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Abstract 10 
In estuarine coastal systems such as the Baltic Sea, mussels suffer from low salinity which 11 
limits their distribution. Anthropogenic climate change is expected to cause further 12 
desalination which will lead to local extinctions of mussels in the low saline areas. It is 13 
commonly accepted that mussel distribution is limited by osmotic stress. However, along the 14 
salinity gradient environmental conditions for biomineralization are successively becoming 15 
more adverse as a result of reduced [Ca2+] and dissolved inorganic carbon (CT) availability. 16 
In larvae, calcification is an essential process starting during early development with 17 
formation of the prodissoconch I (PD I) shell which is completed under optimal conditions 18 
within 2 days.  19 
Experimental manipulations of seawater [Ca2+] start to impair PD I formation in Mytilus larvae 20 
at concentrations below 3 mM, which corresponds to conditions present in the Baltic at 21 
salinities below 8 g kg-1. In addition, lowering dissolved inorganic carbon to critical 22 
concentrations (<1 mM) similarly affected PD I size which was well correlated with calculated 23 
ΩAragonite and [Ca2+][HCO3

-]/[H+] in all treatments. Comparing results for larvae from the 24 
western Baltic with a population from the central Baltic revealed significantly higher tolerance 25 
of PD I formation to lowered [Ca2+] and [Ca2+][HCO3

-]/[H+] in the low saline adapted 26 
population. This may result from genetic adaptation to the more adverse environmental 27 
conditions prevailing in the low saline areas of the Baltic.  28 
The combined effects of lowered [Ca

2+
] and adverse carbonate chemistry represent major 29 

limiting factors for bivalve calcification and can thereby contribute to distribution limits of 30 
mussels in the Baltic Sea.  31 
 32 
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1. Introduction 36 
Salinity is one of the most important environmental parameters limiting the distribution of 37 
aquatic species. Many marine organisms exhibit little tolerance to reduced salinity and are 38 
thus not able to thrive in brackish water environments influenced by riverine inputs (Whitfield 39 
et al. 2012). On the other hand, some animals, such as bivalves and crustaceans tolerate the 40 
dilution of the ambient seawater and are able to inhabit estuarine, brackish water habitats 41 
(Westerbom et al. 2002). However, within these habitats, organisms need to tolerate a 42 
number of environmental stressors which are changing concomitantly.  43 
Generally, lowered ambient ion concentrations affect an organism’s ability to maintain 44 
cellular homeostasis. In response, some organisms such as crustaceans actively regulate 45 
the ionic composition of their extracellular fluids. However, mytilid mussels do not control 46 
haemolymph osmolarity and ionic composition mostly corresponds to that of ambient 47 
seawater (Thomsen et al. 2010). Thus tissues are subjected to a diluted medium in brackish 48 
water but the inorganic composition of the intracellular space needs to be regulated in order 49 
to maintain enzymatic functions. At moderately lowered salinity, intracellular [K+] and [Na+] 50 
are kept relatively stable at about 200 and 100 mM, respectively, but [K

+
] drops rapidly under 51 

strong hypoosmotic stress to avoid cell swelling (Willmer 1978, Wright et al. 1989; Silva and 52 
Wright 1994). In order to stay iso-osmotic with their environment following long-term 53 
acclimation to lowered salinity, intracellular [K+] and [Na+] are maintained at lower 54 
concentrations (Willmer 1978, Natochin et al. 1979). In addition, bivalves reduce the 55 
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concentration of intracellular compatible organic osmolytes (Hochachka and Somero 2002) 56 
such as certain amino acids, taurine and betaine during the acclimation phase (Silva and 57 
Wright 1994, Kube et al. 2006). However, at a certain critical salinity threshold (Scrit), the 58 
intracellular organic osmolyte pools are depleted which has been suggested to eventually 59 
limit species fitness (Kube et al. 2006; Podbielski et al. 2016).   60 
At the same time, bivalves produce an external shell composed of CaCO3 and an organic 61 
matrix (Falini et al. 1996). The shell enables adult bivalves to live in intertidal habitats and is 62 
an effective protection against predation but shell formation has been shown to be sensitive 63 
to lowered salinity (Malone and Dodd 1967). Under favourable environmental conditions, 64 
calcification begins already in early development and the first larval shell (prodissoconch I, 65 
PD I) is completed within the first 48 hours after fertilization. PD I formation is an important 66 
prerequisite for the successful development of bivalve larvae as larvae seem to commence 67 
feeding only after completion of the shell which provides structural support (e.g. muscle 68 
attachment site) for the functional velum (Lucas and Rangel 1983; Cragg 1985). However, 69 
PD I formation is highly sensitive to chemical and environmental stressors (Williams and Hall 70 
1999) and initiation of feeding is delayed under adverse carbonate chemistry (Waldbusser et 71 
al. 2015). 72 
Recently, a number of studies investigated how changes of seawater carbonate chemistry 73 
affect marine calcifiers. Those studies were mostly motivated by the ongoing input of 74 
anthropogenic CO2 into the oceans which results in a drop of pH and lowered [CO3

2-], a 75 
process called ocean acidification. Bivalve shell formation is highly sensitive to modifications 76 
of carbonate chemistry and therefore negatively affected by ocean acidification (Gazeau et al. 77 
2013; Waldbusser et al. 2014; Thomsen et al. 2015). The exact reason for the sensitivity of 78 
calcification to adverse carbonate chemistry is still under debate (Cyronak et al. 2015). 79 
Lowered saturation of seawater with respect to calcium carbonate (Ω, [Ca2+][CO3

2-]/ K*sp)  80 
(with K*sp=stoichiometric solubility product (Mucci 1983)) could affect the kinetic of shell 81 
formation (according to r = k(Ω-1)n with r=mineral precipitation rate, k=rate constant and 82 
n=reaction order, Waldbusser et al. 2014) and undersaturation leads to dissolution of existing 83 
calcium carbonate structures (Thomsen et al. 2010; Melzner et al. 2011, Haynert et al. 2014). 84 
Alternatively, the substrate inhibitor ratio (SIR) defined as the availability of the substrate for 85 
calcification in the form of dissolved inorganic carbon (CT) or HCO3

- and the inhibitory effect 86 
of lowered seawater pH (increased [H+]) could restrict calcification rate (Bach 2015; Thomsen 87 
et al. 2015; Fassbender, et al. 2016).  88 
Independent of the exact mode of action, larval bivalve calcification is driven by uptake of 89 
seawater Ca2+ and inorganic carbon (CT) whereas metabolic carbon is only of minor 90 
importance and contributes by less than 10 % in larvae and adults (McConnaughey and 91 
Gillikin 2008, Waldbusser et al. 2015). Oceanic [Ca2+] is about 10 mM, but necessarily 92 
linearly related with seawater salinity and thus reduced in estuaries. Freshwater [Ca2+] are in 93 
general much lower (<1-2 mM [Ca2+], Ohlson and Anderson 1990; Juhna and Klavins 2000). 94 
Oceanic CT is about 2 mM whereby HCO3

