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Abstract Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of
nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by
concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite
oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern
Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following
Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation
constant (Ks = 0.254 ± 0.161 μM) was 1–3 orders of magnitude lower than in cultivated NOB, indicating higher
affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted
zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ
specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

Plain Language Summary Nitrite is a key intermediate in the biogeochemistry of low-oxygen
marine environments, including the loss of fixed nitrogen as dinitrogen gas and nitrous oxide. Nitrate
reduction to nitrite coupled to reoxidation of nitrite to nitrate has been proposed as a cycle that can preserve
bioavailable nitrogen in oxygen minimum zones. This cycle implies that nitrite oxidation occurs in the
absence, or near absence, of oxygen. Nitrite oxidation is considered to be an obligately aerobic process,
although it has been reported from anoxic waters. Here we report on the regulation of nitrite oxidation by
oxygen and nitrite in natural assemblages from the oxygen minimum zone of the Eastern Tropical North
Pacific. We show that natural assemblages have very high affinity for nitrite and that oxygen actually inhibits
nitrite oxidation in anoxic samples. These findings have implications for the marine nitrogen budget now and
in future scenarios of changing ocean conditions.

1. Introduction

Nitrogen (N) is an essential nutrient for organisms on Earth. N limits primary production in many parts of the
ocean and thus plays an important role in controlling CO2 uptake by the ocean. All N transformations,
including the net loss of fixed N, occur in oxygen minimum zones (OMZs) due to the coexistence of oxic
and anoxic environments. OMZs are characterized by a strong O2 gradient (oxycline) overlying a layer of high
nitrite (NO2

�) concentration coinciding with an oxygen-depleted zone (ODZ) where O2 concentration is low
enough to induce anaerobic processes. OMZs are “hot spots” of N loss [Codispoti, 1995; Gruber and Sarmiento,
1997; Ulloa et al., 2012] via denitrification and anammox [Ward et al., 2009; Lam and Kuypers, 2011; Babbin
et al., 2014]. Three major OMZs, the Eastern Tropical North Pacific (ETNP), the Eastern Tropical South Pacific
(ETSP), and the Arabian Sea, all together contain less than 1% of global seawater in volume but are respon-
sible for up to 30% of N loss in the ocean [Codispoti et al., 2001]. The global expansion of OMZs that is
predicted to result from global warming stresses the importance of understanding the N budget in these
regions [Stramma et al., 2008].

In addition to N loss transformations, the upper boundaries of the ODZ layers are also sites of intense N
cycling, linking aerobic (e.g., nitrification) and anaerobic processes across the oxycline. Even in the core of
the ODZ, where O2 is undetectable, nitrifying microbes have been detected [Lam et al., 2009; Newell et al.,
2011; Beman et al., 2012; Peng et al., 2013]. The first step of nitrification, ammonium oxidation, could be
detected at O2 concentration of 6 nM [Bristow et al., 2016] but has not been detected at apparently anoxic
ODZ depths [Lam et al., 2009; Newell et al., 2011; Peng et al., 2016]. There are multiple reports of NO2

� oxida-
tion at depths where O2 is apparently absent [Lipschultz et al., 1990; Füssel et al., 2012; Kalvelage et al., 2013;
Peng et al., 2016]. This means that NO2

� is not only being reduced to gaseous N in OMZs, but is also being

SUN ET AL. NITRITE OXIDATION KINETICS IN OMZ 7883

PUBLICATIONS
Geophysical Research Letters

RESEARCH LETTER
10.1002/2017GL074355

Key Points:
• Nitrite addition stimulated nitrite
oxidation in both oxic and anoxic
waters

• Natural assemblages of marine
nitrite-oxidizing bacteria have high
affinity for nitrite

• Addition of oxygen at μM-level
inhibited nitrite oxidation in oxygen
depleted waters

Supporting Information:
• Supporting Information S1

Correspondence to:
X. Sun,
xins@princeton.edu

Citation:
Sun, X., Q. Ji, A. Jayakumar, and B. B.
Ward (2017), Dependence of nitrite
oxidation on nitrite and oxygen in
low-oxygen seawater, Geophys. Res.
Lett., 44, 7883–7891, doi:10.1002/
2017GL074355.

