and hence physical parameters. Picked (black) and computed (colored) travel-times 
are displayed beyond the seismic sections. 

Figure 2.6: Illustration of a vertical wellbore completion. Conventional (left) and CTD (right) (Perry et 
al., 2006). 

Figure 2.7: Schematic diagram of directional drillings (Jahn et al., 2008, Hydrocarbon exploration and 
production). 

Figure 2.8: Sketch of the MeBo200 developed by MARUM and BAUER Maschinen GmbH (left) and 
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Figure 3.10: Cryogenic SEM photomicrograph of a fractured section through a foraminifera test within 
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high resolution Brillouin sensing (following Zadok et al. 2012). 

Figure 4.4: Slope assisted Brillouin sensing. A working point, positioned in the center of the linear 
raising section of the BGS, is selected based on a preliminary BOTDA scanning. Temporal changes in 
strain shift the BGS left of right. The amount of shift can be evaluated based on the gain change at the 
working point (consider a linear relation based on the slope), after Peled et al. (2011).  
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