-
 and CO3

2-
 contribute about 90 and 8 % to the CT 95 

pool, respectively. CT of seawater equilibrated with the atmosphere is directly proportional to 96 
salinity as it is depending on seawater total alkalinity (AT). Therefore, calcifiers are facing 97 
abiotic conditions in brackish water habitats which most likely affect their ability to form a 98 
shell.    99 
The Baltic Sea is an example of a brackish water habitat which is substantially influenced by 100 
precipitation and riverine input (Gustafsson et al. 2014) which results in a salinity gradient 101 
from 25 g kg-1 in the Kattegat transition zone to basically freshwater in the Gulfs of Riga, 102 
Finland and Bothnia. As a consequence, [Ca2+], AT and CT decline linearly along the salinity 103 
gradient (Kremling and Wilhelm 1997; Beldowski et al. 2010). However, varying composition 104 
of riverine freshwater results in differing AT -salinity correlations and in the Gulf of Riga, AT 105 
and thus CT even increases with lowered salinity (Beldowski et al. 2010).  106 
The Baltic Sea is among the coastal ecosystems which are most heavily influenced by 107 
anthropogenic activity. Eutrophication enhanced hypoxia or even anoxia events in the 108 
benthic ecosystem. As respiratory oxygen consumption is coupled to CO2 production, 109 
hypoxia is always accompanied by a pronounced increase of pCO2 and thus affects the 110 
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carbonate system simultaneously (Melzner et al. 2013). Furthermore, climate change is 111 
expected to increase precipitation in the Baltic catchment area which may cause increased 112 
riverine runoff leading to reduced salinity (0 - 45 % reduction) in particular in the north-113 
eastern and central Baltic Sea (Meier et al. 2006; Gräwe et al. 2013). This shift in salinity will 114 
most likely induce a substantial retreat of the marine fauna and flora and expansion of limnic 115 
species into the formerly brackish water habitats (Johannesson et al. 2011).  116 
Mytilid mussels (Mytilus spp.) are among the most abundant organisms of the Baltic Sea 117 
(1013 individuals) contributing up to 90% to local hard bottom biomass, and thus are 118 
important habitat builders (Enderlein and Wahl 2004, Johannesson et al. 2011). Their 119 
distribution along the Finish, Swedish and Estonian coast is limited by salinities of about 4.5 120 
g kg-1 when abundance, biomass and growth drastically decline (Westerbom et al. 2002; 121 
Martin et al. 2013; Riisgard et al. 2014). As growth combines both somatic growth and shell 122 
formation, it is unclear which physiological mechanism exactly limits performance and 123 
therefore the distribution of mussels (Riisgard et al. 2014).  124 
Currently, distribution limits of marine bivalves in estuaries are commonly related to the 125 
inability of intracellular osmoregulatory adjustment at lowered salinity (Maar et al. 2015). 126 
However, as [Ca2+] and CT availability decline along the Baltic Sea salinity gradient it is likely 127 
that the calcification process is negatively affected as well. This process has not been 128 
previously considered as a factor contributing to distribution limits of mussels. In this study, 129 
we investigated the effects of seawater [Ca2+] independently of salinity in combination with 130 
lowered CT availability on the calcification performance of larval Mytilus spp. and correlated 131 
the experimental data with environmental conditions present in the Baltic Sea. 132 
 133 
2. Material and Methods 134 
2.1 Animal collection and spawning 135 
Adult mussels were collected from subtidal depths at the pier of GEOMAR in Kiel Fjord (shell 136 
length: 4-6 cm, 54°19.8’N; 010°09.0’E) and at the wooden groynes close to Koserow on the 137 
island of Usedom (shell length: 2-3 cm, 54°03.4’N; 014°00.4’E) between May and June 2016 138 
(Fig. 1). Median salinity for Kiel Fjord and Usedom, located ~350 km east of Kiel, are ~ 17 139 
and 7 g kg-1, respectively (Table 1). 140 
Mussels in the Baltic Sea represent hybrids of Mytilus edulis x trossulus with increasing 141 
trossulus allele frequency towards the less saline, eastern Baltic (Stuckas et al. 2009). Thus 142 
mussels collected in Kiel represent the Baltic M. edulis-like and animals from Usedom belong 143 
to the M. trossulus-like genotype (Stuckas et al. 2017).   144 
Specimens were either used for spawning immediately after collection or kept in cold storage 145 
(9°C) in order to delay gonad maturation for up to 3 months. Stored mussels (ca. 500 g 146 
mussel wet biomass per 20 L tank, 12 tanks) were fed 6 times a week with 500 mL of 147 
Rhodomonas solution (ca. 2 x 106 cells mL-1) supplemented with a commercial bivalve diet 148 
(Acuinuga, Spain) and water was exchanged twice a week (Thomsen et al. 2010). 149 
Rhodomonas spp. were cultured in PES medium as described previously with the exception 150 
of using 40 L cylinders (Thomsen et al. 2010).  151 
All experiments were performed at 17°C. Spawning was induced by exposing the animals to 152 
rapidly elevated water temperature between 18-25°C using heaters. Spawning specimens 153 
were separated from the remaining animals and eggs and sperms were collected individually 154 
in beakers filled with 0.2 µm filtered seawater (FSW). Subsequently, eggs were pooled and 155 
fertilized with a pooled sperm solution. For the Kiel population, 5 individual experimental runs 156 
were performed with varying number of dams and sires used for crossings in each run. In 157 
total 16 dams and 18 sires were used. For the Usedom population one run with 4 replicates 158 
was performed for which gonads from 5 dams and 4 sires were pooled. Fertilization success 159 
was determined by verifying the presence of a polar body and first and second cell division of 160 
zygotes and was above 90% in all runs. Embryos (4-8 cell stage) and non-calcified 161 
trochophora (in one experimental run of the Kiel population) from all parents were transferred 162 
in equal numbers into the experimental units (volume: 25 or 50 mL in round plastic beakers) 163 
at a density of 10 embryos/larvae mL-1.  164 
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Three days post fertilization animals were removed from the experimental units by filtering 165 
the full water volume through a filter with a mesh size of 20 µm or by collecting larvae 166 
individually using a pipette in treatments with low survival. Subsequently, larvae were fixed 167 
using 40 % paraformaldehyde (PFA, pH 8.0) resulting in a final PFA concentration of 4%.  168 
Pictures of larvae were taken using a stereomicroscope (Leica M165 FC) equipped with a 169 
Leica DFC 310 FX camera and LAS V4.2 software. Calcification was assessed by measuring 170 
the larval shell length. PD I shell length was assessed using Image J 1.50i by measuring the 171 
maximal shell length in parallel to the hinge or the maximal shell diameter for larvae that had 172 
not developed a complete PD I shell.  173 
 174 
 175 
2.2 Experimental manipulation of seawater [Ca2+] and carbonate chemistry  176 
Artificial seawater (ASW) was prepared according to Kester (1967) for salinities of 14 and 7 g 177 
kg-1 for experiments with M. edulis-like and trossulus-like, respectively, by adding NaCl, 178 
NaSO4, KCl, NaHCO3, KBr, H3BO3, MgCl2, CaCl2, and SrCl2 to deionised water. Ca2+ free 179 
artificial seawater (CFSW) was prepared by omitting CaCl2 and adjusting osmolarity similar to 180 
ASW by increasing NaCl concentrations. pHNBS was adjusted to 8.0 using NaOH. All 181 
experimental treatments comprised 5 % of 0.2 µm filtered seawater (FSW) from Kiel Fjord 182 
which was adjusted to salinity 7 g kg-1 for the Usedom population experiment to ensure that 183 
trace elements were present. The comparison of shell sizes of larvae kept in control ASW + 184 
5% FSW or 100 % FSW yielded no significant differences (p>0.05). Varying seawater [Ca2+] 185 
treatments were prepared by mixing ASW and CFSW (lowered [Ca2+]) or by addition of CaCl2 186 
from a 500 mM stock solution to ASW (elevated [Ca2+]). Following mixing, water samples 187 
were taken and seawater [Ca2+] was measured using a flame photometer (EFOX 5053, 188 
Eppendorf, Germany) calibrated with urine standards (Biorapid GmbH, Germany). 189 
Seawater carbonate chemistry was manipulated by increasing alkalinity by addition of 190 
[NaHCO3] to ASW or by lowering alkalinity by adding 1M HCl to the experimental units. 191 
Excess CO2 was removed by aeration of the experimental units for 30 min and embryos were 192 
only added after pH had increased again to stable values (~7.8). Seawater pH was 193 
determined on the NBS scale using a WTW 3310 pH meter equipped with a Sentix 81 194 
electrode. Seawater CT was determined using an AIRICA CO2 analyzer and verified by 195 
measuring certified reference material (Dickson et al. 2003). Seawater carbonate system 196 
parameters (HCO3