Received 21 JUN 2017
Accepted 25 JUL 2017
Accepted article online 28 JUL 2017
Published online 12 AUG 2017

©2017. American Geophysical Union.
All Rights Reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OceanRep

https://core.ac.uk/display/90214633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0003-0280-4283
http://orcid.org/0000-0003-2950-6569
http://orcid.org/0000-0002-3568-1403
http://orcid.org/0000-0001-7870-2684
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2017GL074355
http://dx.doi.org/10.1002/2017GL074355
http://dx.doi.org/10.1002/2017GL074355
http://dx.doi.org/10.1002/2017GL074355
http://dx.doi.org/10.1002/2017GL074355
mailto:xins@princeton.edu


oxidized into bioavailable nitrate (NO3
�), even in the absence of O2. Anaerobic NO2

� oxidation to NO3
� has

not been detected in cultivated nitrite oxidizing bacteria (NOB), although some anaerobic metabolism (e.g.,
NO3

� reduction) has been demonstrated for the NOB genera, Nitrobacter [Freitag et al., 1987] and Nitrospira
[Koch et al., 2015]. Nitrospina, in the newly proposed Nitrospinae phylum [Lücker et al., 2013], has been
identified as the dominant NOB genus in ODZs [Beman et al., 2013; Levipan et al., 2014; Ganesh et al., 2015]
and thus may be the main contributor to apparently anaerobic NO2

� oxidation. Observations of apparently
anaerobic NO2

� oxidation in the environment are difficult to reconcile with documented metabolic capabil-
ities of known NOB.

To decipher the puzzle of apparently anaerobic NO2
� oxidation, the controlling factors of the reaction

need to be examined. As in other enzyme-catalyzed reactions, the apparent volumetric rate of NO2
� oxida-

tion is determined by substrate concentration, the catalytic capacity reflected by substrate affinity and the
population size of NOB (equivalent to enzyme concentration). The substrate (NO2

�) dependence of marine
NO2

� oxidation has not been determined, and a very limited number of studies have analyzed the effect of
O2 on the reaction. Previous studies conducted in low-oxygen seawater reported that O2 had consistently
positive effect on NO2

� oxidation in samples from different depths [Bristow et al., 2016] or had different
effects [Kalvelage et al., 2013; Bristow et al., 2017]. Different depths might have different population sizes
or types of NOB [Füssel et al., 2012], which can also influence the apparent NO2

� oxidation kinetics. In order
to control for the population size and type of NOB, it is necessary to examine the effect of NO2

� and O2

concentrations on NO2
� oxidation rates within samples from the same depth instead of combining

samples from different depths. In this study, we used 15N tracer incubation experiments to investigate
the depth distribution of NO2

� oxidation and its dependence on availibilities of NO2
� and O2 in the

OMZ of the ETNP.

2. Materials and Methods
2.1. Experimental Site, Sample Collection, and Incubation

Seawater was collected from six stations (coastal stations PS1 and 8; offshore stations PS2, PS3, 11, and 14;
Figure S1 in the supporting information) in the ETNP in April 2016 on board R/V Ronald H. Brown (Cruise
ID: RB-16-03). NO2

� oxidation rate profiles were obtained from stations PS1 and PS2. NO2
� kinetics

experiments were performed at stations PS1, 11, and PS3. Samples from stations 8 and 14 were used for
O2 kinetics experiments.

Water samples from each depth were collected into five 60 mL serum bottles using 10 L Niskin bottles on a
rosette with a conductivity-temperature-depth profiler (CTD) or using a pump profiling system (PPS). In situ
O2 concentration (detection limit 2.1 μM), temperature, pressure, and salinity were recorded during each CTD
or PPS cast. NO2

� and NO3
� concentrations were measured by standard spectrophotometric methods

onboard [United Nations Educational, Scientific and Cultural Organization, 1994]. For sampling from Niskins
from the CTD casts, serum bottles were filled after overflowing three times to minimize O2 contamination
and were sealed with rubber septa and aluminum rings immediately after filling. For PPS sampling, bottles
were sealed with septa while submerged under seawater pumped from selected depth to avoid oxygenation
from the atmosphere. A helium headspace (3 to 10 mL) was introduced into the bottle to facilitate mixing of
tracers and O2 adjustment (see below). 15N–NO2

� tracer (15N/(14N + 15 N) = 99 atom %) was injected into all
five bottles from the same depth to reach a final concentration of 0.4 μM, except for the NO2

� kinetics experi-
ments in which the final 15N–NO2

� tracer concentration varied: 0.05, 0.1, 0.15, 0.2, 0.4, and 1 μM. For the O2

kinetics experiments, ambient seawater was vigorously shaken and exposed to air to reach O2 saturation.
Then 0 to 5.0 mL of O2 saturated seawater was added into serum bottles to achieve final O2 concentrations
of 0.03, 0.30, 0.70, 1.39, 2.74, and 6.84 μM in seawater. O2 concentration was calculated assuming equilibrium
between the water and the gas phases in serum bottles at the incubation temperature (20°C) [Garcia and
Gordon, 1992]. A set of five bottles incubated in time series (one bottle as t0, two bottles as t1, and two as
t2) was used to determine each single rate. Incubations varied from 15 to 24 h and were carried out in
controlled temperature rooms (±3°C of in situ temperatures). Incubations were terminated by adding
0.1 mL saturated mercuric chloride (HgCl2) into each serum bottle. Samples were stored at room temperature
(18–22°C) in the dark for less than 8 months until analysis in the laboratory.
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2.2. Isotope Measurement and Rate Determination

To determine the rate of nitrite oxidation to nitrate, the isotopic composition of NO3
� in each bottle wasmea-

sured by the denitrifier method [Sigman et al., 2001; Weigand et al., 2016]. Briefly, Pseudomonas chlororaphis
(ATCC® 43928™) was cultured and concentrated 7 to 10 times by centrifugation in NO3

�/NO2
�-free medium.

To avoid interference of nitrite when using the denitrifier method, NO2
� was removed from samples with

sulfamic acid [Granger and Sigman, 2009]. Sulfamic acid treated sample (0.4 mL) was aliquoted into each
20 mL vial with concentrated bacteria (1 mL). NO3

� in the vials was converted into N2O, which was then mea-
sured on amass spectrometer (Delta Vplus) to determine the nitrogen isotope composition (σ15N) [McIlvin and
Casciotti, 2011].

Because no significant change in nitrate concentrations was observed, and the 15N content in nitrate samples
are low, [NO3

�] = [14NO3
�] + [15NO3

�] ≈ [14NO3
�]. Because it is a tracer experiment, the effect of biological

fractionation during the incubation experiments is negligible. The nitrite oxidation rate is calculated accord-

ing to equation (1). V is the nitrite oxidation rate, F is the fraction label of nitrite, and
d 15NO-3½ �= 14NO-3½ �

dt is the rate of

change of nitrate 15N/14N, which was determined by the linear regression of time course experiments (n = 5).
The error bar for each NO2

� oxidation rate represents the standard error of the slope. The small fraction of
15N–NO3

� contamination in the 15N–NO2
� tracer [Peng et al., 2015] did not influence the rate calculation

because the rate of change in 15N–NO3
� over the time course, rather than the absolute value of 15N–NO3

�

at the endpoint, was used to determine the rate.

V ¼ 1
F
� NO-3
� ��d 15NO-3

� �
= 14NO-3
� �

dt
(1)

2.3. Kinetics Models and Rate Estimation

We used the Michaelis-Menten model ([Monod, 1942], equation (2)) to evaluate the effect of NO2
� concen-

tration on NO2
� oxidation rate. Vm is the potential maximum rate of NO2

� oxidation when [NO2
�] is not limit-

ing. Ks is the half-saturation constant, the [NO2
�] at which the NO2

� oxidation rate (V) equals half of Vm.
Equation (3) was used to characterize the inhibition effect of O2 on NO2

� oxidation. In equation (3), m is
the potential maximum inhibition by O2 and n, analogous to half-saturation constant, is the half-inhibition
constant, i.e., the concentration of O2 that caused half of the potential maximum inhibition. The rates of
NO2

� oxidation were normalized to the largest measured rate, which is the rate measured under in situ
[O2] (Vin situ O2). The curve fitting tool in Matlab was used to fit the two equations to the measured NO2

�

oxidation rates and NO2
� or O2 concentrations.