-, CO3
2-, Ωaragonite) were calculated using the CO2SYS program with 197 

KHSO4, K1 and K2 dissociation constants after Dickson et al. (1990) and Roy et al. (1993), 198 
respectively. pHNBS was converted to total scale pH. Ωaragonite and [Ca2+][HCO3

-]/[H+] were 199 
linearly adjusted according to measured seawater [Ca2+] (Table 2).  200 
 201 
2.3 Microelectrode measurements of [Ca2+] in the calcifying space of D-stage veliger 202 
Using ion-selective electrodes, Ca2+ gradients were measured in seawater and in the 203 
calcification space (CS) below the surface of the shell in veliger larvae three days after 204 
fertilization. The experimental set up and hardware was identical to that of Stumpp et al. 205 
(2012), except for the addition of a metal plate connected to a water cooling system for 206 
temperature control.  207 
Borosilicate glass capillary tubes (inner diameter 1.2 mm, outer diameter, 1.5 mm) with 208 
filament were pulled on a DMZ-Universal puller (Zeitz Instruments, Germany) to 209 
micropipettes with tip diameters of 1-3 µm. Micropipettes were silanized with dimethyl 210 
chlorosilane (Sigma-Aldrich, USA) in an oven at 200°C for 1h. Calcium sensitive liquid ion 211 
exchangers (LIX) and LIX-PVC membranes were prepared according to de Beer et al. (2000)  212 
with Ca2+ ionophore II (Sigma Aldrich). The microelectrodes were back filled with a KCl based 213 
electrolyte (200 mM KCl, 2 mM CaCl2.2H2O) and thereafter front loaded with LIX and finally 214 
LIX-PVC at a length of 150 µm and 50 µm, respectively. To measure calcium in the CS, 215 
larvae were placed into the temperature controlled perfusion chamber mounted on an 216 
inverted microscope (Axiovert 135, Zeiss, Germany) at a density of 100 mL-1 and were held 217 
in position using a holding pipette. The ion-selective probe was mounted on a remote-218 
controlled micro-manipulator and was introduced beneath the shell from the side of the 219 
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growing edge, where stable measurements were obtained within 5-10 seconds. 220 
Microelectrode calibration was verified by measuring [Ca2+] of seawater standards as 221 
described above and analogue outputs were channelled through an amplifier (WPI 222 
Instruments, USA) to a chart recorder (Gould Instruments, USA).  223 
 224 
2.4 Seawater [Ca2+] and carbonate chemistry of the Baltic Sea 225 
Seawater [Ca