V ¼ Vm�
NO�

2

� �

NO�
2

� �þ Ks
(2)

V
V in situ O2

¼ 1�m� O2½ �
O2½ � þ n

(3)

The Michaelis-Menten equation (2) was used to predict the potential maximum rates and the in situ rates of
NO2

� oxidation. Assuming a universal catalytic capacity of enzymes (same Ks), the potential maximum rate
(Vm) at each depth was predicted by introducing the measured NO2

� oxidation rate (V), its corresponding
total [NO2

�] (in situ plus tracer addition), and the average half-saturation constant (Ks = 0.254 μM) into
equation (2) (Figure 1). The predicted in situ rate was obtained by introducing Vm, in situ [NO2

�] and Ks
into equation (2).

3. Results
3.1. Depth Distribution of NO2

� Oxidation

NO2
� oxidation rates were determined at four or five depths at two stations. Depths were chosen to repre-

sent features: the upper oxycline, the top of the ODZ, the core of the ODZ, and the lower oxycline. Highest
measured NO2

� oxidation rates at both stations were detected at ODZ depths (where oxygen concentrations
were below detection using the Seabird sensor on the CTD; Figure 1). At station PS1, the highest measured
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rate was 57 ± 11.8 nM d�1 at the shallower depth in the core of ODZ (120m). Themeasured rate (31 ± 11.1 nM
d�1) at the deeper ODZ depth (200 m) was not significantly different frommeasured rates at the two oxycline
depths. At station PS2, the highest measured rate was 123 ± 11.1 nM d�1 in the top of the ODZ (150m), which
was almost 6 times of that at the oxycline depth. The lowest rates at both stations were detected in the
lower oxycline.

3.2. Effect of NO2
� on NO2

� Oxidation Rate

NO2
� oxidation kinetics were determined by manipulating the NO2

� concentrations in replicate subsamples
from the same Niskin bottle. The relationship between NO2

� oxidation rates and NO2
� concentrations in

both oxic and anoxic samples with low in situ NO2
� concentrations (0.1 or 0.05 μM) followed the

Michaelis-Menten relationship ([Monod, 1942]; equation (2)) with large r2 values (= 0.941 and 0.989, respec-
tively), indicating that NO2

� was the only limiting substrate in the reaction (Figures 2a and 2b). In other
words, the in situ O2 concentration was high enough for the reaction or was not a substrate of the reaction.
The rates depend on the physiological characteristics of the NOB and the size of the NOB population, but the
half-saturation constant does not depend on population size. The two half-saturation constants (average
Ks = 0.254 ± 0.161 μM) from two different stations with different in situ O2 and NO2

� concentrations were
not significantly different, revealing that NOB from these samples had similar high substrate affinity. The
NO2

� oxidation rates increased with increasing NO2
� concentrations but were not well represented by the

Michaelis -Menten relationship when in situ NO2
� concentration (3.7 μM) was much higher than the Ks

(Figure 2c).

The relationship between NO2
� oxidation rate and substrate concentration was also investigated by plotting

NO2
� oxidation rates measured in the depth profiles (nine depths at stations PS1 and PS2; Figure 1) against

the NO2
� concentration in each incubation (Figure S2). A Michaelis-Menten curve is not suitable to fit these

data because they represent rates from samples with different population sizes. The relationship does not
intersect zero, although the rate increases with increasing NO2

� concentration in the oxycline samples, which
reinforced the idea that NO2

�was the limiting substrate of the reaction. NO2
� oxidation rates at ODZ depths

did not show NO2
� dependence, however, which may imply differences in the size or characteristics of NOB

populations in environments with different O2 conditions.

3.3. Effect of O2 Concentration on NO2
� Oxidation Rate

O2 kinetics were assayed in samples from the top of the ODZ, where O2 concentration was below the CTD
detection limit and the highest rates of NO2

� oxidation occurred (Figure 1). Under in situ O2 concentrations,

Figure 1. Profiles of NO2
� oxidation rates and O2, NO2

� and NO3
� concentrations. Shaded areas indicate ODZs

([O2] < CTD detection limit). (a, c) Measured rate (red triangle), predicted in situ rate (open circle connected by dashed
lines), and predictedmaximum rate (filled circle). (b, d) [O2] (solid line), [NO2