2+
] (mM kg

-1
) was calculated for salinities between 3 and 20 g kg

-1
 using the 226 

correlation for chlorinities <4.5 and >4.5 g kg-1 provided by Kremling and Wilhelm (1997) and 227 
a salinity-chlorinity conversion after Millero (1984). [Ca2+] was calculated for salinity values 228 
measured in Kiel Fjord (N=4250, weekly measurements 2005-2009, 0-18 m, 54°19.8' N, 229 
10°9.0' E, Clemmesen et al., unpublished, Casties et al. 2015) and at the Oder Bank 230 
(N=260,000, hourly measurements, 2000-2015, 3+12 m water depths, 54°4.6' N, 14°9.6' E, 231 
~8 km off the M. trossulus-like collection site at Usedom (BSH 2000-2015, Table. 1). As 232 
distribution of mytilid bivalves is limited by salinities below 4.5 g kg-1 the calculation covers 233 
the full [Ca2+] range relevant for mussels in this estuary (Westerbom et al. 2002). Carbonate 234 
chemistry calculations are based on the salinity-alkalinity correlation published by Beldowski 235 
et al. (2010) for salinities between 3 and 20 g kg-1 and a seawater surface pCO2 of 400 µatm 236 
assuming equilibrium with current atmospheric CO2 concentrations of ~400 ppm. 237 
Calculations were performed for seawater temperatures of 15°C which corresponds to 238 
average conditions experienced by larvae during the natural reproductive period from April to 239 
June. The Baltic Sea has four sub areas which are differentially impacted by the inflow of 240 
riverine freshwater and their respective chemical properties: the Central Baltic Sea with the 241 
Kattegat transition area, the Gulf of Riga, the Gulf of Finland and the Bothnian Sea with Gulf 242 
of Bothnia. Depending on the chemical properties of the riverine input, seawater carbonate 243 
chemistry can differ substantially for similar salinity values between the four regions. The 244 
same calculations were performed for predicting future conditions using atmospheric CO2 245 
concentration of 800 ppm. 246 
 247 
2.5 Statistical analysis  248 
All statistical analyses (t-test, Kruskal-Wallis test followed by Dunn’s test, regression analysis, 249 
linear and nonlinear model parameter fitting) were performed using R and the mosaic 250 
package. Population comparisons were performed by fitting linear models for log transformed 251 
data. Each experimental unit was considered as a replicate. Values in text and figures are 252 
replicate means ± standard error.  253 
 254 
3. Results 255 
3.1 PD I shell formation and CS [Ca2+] under varying seawater [Ca2+] 256 
Larval development until PD I formation was investigated for M. edulis-like collected in Kiel 257 
Fjord. The lowest seawater [Ca2+] tested in the experiment was 0.51 mM which did not allow 258 
successful development of larvae to the trochophore stage in the Kiel population and was 259 
thus not considered in subsequent experiments. At all other [Ca2+] treatments, early 260 
development was not adversely affected and larvae started to calcify prodissoconch I. 261 
However, at [Ca2+] of <2 mM larvae were not able to produce a complete PD I shell. Even 262 
after 7 days, shell size did not increase above a mean diameter of 63.7 ± 6.0 µm although 263 
larvae stayed viable and continued to actively swim. In all other treatments, shells were fully 264 
developed within 72 h post fertilization, but shell length declined linearly at [Ca2+] below 3 265 
mM ranging between 104.5 ± 2.1 µm at 2.8 mM and 82.1 ± 1.5 µm at 1.6 mM, with significant 266 
reductions below 2.5 mM [Ca2+] (H: 50.3, p<0.001, Dunn’s test). Specimens kept at control 267 
[Ca2+] of 4-5 mM had mean lengths of 108.2 ± 2.5 µm. Modifications of seawater [Ca2+] in the 268 
range 4-10 mM had only minor impacts on lengths and elevated [Ca2+] did not cause a 269 
further increase of shell lengths above control size (Fig. 2a, Table 3a).   270 
Microelectrode measurements of [Ca2+] in the CS of M. edulis-like revealed that CS [Ca2+] 271 
drops with seawater [Ca2+], (H: 21.2, p<0.01, Fig. 3a). However, larvae kept at 3.5 mM [Ca2+] 272 
(above the critical [Ca2+] threshold) are characterized by CS [Ca2+] of 0.1 ± 0.01 mM above 273 
seawater concentrations (paired t-test: t= 16.9, p<0.01, Fig. 3b). In larvae raised at 2.6 and 274 
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2.3 mM [Ca2+], the difference between seawater and CS [Ca2+] declined to 0.06 ± 0.03 and 275 
0.03 ± 0.02 mM which was not significantly enriched compared to the ambient seawater. In 276 
contrast, the gradient between CS and seawater increased to 0.28 ± 0.02 mM in larvae 277 
grown at 1.5 mM. 278 
Results for shell formation rates of M. edulis-like larvae were compared with the M. trossulus-279 
like population from Usedom. Larvae were exposed to [Ca2+] between 0.4-5.8 mM (Fig. 1b,c). 280 
Overall, the response curve for M. trossulus-like was similar to M. edulis-like (Table 3b). 281 
Maximal shell sizes observed at 3.7 mM were 120 ± 1.5 µm and shell lengths started to 282 
decline at lower [Ca2+]. Nevertheless, at comparable [Ca2+] shell sizes were larger compared 283 
to M. edulis-like and larvae were able to calcify a full PD I even at 1.1 mM [Ca2+] with an 284 
average size of 81.9 ± 3.2 µm. In contrast, PD I formation was not completed at 0.4 mM, yet 285 
larvae started to calcify. A linear model of the calcification response revealed a significant 286 
effect of [Ca2+] and population on shell size but no interaction (Table 4a, Fig. 2c).  287 
   288 
3.2 Combined effects of seawater [Ca2+] and carbonate chemistry on larval calcification 289 
M. edulis-like larvae were exposed to a range of seawater [Ca2+] between 1 and 10 mM and 290 
CT concentrations between 880-3520 µM. PD I size was not modulated by increased 291 
seawater CT of 2900-3520 µM compared to control conditions (CT: 1773 µM) and shell length 292 
was only negatively affected by seawater [Ca2+] below 3 mM (Fig. 4a). In contrast, lowered 293 
seawater CT (975 µM) significantly affected shell formation and PD I length declined to 72.5 ± 294 
2.7 µm at control [Ca2+]. Within these treatments shell length was marginally positively 295 
correlated with seawater [Ca2+] but shell length remained reduced in all [Ca2+] treatments 296 
(linear regression: 63 (± 2.2) µm + 2.9 (± 0.7) x [Ca2+], F:18.6, p<0.01, R2= 0.47, Fig. 4a). 297 
Whereas, the correlation of shell length against [Ca2+] under reduced CT differed significantly 298 
from the three higher CT treatments. Plotting PD I sizes against seawater ΩAragonite and 299 
[Ca2+][HCO3

-]/[H+] revealed a similar correlation of calcification in all treatments (Fig. 4b, c). 300 
Calcification of larvae started to decline at ΩAragonite below 1 with significant reductions in the 301 
treatments with ΩAragonite below 0.5 (H: 44.5, p<0.001, Dunn’s test). Similarly, PD I size 302 
declined at [Ca

2+
][HCO3

-
]/[H

+
] values below 0.7 and shells were significantly smaller  below 303 

0.3 (H:42.5, p<0.01, Dunn’ test). In addition, the shell formation responses of M. edulis-like 304 
and M. trossulus-like to combined manipulations of [Ca2+] and carbonate chemistry were 305 
more similar compared to the effects of lowered seawater [Ca2+] alone (Fig. 2c, 4b,c, Table 306 
3b,c). Nevertheless, whereas the response to ΩAragonite was similar for both hybrid populations 307 
they differed significantly in their response to [Ca2+][HCO3

-]/[H+] (Table 4c,d). 308 
 309 
3.3 Calculation of seawater [Ca2+], Ω and [Ca2+][HCO3