�] (open square), and [NO3
�] (cross). Measured

rates = slope of linear regression of five independent time course bottles. Error bars = standard error of the regression
coefficient.
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nitrite oxidation rates were 143 ± 3.4 and 168 ± 17.9 nM d�1 at stations 8 and 14 with total NO2
�

concentrations of 0.43 μM (in situ [NO2
�] = 0.03 μM) and 1.1 μM (in situ [NO2

�] = 0.7 μM), respectively.
The increased O2 concentrations inhibited NO2

� oxidation rates following an inhibition curve (Figure 3,
equation (3)). At the two stations, the potential maximum inhibitions (m) by O2 were 57.3% and 80.1%,
respectively. The half-inhibition concentrations (n) of O2 were 1.24 and 2.17 μM, respectively.

4. Discussion
4.1. Effect of NO2

� on NO2
� Oxidation Rate

When controlled for population size, NO2
� kinetics followed the Michaelis-Menten relationship. The half-

saturation constant (Ks = 0.254 ± 0.161 μM; average of two experiments, Figure 2) was 1–3 orders of magni-
tude lower than that of pure cultures of
three cultivated NOB genera
(Nitrobacter, Nitrotoga, and Nitrospira;
Ks = 6–544 μM) [Blackburne et al., 2007;
Nowka et al., 2015; Ushiki et al., 2017].
[NO2

�] accumulates to μM levels in
OMZs, suggesting that the Ks for NO2

�

might be even lower in regions with
lower [NO2

�]. The high affinity of
marine NOB (presumably mainly
Nitrospina-like) for NO2

� suggests their
adaptation to the NO2

�-limited marine
environment. This high affinity is analo-
gous to the high affinity for NH4

+ of
the natural assemblages of NH4

+-oxidiz-
ing microbes [Horak et al., 2013; Newell
et al., 2013; Peng et al., 2016],
presumably mainly archaea, since high
affinity has so far only been observed
for the cultivated NH4

+-oxidizing
archeon Nitrosopumilus maritimus
[Martens-Habbena et al., 2009].

Figure 3. O2 dependence of relative NO2
� oxidation rates at the top of

the ODZs. In situ [O2], [NO2
�], and the inhibition equations were shown

for 89m at station 8 (filled triangles) and 185m at station 14 (open circles).
Measured rates (V) = slope of linear regression of five independent time
course bottles. Relative rates = V/Vin situ O2. Error bars = standard error of
the regression coefficient.

Figure 2. NO2
� dependence of NO2

� oxidation rates at (a) 53 m at station PS1, (b) 170 m at station PS3, and (c) 130 m at
station 11. Measured rates = slope of linear regression of five independent time course bottles. Error bars = standard
error of the regression coefficient. Michaelis-Menten equation was fitted to NO2

� oxidation rates and NO2
� concen-

trations in Figures 2a and 2b. Adjusted r2, coefficients (Vm and Ks) of the best fit and their 95% confidence intervals are
shown in the figure. In situ feature, [O2] and [NO2

�] are shown for each figure. PNM = primary nitrite maximum.
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4.2. Effect of O2 Concentration on NO2
� Oxidation Rate

Contrary to expectations for a metabolism that is assumed to require oxygen, increased [O2] consistently
inhibited measured NO2

� oxidation rates. Oxidants other than O2 might also contribute to the NO2
� oxida-

tion, but all known marine NOB are obligate O2 respirers and use electron transport chains that normally
terminate with O2. Anammox bacteria also oxidize NO2

� anaerobically to NO3
�, during which about 1 mole

of NO2
� is oxidized to NO3

� per 6 moles of NO2
� reduced to N2 [Oshiki et al., 2016]. Anammox cannot be the

major pathway of apparently anaerobic NO2
� oxidaton reported here, because measured rates of anammox

in this region [Babbin, 2014] and in other OMZs [Hamersley et al., 2007; Dalsgaard et al., 2012; Babbin et al.,
2014] are much lower (by tenfold) than the NO2

� oxidation rates reported here.

The decrease in NO2
� oxidation rates with increasing O2 concentration reported here was not a result of

NO2
� limitation. First, the total NO2

� concentrations at the top of the ODZ at stations 8 and 14 are much
higher than the Ksmeasured at nearby stations. Second, over the 24 h incubation time, a NO2

� oxidation rate
of 200 nM d�1 (larger than any measurement in this study) and a N2 production rate of 60 nM N d�1 (larger
than any measurement in this region [Babbin, 2014]) consume only 0.26 μM of NO2

�, which is much less than
the total NO2

� concentrations in these samples (0.43 μM and 1.1 μM). Therefore, the inhibition of NO2
�

oxidation by O2 was the response of NOB assemblages to O2, independent of NO2
� concentration.

These samples were collected from depths where O2 was undetectable by the Seabird sensor (<2.1 μM).
Previous intercalibrations with the STOX sensor [Tiano et al., 2014] indicated that the true O2 concentration
at the sample depths was likely below the STOX sensor detection limits of ~10 nM. Unintended O2 contam-
ination during the sampling process likely occurred [Revsbech et al., 2009], which could have caused uniform
low-level contamination of all independent time course samples. This contamination has no effect on the
shape of the inhibition curve, showing that NO2

� oxidation decreased with increasing [O2] at μM level. It does
influence, however, determination of the absolute [O2] where the inhibition starts. It is possible that nitrite
oxidation is stimulated by increasing [O2] at nM level and saturated at ~1 μM as observed by Bristow et al.
[2016] with a STOX sensor, but is inhibited by [O2] at μM level.

Sensitivity of NOB from ODZs to O2 is consistent with adaptation to anoxic conditions, such that exposure to
μM levels of O2 might cause damage to their cells. This hypothesis is supported by the absence of classical
reactive O2 defense mechanisms in Nitrospina gracilis isolated from the surface ocean [Lücker et al., 2013].
A previous study found that surface seawater and ODZs had different dominant Nitrospina OTUs [Beman
et al., 2013]. The present results suggest that ODZ NOB might be low O2 specialists, in having lower O2

tolerance than NOB from oxic environments. Additionally, a metagenomic study from the Arabian Sea found
a novel lineage of the gene encoding nitrite oxidoreductase (nxrA) that clustered between anammox and
Nitrospina sequences. This novel nxrA sequence was as abundant as Nitrospina nxrA at 600 m in the
Arabian Sea ODZ [Lüke et al., 2016]. A single-cell genomic study proposed a novel genus within the
Nitrospinae phylum possessing not only the genetic repertoire for nitrite oxidation but also a nitrate
reductase gene [Ngugi et al., 2016]. Nitrite-dependent anaerobic methane oxidizers [Ettwig et al., 2010;
Haroon et al., 2013] might oxidize nitrite by reverse reaction of their nitrate reductase enzymes. The nitrate
reductase genes are homologous to nitrite oxidoreductase genes. Their contribution to nitrite oxidation in
the ODZ, however, is likely to be small due to their low abundance (from undetectable to less than 0.1% of
microbial communities) [Chronopoulou et al., 2017; Padilla et al., 2016]. These studies imply that other uniden-
tified organisms, with functional genes homologous to those of anaerobes (i.e., anammox and denitrifiers)
might be responsible for apparently anaerobic NO2

� oxidation.

O2 did not fully inhibit NO2
� oxidation, i.e., m < 100%, suggesting that parts of the NOB community in the

upper ODZ might be similar to surface NOB living in oxic environments (i.e., oxyclines). The apparent percen-
tage of surface NOB in the community varied among different stations. The stimulation of NO2

� oxidation
rate by increasing [O2] at nM level, which was observed in a recent study [Bristow et al., 2016], might be
explained by the higher affinity for oxygen of ODZ NOB and a larger proportion of the surface NOB in those
samples from the upper oxycline and the ODZ boundary compared to the ODZ samples in this study. Bristow
et al. [2016] detected a high rate (around 50 nM d�1) of NO2

� oxidation even when ambient O2 was below
the STOX sensor detection limit (10 nM), which might be evidence of the presence of ODZ specialist NOB.
However, population size and community composition of NOB were not independently controlled in these
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samples from three different depths, which might also affect the characterization of O2 kinetics. It is analo-
gous to plotting NO2

� oxidation rates from multiple samples in this study (Figure S2); the combined data
from different depths did not show the [NO2

�] dependence that was evident in experiments in which
[NO2

�] and [O2] were independently varied within samples from the same depth.