-]/[H+] for the Baltic Sea  310 
Calculations of seawater [Ca2+] were performed for the salinity range observed at the 311 
collections sites of M. edulis-like and trossulus-like in Kiel Fjord and Usedom, respectively. In 312 
Kiel Fjord, salinity fluctuated substantially between 10.5-24.7 g kg-1 in the period 2005 – 2009 313 
which resulted in simultaneous strong variations of seawater [Ca

2+
] between 3.6 – 7.7 mM 314 

with a mean of 5.6 mM (Table 1, Fig. 1d). In contrast, salinity in Usedom was lower with 315 
mean salinity of 7.1 g kg-1 and, in absolute numbers, more stable (3.4-9.1 g kg-1, Table 1). 316 
Thus, seawater [Ca2+] in Usedom was ranging between 1.5 and 3.2 mM with an average of 317 
2.7 mM (Table 1, Fig. 2d). 318 
Calculation of [Ca2+] along the Baltic salinity gradient revealed that the critical concentrations 319 
of 3 and 2.5 mM at which calcification is negatively affected are reached at a salinity of about 320 
7-8 g kg-1, respectively, in all four sub regions (Fig. 5a). In contrast, calculated values for 321 
[HCO3

-]/[H+] are above 0.13 in almost all regions within the distribution range of mussels as 322 
long as the seawater is in equilibrium with current atmospheric CO2 concentrations (Fig. 5b) 323 
Only in the Gulf of Bothnia, critical values lower than 0.1 are observed for salinities of 4.5 g 324 
kg

-1
 and below. For ΩAragonite, undersaturation is observed at a salinity of 9 g kg

-1
 for the 325 

central Baltic. The Gulfs of Bothnia and Finland are always undersaturated for ΩAragonite, but 326 
the Gulf of Riga seawater is supersaturated (Fig. 5c) and strong negative effects on larval 327 
calcification can be expected for salinities of about 5 g kg-1. Similarly, critical values for 328 
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[Ca2+][HCO3
-]/[H+] of 0.3 at which PD I formation is significantly affected are reached at a 329 

salinity of 5 g kg-1 in most regions of the Baltic excluding the Gulf of Riga (Fig. 5d).  330 
Conditions for calcification will become more adverse in future as atmospheric CO2 331 
concentrations are going to reach 800 ppm. In this scenario, critical values for [HCO3

-]/[H+] 332 
will be observed in most areas of Baltic at salinities below 10 g kg -1 (Fig. 6b). In particular, 333 
[Ca2+][HCO3

-]/[H+] and ΩAragonite will be below the critical threshold in all areas of the Baltic 334 
Sea (Fig. 6c,d). 335 
 336 
4. Discussion 337 
This study investigated the impact of modifications of seawater [Ca2+] and carbonate 338 
chemistry on shell formation of bivalve larvae. The experimental results were compared to 339 
the environmental conditions prevailing in the Baltic Sea.  340 
The laboratory experiments revealed that seawater [Ca2+] is a critical factor for shell 341 
formation in marine bivalves. Similarly, Ca2+ deposition into the shells of Crassostrea gigas 342 
larvae following PD I formation was similar at seawater [Ca2+] of 10 and 16.8 mM but 343 
reduced by 40% at 6.1 mM (Maeda-Martinez 1987). Thus, where high oceanic [Ca2+] of ~ 10 344 
mM is not limiting bivalve calcification the low concentrations present in estuaries such as the 345 
Baltic, significantly affect biomineralization.  346 
In both tested populations, M. edulis-like and M. trossulus-like the overall response curve 347 
was similar and both populations become calcium limited at [Ca2+] below 3 mM. M. trossulus-348 
like appeared to be slightly more tolerant to lowered [Ca2+] as larvae maintained larger PD I 349 
lengths at similar [Ca2+] and PD I formation was successfully accomplished at 1.1 mM. The 350 
response matches seawater [Ca2+] observed in the respective habitats of the tested 351 
populations and may result from either phenotypic plasticity or genetic adaptation. It is also 352 
possible that M. edulis-like living in the western brackish Baltic may have already adapted to 353 
lower [Ca2+] compared to populations and species living in habitats characterized by higher 354 
[Ca2+] (Maeda-Martinez 1987). As PD I formation is a crucial but sensitive stage during larval 355 
life, impaired calcification by low [Ca2+] can have significant effects on larval performance 356 
and fitness.  As the distribution of bivalves is depending on successful larval dispersal, low 357 
[Ca2+] can be an important factor which determines the distribution limits of mussels and 358 
represents a strong selective force. Additionally, the strong [Ca2+] gradient observed between 359 
the western Baltic-Kattegat transition zone and the central Baltic Sea can be one explanation 360 
for the simultaneously observed allele frequency shift from M. edulis-like to trossulus-like 361 
(Larsson et al. 2016, Stuckas et al. 2017).  362 
Nevertheless, larval shell formation of Baltic mytilids starts to become [Ca2+] limited at 363 
concentrations of about 3 mM and was significantly affected at 2.5 mM. Consequently, in 364 
areas of the Baltic with salinities below 7-8 g kg-1 and corresponding [Ca2+] < 3 mM, reduced 365 
shell formation starts to compromise overall larval performance. At the critical salinity of 4.5 g 366 
kg-1 which delineates the distribution boundary of mussels in the Baltic (Westerbom et al. 367 
2002), [Ca

2+
] is as low as 1.8 mM whereby concentration below 2 mM substantially impaired 368 