4.3. NO2
� Oxidation in ODZs and Its Significance

The NO2
� oxidation rate in ODZs can never be fueled by O2 contamination if there were no NOB in the

seawater. The high rates detected in the ODZ in this and other studies [Lipschultz et al., 1990; Peng et al.,
2015; Babbin et al., 2017] together with molecular data [Füssel et al., 2012; Beman et al., 2013] directly support
the idea that microbes with NO2

� oxidation capacity were present in the anoxic seawater. Evidence in
support of their in situ NO2

� oxidation activities in ODZs is provided by model simulations [Buchwald et al.,
2015] and stable isotopemeasurements [Casciotti et al., 2013; Gaye et al., 2013; Peters et al., 2016]. The isotopic
composition of NO2

� in the ODZ is relatively 15N depleted, which is attributed to the inverse isotope effect
during NO2

� oxidation to NO3
� [Casciotti, 2009].

To evaluate the effect of experimental conditions on measured rates, we used the kinetics data to predict in
situ rates and potential maximum rates (Vm) (Figure 1). In the core of the ODZs, measured rates were not sig-
nificantly different from Vm since the total NO2

� concentrations were much higher than Ks. The predicted Vm
was a proxy for the size of the NOB population, assuming similar substrate affinity of NOB involved in NO2

�

oxidation (similar Ks determined in NO2
� kinetics experiments at two depths makes this a reasonable

assumption). The predicted Vm varied among depths, indicating the necessity of controlling population size
while characterizing NO2

� or O2 kinetics. The implied population size at the top of the ODZ was much larger
than that at any other depth. The implied abundance of NOB at the top of the ODZs might be due to the rela-
tively higher NO2

� supply, and O2 invasion events may enable the persistence of both ODZ specialist NOB
and surface NOB. The inferred population size in the core of the ODZs was of the same magnitude as that
in the oxycline. If NOB communities at ODZ depths consist only of surface NOB, which prefer oxic conditions,
the puzzle of how they make a living and oxidize NO2

� in the absence of O2 must be solved. More likely, ODZ
specialist NOB are dominant in the core of the ODZ where anoxia is more stable and the assemblage is more
isolated from the oxic environment. However, NO2

� oxidation rates in the core of the ODZ were higher than
or similar to rates in surface seawater (Figure 1), implying that ODZ specialist NOB survived in the anoxic
environment. One of the potential oxidants for NO2

� oxidation in the ODZ is iodate; however, iodate alone
is insufficient to support the measured rates [Babbin et al., 2017]. Other potential oxidants that might contri-
bute to oxidizing NO2

� in these anoxic seawaters remain to be identified. Likewise the identity of potential
ODZ specialist NOB and whether they are capable of conducting alternative anaerobic reactions (i.e., denitri-
fication) await further exploration.

Regardless of the mechanism of NO2
� oxidation in the ODZ, high NO2

� oxidation rates detected in ODZs can
be coupled with NO3

� reduction to constitute an efficient NO2
� ←→ NO3

� cycle, which preserves bioavail-
able N in this intense N loss spot [Füssel et al., 2012; Casciotti et al., 2013; Peters et al., 2016]. The
NO2

�←→NO3
� cycle may also provide NH4

+ to fuel anammox because NO3
� is used as an electron acceptor

to oxidize organic matter in the absence of oxygen, and thus liberates NH4
+. NO3

� reduction to NO2
� is a

more widespread metabolic capacity of microbes than complete denitrification (NO2
�→NO→N2O→N2),

and NO3
� reduction is the most important anaerobic respiration process in the low oxygen seawater, based

on observed rates [Lipschultz et al., 1990; Lam et al., 2009]. Thus, NO3
� reduction to NO2

�would provide NH4
+

in excess of that supplied by organic matter remineralization occurring during complete denitrification. A
model that included NO2

� oxidation in the ODZ successfully explained the formation of the secondary
NO2

�maximum [Babbin et al., 2017]. The modeling exercise indicates the necessity of including the recycling
between NO2

� and NO3
� in the anoxic environment in order to reevaluate the N budget in the ocean, espe-

cially the contribution of OMZs to N loss. This reevaluation is also important to predict the response of the N
cycle and potential perturbation of the N budget under the expansion of OMZs.
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