PD I formation in our experiments. Importantly, even under these adverse conditions larvae 369 
were viable and continued active swimming for up to 7 days. Thus impaired calcification in 370 
low [Ca2+] seawater can result from two mechanisms acting independently or in combination: 371 
I) continuous dissolution of existing calcium carbonate crystals under highly corrosive 372 
conditions may prevent further net calcification or II) larvae only use a pre-determined 373 
fraction of the energy stored in the egg for calcification. If this amount is not sufficient to 374 
sustain full PD I formation under low [Ca2+] the budget does not seem to be adjusted to 375 
provide additional energy to complete calcification. Instead larvae do not continue 376 
calcification and may switch to an energy saving mode to stay alive. In our experiments, M. 377 
trossulus-like apparently developed a higher tolerance to low [Ca2+] compared to M. edulis-378 
like but incipient impairment of calcification at about 3 mM was similar in both populations 379 
which suggests relatively conserved [Ca2+] transport mechanisms in both populations.   380 
Impact of external [Ca2+] on calcification has previously been studied mostly in corals for 381 
which a significant correlation was observed in a number of studies (e.g. Chalker 1976; Ip 382 
and Krishnaveni 1991). Whereas cytosolic calcium concentration are tightly regulated and 383 
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kept constantly low, calcifiers obviously developed a mechanism to accumulate high [Ca2+] in 384 
specialized compartments within or outside the cell for biomineralization. In corals, Ca2+ 385 
uptake and transport to the site of calcification is driven by a combination of diffusive and 386 
active transport and involves active transport by plasma membrane Ca2+-ATPase (PMCA, 387 
Tambutte et al. 1996; Barott et al. 2015). In bivalves, calcification is performed by the outer 388 
mantle epithelium (OME) or the shell field in adults and larvae, respectively (Kniprath 1980), 389 
and a PMCA homolog has been localized in the OME of oysters and its inhibition negatively 390 
impacted shell growth in freshwater clams which might suggest a conserved function in 391 
bivalve calcification as well (Wang et al. 2008; Zhao et al. 2016).  392 
Early studies suggested that the extrapallial fluid (EPF) of bivalves provides the microhabitat 393 
for calcification (Crenshaw 1972). However, [Ca2+] and acid-base status of bulk EPF of adult 394 
mussels corresponds to seawater and haemolymph conditions, respectively, which supports 395 
excretion of CO2 via passive diffusion into the ambient seawater (Thomsen et al. 2010; 396 
Heinemann et al. 2012). In M. edulis-like larvae, kept above the critical threshold of 3 mM, 397 
CS [Ca2+] was marginally but significantly elevated compared to seawater [Ca2+]. At lowered 398 
environmental [Ca2+] between 2-3 mM CS [Ca2+] was not significantly enriched compared to 399 
seawater concentration. At these seawater [Ca2+], calcification rates were significantly 400 
reduced but larvae were still able to produce a smaller but complete PD I.  At even lower 401 
ambient [Ca2+] of 1.5 mM, CS [Ca2+] was again significantly elevated compared to seawater 402 
which was, however, accompanied by strongly reduced PD I formation. The incapacity of 403 
larvae to maintain transmembrane Ca2+ transport at lowered [Ca2+] potentially indicates a 404 
significant contribution of diffusion or involvement of a low affinity Ca2+ transporter (e.g. 405 
Na+/Ca2+ Exchanger) in this process (Blaustein and Lederer 1999). Thus, larvae may actively 406 
enrich CS [Ca2+] to increase ΩAragonite and support the structural integrity of the shell under 407 
corrosive conditions. Alternatively, CS [Ca2+] only increased secondarily as a result of 408 
drastically reduced calcification rates.  409 
In the present study, the effect of lowered [Ca2+] was most pronounced under conditions 410 
when seawater carbonate chemistry was not a limiting parameter for calcification. Lowering 411 
of seawater CT, which has a similar effect on ΩAragonite and [HCO3

-
]/[H

+
] as acidification, 412 

significantly affects the rate of PD I formation. Under these CT / HCO3
- limiting conditions, 413 

seawater [Ca2+] had only a minor, yet slightly positive, linear effect on shell formation. 414 
Presumably the effect was smaller as Ca2+ uptake was not any longer the only rate limiting 415 
process but rather HCO3

- uptake and / or H+ extrusion (Bach 2015) or impaired kinetics of 416 
crystal formation (Waldbusser et al. 2014).  417 
Importantly, the applied experimental seawater manipulations of calcium and carbonate 418 
chemistry can be integrated by calculation of ΩAragonite or extending the SIR term to 419 
[Ca2+][HCO3

-]/[H+] which also takes lowered availability of [Ca2+] into account (Bach 2015; 420 
Fassbender et al. 2016). Plotting shell length against these two parameters revealed a 421 
similar response for all manipulations independent whether they were manipulated by 422 
lowered [Ca

2+
] or CT. The correlation of calcification with these parameters corresponded to 423 

previously observed shell formation performance of mussels and oysters resulting from 424 
modifications of seawater carbonate chemistry only (Waldbusser et al. 2014; Waldbusser et 425 
al. 2015; Thomsen et al. 2015). As salinity and temperature were not changed in the 426 
experiments performed with M. edulis-like ΩAragonite and [Ca2+][HCO3

-]/[H+] are linearly 427 
correlated and it is not possible to distinguish whether shell formation is modified by the 428 
changed kinetics of crystal formation (Waldbusser et al. 2015), higher dissolution due to 429 
undersaturation of the EPF with respect  to calcium carbonate (Miller et al. 2009; Thomsen et 430 
al. 2010; Melzner et al. 2011, Frieder et al. 2017) or by lowered substrate availability and 431 
impaired H+ removal from the calcifying fluids (Thomsen et al. 2015; Bach 2015; Fassbender 432 
et al. 2016). However, the calcification response of M. trossulus-like was similar to M. edulis-433 
like when plotted against ΩAragonite but differed significantly for [Ca

2+
][HCO3

-
]/[H

+
] in 434 

accordance with the higher tolerance to lowered [Ca2+]. This could indicate local adaptation 435 
of M. trossulus-like to the adverse environment in the low saline areas of the Baltic. In 436 
contrast, the response to ΩAragonite was similar in animals from both populations which may 437 
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indicate that shell dissolution under corrosive conditions impacts net shell formation to the 438 
same extent. 439 
Our experimental data revealed that larval calcification is substantially compromised by 440 
environmental conditions encountered in the Baltic Sea. Calculation of Baltic seawater [Ca2+] 441 
suggests [Ca2+] limitation of calcification at salinities of about 8 g kg-1. Thus, with exception of 442 
the western Baltic Sea with its higher salinity values, mussels inhabiting most areas of the 443 
Baltic suffer from low Ca

2+
 availability. Interestingly, studies measuring Baltic Sea [Ca

2+
] 444 

revealed increasing concentrations over the last decades which may have a beneficial effect 445 
on calcification for a given salinity (Kremling and Wilhelm 1997). Nevertheless, the expected 446 
overall reduction of salinity will most likely exceed the minor positive effect of [Ca2+] 447 
enrichment and negatively affect overall fitness  by osmotic stress and secondarily 448 
calcification (Gräwe et al. 2013). 449 
In contrast to [Ca2+], estimating current carbonate chemistry for the four Baltic sub regions 450 
suggests that the influence is of less importance for limitation of calcification. The calculated 451 
[HCO3

-]/[H+] and ΩAragonite for seawater in equilibrium with current atmospheric CO2 452 
concentrations remain above the critical thresholds of 0.1-0.13 and 1, respectively (Thomsen 453 
et al. 2015, this study). However, this conclusion does not consider the substantial variability 454 
of carbonate chemistry in the surface water of the Baltic which is modified by biogeochemical 455 
processes such as riverine composition, photosynthesis and upwelling on a seasonal and 456 
spatial scale. Seawater carbonate chemistry can be substantially modified by phytoplankton 457 
blooms in spring and early summer causing a draw down of seawater pCO2 to 150 µatm 458 
thereby causing elevated pH, [CO3

2-] and [HCO3
-]/[H+] for several weeks (Schneider and 459 

Kuss 2004). Consequently, larvae can be exposed to environmental conditions which are 460 
beneficial for calcification. In contrast, local upwelling phenomena have the opposite effect 461 
leading to lowered pH and [CO3

2-], [HCO3
-]/[H+] and elevated pCO2 (Thomsen et al. 2010; 462 

Saderne et al. 2013). Upwelling events are common in the Baltic Sea in particular along the 463 
western coastlines (Myrberg and Andrejev 2003). However, research mostly focused on the 464 
effect of upwelling on temperature and nutrient supply but neglected the local impacts on 465 
carbonate chemistry (e.g. Haapala 1994). As upwelling causes rapid elevation of pCO2 within 466 
a short period of hours but can last for several days to few weeks, thus for a significant part 467 
of a larval life time, its impact on calcification and performance of larvae can be substantial 468 
(Barton et al. 2012; Thomsen et al. 2015, 2017).  469 
In addition to the present carbonate system variability,  the successive increase of 470 
atmospheric CO2 concentrations and coupled pH decline in the Baltic will result in 471 
progressively adverse conditions for calcification. This process is particularly critical for 472 
mussel populations inhabiting the low saline areas of the Baltic where conditions for 473 
calcification are less favourable already today and will become more adverse in the future. 474 
Nevertheless, it has recently been shown that increasing AT (from an unaccounted source) 475 
may partly and even completely compensate the negative effects of CO2 uptake (Müller et al. 476 
2016). Consequently, bivalve calcification may benefit from higher AT and thus favourable 477 
carbonate chemistry in future, but lowered salinity might still affect performance.  478 
Both substrates relevant for calcification, Ca2+ and inorganic carbon are integrated in the 479 
terms Ω and the SIR extended to [Ca2+][HCO3

-]/[H+]. In fact the calcification response of 480 
bivalve larvae in our experiments was accurately described by both terms for a given salinity 481 
and temperature. Nevertheless, calculations of the environmental conditions in the four Baltic 482 
sub regions revealed important differences. ΩAragonite remains favourable for calcification (>1) 483 
in most parts of the central Baltic and in the Gulf of Riga caused by high alkaline riverine 484 
runoff and therefore prohibits dissolution of shell crystals (Juhna and Klavins 2000). In 485 
contrast, calculated values for [Ca2+][HCO3

-]/[H+] are below the critical threshold of 0.7 in all 486 
sub regions at a salinity of 11 g kg-1 caused by low [Ca2+]. Thus, it is of high ecological 487 
relevance whether bivalve calcification is sensitive to the reduced kinetic of shell formation 488 
and dissolution depending on Ω or lowered substrate availability and inhibition by [H+]. 489 
According to our experimental data most likely a combination of both parameters is 490 
determining sensitivity. However, compared to M. edulis-like, M. trossulus-like seems to have 491 
evolved a slightly higher tolerance to low [Ca2+][HCO3

-]/[H+], but not to low ΩAragonite. A similar 492 
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response has been observed in a comparison between Baltic and North Sea mussels under 493 
simulated ocean acidification (Thomsen et al. 2017).  494 
In conclusion, this study reveals strong impacts of lowered [Ca2+] and carbonate chemistry, 495 
which are naturally changing along the Baltic salinity gradient, on the early calcification of 496 
mussel larvae. Strong delays and impairment of complete shell formation most likely affect 497 
the energy budget and overall physiology of mussels in the low saline areas. Consequently, 498 
low [Ca

2+
] and adverse carbonate chemistry impact mussel fitness substantially and 499 

therefore likely seem to contribute significantly in determining the distribution of marine 500 
mussels in estuaries such as the Baltic Sea. 501 
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Fig. 1 Bathymetric map of the Baltic Sea and its sub regions which are characterized by 764 
specific carbonate chemistry. Sampling spots for mussel populations used in the experiments 765 
are indicated by light blue dots. 766 
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Fig. 2 Prodissoconch I length of mussel larvae as a function of seawater [Ca2+]. A) M. edulis-783 
like, different symbols represent different experimental runs (1-5) B) M. trossulus-like, C) 784 
Comparison of M. edulis-like and trossulus-like, D) Boxplots of seawater [Ca2+] at the 785 
collection site in Kiel Fjord and at Usedom depicting median, 25 and 75% quartiles and 786 
outliers.  787 
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Fig. 3 [Ca2+] in the calcifying space (CS) of M. edulis-like larvae. A) CS [Ca2+] as a function of 795 
seawater [Ca2+], the line indicates the isoline B) Difference between CS [Ca2+] and seawater 796 
[Ca2+] at four [Ca2+] treatments expressed as [Ca2+]CS-[Ca2+]SW. Bar chart depicts mean ± 797 
standard error of the mean (N=6).  798 
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Fig. 4 Prodissoconch I length of mussel larvae exposed to varying CT and [Ca2+] plotted 834 
against A) [Ca2+], B) ΩAragonite, C) [Ca2+][HCO3

-]/[H+].  835 
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Fig. 5 Environmental parameters relevant for calcification in the Baltic Sea calculated for 873 
current salinity-AT correlations and atmospheric CO2 concentration (400 ppm). A) [Ca2+], B) 874 
[HCO3

-]/[H+], C) ΩAragonite and D) [Ca2+][HCO3
-]/[H+] plotted against salinity for the four sub 875 

regions of the Baltic Sea. Dashed lines and grey areas indicate conditions of incipient and 876 
significant reduction of larval calcification rates, respectively. 877 
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Fig. 6 Predicted environmental parameters relevant for calcification in the Baltic Sea 893 
calculated for current salinity-AT correlations and future atmospheric CO2 concentration (800 894 
ppm). A) [Ca2+], B) [HCO3

-]/[H+], C) ΩAragonite and D) [Ca2+][HCO3
-]/[H+] plotted against salinity 895 

for the four sub regions of the Baltic Sea. Dashed lines and grey areas indicate conditions of 896 
incipient and significant reduction of larval calcification rates, respectively. 897 
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Table 1. Natural variability of salinity and [Ca2+] in Kiel Fjord and Usedom. 913 
 914 

Salinity (g kg
-1

) Usedom Kiel 

Min.    3.44 10.50 

1st Qu. 6.81 15.30 

Median  7.19 17.10 

Mean    7.14 17.15 

3rd Qu. 7.74 18.90 

Max.    9.33 24.70 

   

[Ca
2+

] (mM) Usedom Kiel 

Min.    2.22 3.57 

1st Qu. 2.67 4.97 

Median  2.71 5.49 

Mean    2.70 5.51 

3rd Qu. 2.75 6.01 

Max.    3.14 7.70 
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Table 2: Experimental conditions during larval experiments, N:1-10 determinations, ΩAragonite 952 
and [Ca2+][HCO3

-]/[H+] are calculated from measured [Ca2+], CT and pHNBS. 953 

A) [Ca
2+

] manipulation experiments with M. edulis-like 

[Ca2+] [Ca2+]   

treatment (mmol/L)   

<1 mM 0.86 ± 0.02   

1.5 - 2 mM 1.56 ± 0.03   

2.0 - 2.5 mM 2.19 ± 0.03   

2.5 - 3 mM 2.82 ± 0.05   

3.0 - 4.0 mM 3.62 ± 0.06   

4.0 - 5.0 mM 4.42 ± 0.11   

5.0 - 6.0 mM 5.74 ± 0.07   

6.0 - 8.0 mM 6.83 ± 0.25   

>8.0 mM 9.22 ± 0.10   

B) [Ca
2+

] manipulation experiments with M. trossulus -like 

[Ca2+] [Ca2+] ΩAragonite [Ca2+][HCO3
-]/[H+] 

treatment (mmol/L)   [mmol][mol]/[µmol] 

<1 mM 0.40 ± 0.02 0.16 ± 0.02 0.08 ± 0.01 

1 mM 1.07 ± 0.04 0.43 ± 0.00 0.20 ± 0.01 

1-1.5 mM 1.36 ± 0.00 0.51 ± 0.03 0.24 ± 0.01 

1.5 - 2 mM 1.79 ± 0.03 0.62 ± 0.04 0.29 ± 0.02 

2.5 - 3 mM 2.94 ± 0.03 0.98 ± 0.07 0.46 ± 0.03 

3.0 - 4.0 mM 3.74 ± 0.04 1.23 ± 0.06 0.58 ± 0.03 

>5.0 mM 5.78 ± 0.01 1.86 ± 0.11 0.88 ± 0.04 

C) [Ca
2+

] and carbonate systems manipulation experiments with M. edulis-like 

treatment [Ca2+] ΩAragonite [Ca2+][HCO3
-]/[H+] 

  (mmol/L)   [mmol][mol]/[µmol] 

control + high CT 0.93 ± 0.02 0.26 ± 0.07 0.18 ± 0.05 

 1.55 ± 0.03 0.45 ± 0.09 0.31 ± 0.06 

 2.25 ± 0.06 0.64 ± 0.15  0.44 ± 0.10 

 2.99 ± 0.05 0.80 ± 0.22 0.55 ± 0.15 

 3.69 ± 0.04 1.05 ± 0.23 0.73 ± 0.16 

 5.45 ± 0.70 1.36 ± 0.04 0.94 ± 0.02 

  8.69 ± 1.03 2.63 1.8 

low CT 0.92 ± 0.01 0.06 ± 0.01 0.04 ± 0.01  

 1.59 ± 0.05 0.10 ± 0.03 0.07 ± 0.02 

 2.25 ± 0.08 0.14 ± 0.03 0.10 ± 0.02 

 2.78 ± 0.21 0.17 ± 0.02 0.12 ± 0.01 

 3.37 ± 0.38 0.20 ± 0.01 0.14 ± 0.01 

  5.88 ± 0.29 0. 36 ± 0.06 0.25 ± 0.05 
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Table 3: Model parameters (a, b, c) describing PD I size as a function of experimental 959 
seawater conditions for Mytilus edulis-like and trossulus-like: Shell length (µm) = a+ b * 960 
e (̂c*[parameter]). 961 

A) Seawater [Ca
2+

]    

M. edulis-like Estimate std Error t-value p 

a 112.7 1.8 63.4 <0.001 

b -100.7 7.6 -13.3 <0.001 

c -0.8 0.1 -9.3 <0.001 

M. trossulus-

like Estimate std Error t-value p 

a 120.6 1.8 66 <0.001 

b -94.5 5.2 -18.1 <0.001 

c -1 0.1 -10.3 <0.001 

B) Seawater ΩAragonite   

M. edulis-like Estimate std Error t-value p 

a 118.9 3.8 31.1 <0.001 

b -106.1 16.1 -6.6 <0.001 

c -3.1 0.6 -4.7 <0.001 

M. trossulus-
like Estimate std Error t-value p 

a 121.6 2.3 53.5 <0.001 

b -100.8 6.4 -15.7 <0.001 

c -2.8 0.3 -9.0 <0.001 

C) Seawater [Ca
2+

][HCO3
-
]/[H

+
]  

M. edulis-like Estimate std Error t-value p 

a 125.9 5.0 25.3 <0.001 

b -73.5 4.3 -17.2 <0.001 

c -1.8 0.3 -5.9 <0.001 

M. trossulus-
like Estimate std Error t-value p 

a 121.4 2.2 54.0 <0.001 

b -104.8 7.1 -14.9 <0.001 

c -6.0 0.7 -9.0 <0.001 
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Table 4:  Results for linear models fitted on log transformed data of shell length and seawater 983 
parameters, significant results in bold. 984 

A) Response to [Ca
2+

]     

  Estimate std Error t-value p 

Intercept 4.17 0.07 59.2 <0.001 

Ca
2+

 0.31 0.06 4.9 <0.001 

population 0.12 0.04 2.8 <0.01 

Ca
2+

:population -0.01 0.04 -0.3 >0.05 

F: 82.1 p: <0.001 R2: 0.77   

     

B) Response to ΩAragonite   

  Estimate std Error t-value p 

Intercept 4.64 0.05 90.4 <0.001 

ΩAragonite 0.13 0.04 3.08 <0.01 

population 0.04 0.03 1.23 >0.05 

ΩAragonite: population 0.1 0.03 2.86 <0.01 

F: 116.4 p:<0.001 R2: 0.82   

     

C) Response to [Ca
2+

][HCO3
-
]/[H

+
] (CHH)  

  Estimate std Error t-value p 

Intercept 4.69 0.08 60.1 <0.001 

CHH 0.27 0.07 3.8 <0.001 

population 0.13 0.05 2.5 <0.05 

CHH: population 0.02 0.04 0.5 >0.05 

F: 67.4 p: <0.001 R2: 0.78   
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