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Abstract Seafloor elongated depressions are indicators of gas seepage or slope instability. 10 

Here we report a sequence of slope-parallel elongated depressions that link to headwalls of 11 

sediment slides on upper slope. The depressions of about 250 m in width and several 12 

kilometers in length are areas of focused gas discharge indicated by bubble-release into the 13 

water column and methane enriched pore waters. Sparker seismic profiles running 14 

perpendicular and parallel to the coast, show gas migration pathways and trapped gas 15 

underneath these depressions with bright spots and seismic blanking. The data indicate that 16 

upward gas migration is the initial reason for fracturing sedimentary layers. In the top 17 

sediment where two young stages of landslides can be detected, the slope-parallel sediment 18 

weakening lengthens and deepens the surficial fractures, creating the elongated depressions in 19 

the seafloor supported by sediment erosion due to slope-parallel water currents.  20 
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1. Introduction 24 

Seafloor elongated depressions, indicators for gas seepage or slope instability, have been 25 

reported from several continental margins, such as the West African margin, the Turkish 26 

Black Sea shelf, the mid-U.S. Atlantic coast, the Norwegian continental slope and the Santa 27 

Barbara Basin (Pilcher and Argent, 2007; Çifi̧ et al., 2003; Driscoll et al., 2000; Newman et 28 

al., 2008; Mienert et al., 2010; Reiche et al., 2011; Laberg et al., 2013; Greene et al., 2006). 29 
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Two explanations are given for their formation mechanisms. One is linked to submarine gas 30 

release from “pockmarks” that are grouped together  (Hovland et al., 2002; Bøe et al., 1998; 31 

Pilcher and Argent, 2007; Hill et al., 2004), the other is that they are opening tensional 32 

“cracks” as a result of slope instability. In the latter explanation they are regarded as the initial 33 

stage of a landslide (Laberg et al., 2013; Reiche et al., 2011; Martel, 2004; Greene et al., 34 

2006). 35 

On continental slopes, elongated depressions are often associated with both mass movement 36 

and gas seepage. So the initial reason for their occurrence is controversially discussed. Çifi̧ et 37 

al. (2003), Hill et al. (2004) and Mienert et al. (2010) proposed that elongated depressions are 38 

created by gas seepage. In contrast, Driscoll et al. (2000), Martel (2004), Greene et al. (2006) 39 

and Reiche et al. (2011) suggested that in their study areas the elongated depressions are 40 

mainly a result of slope instability related to surrounding landslides or are influenced by older 41 

landslides further downslope. In our paper we discuss whether one of the two processes, gas 42 

seepage or sediment movement, is the main driver for the elongated depressions on the upper 43 

slope offshore southern Bulgaria, Black Sea. 44 

Multibeam echosounder (MBES) data recorded during SPUX cruise with RV Akademik in 45 

2012 show formerly reported ‘pockmarks’ (Dimitrov and Dontcheva, 1994) to be actually 46 

elongated depressions. Current and past gas seepage zones as well as different stages of 47 

landslides are identified by combining geological, geophysical and geochemical studies. We 48 

present the distribution and shape of the elongated depressions as well as their sub-surface 49 

structure to discuss the possible relationship between the elongated depressions and mass 50 

movement or gas seepage. 51 

 52 

2 Geological setting 53 

The Western Black Sea Basin (WBSB) is a back-arc basin that developed north of the Pontide 54 

Magmatic Arc as a consequence of the northward subduction of the Neo-Tethys oceanic plate. 55 

The study area is located on the submarine prolongation of the Balkan Orogen ( Fig. 1; 56 

Georgiev, 2012). To the west the anticlinal structure of the West Achtopol Swell affects the 57 

Mid-Quaternary strata (Dimitrov and Dontcheva, 1994; Genov and Dimitrov, 2003).  58 

The thickness of the overlying sedimentary strata on the basement increases seaward, from 59 

about 1.5 km at the upper slope to 3-3.5 km in the WBSB (Georgiev, 2012). The thickness of 60 

Quaternary sediments is more than 600 m at the slope base just seaward of the study area 61 

(Dimitrov and Dontcheva, 1994). Affected by global sea level change during the Quaternary, 62 
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the sedimentary environment of the Black Sea alternated between a saline sea and a fresh 63 

water lake (Ross, 1974). The superficial Holocene layers are silty clay enriched in organic 64 

matter (Corg 1-5 %) with a thickness of typically 2 m, but the underlying Upper Pleistocene 65 

sediments are lacustrine clayey mud with Corg concentrations of less than 1 %. 66 

The pockmark zone reported by Dimitrov and Dontcheva (1994) is located at the shelf edge, 67 

while the southern part, resurveyed during the SPUX cruise, is located in the upper part of the 68 

continental slope. The pockmark zone is bounded by the Rezovo fault to the south. The 69 

northern bounding cannot be determined due to lack of data. 70 

 71 

Fig. 1 Main structural features of the Bulgarian Black Sea zone (Georgiev, 2012). The study 72 

area is marked by red rectangle, the pockmark zone reported by Dimitrov and Dontcheva, 73 

(1994) are marked by dash line. 74 



4 

 

3. Materials and methods 75 

More than 230 km2 of seafloor were mapped with a Reson SeaBat 7111 MBES (100 kHz; 2° 76 

x 1.5° beam angle). The vessel velocity ranged from 3 to 5.2 kn during the surveys. Sound 77 

velocity information was acquired with a real time sound velocity probe near the transducers 78 

(Reson SVP-71). Sound velocity profiles were acquired during CTD casts. The Generic 79 

Mapping Tools (GMT 5.1; Wessel et al., 2013), Fledermaus (Version 7.4; from QPS) and 80 

ArcGIS (Version 10.1) software packages were used to visualize the data. Data processing 81 

was performed with PDS2000. 82 

Twenty-eight seismic profiles were acquired using a sparker-streamer combination from 83 

RCMG (Gent University). The Applied Acoustics CSP600 power source (600 Joule) supplied 84 

energy to the sparker ELC820 (100 tips) at a 1.5 s shooting rate. The distance between shot 85 

points was about 2-3 m depending on ship speed. A single-channel streamer with 10 86 

hydrophones was used for signal reception with the IXSEA Delph software (sampling interval 87 

of 100 µs or 125 µs). RadExPro and Seismic Unix were used as processing software, 88 

including smoothing the seafloor horizon by moving average with window size 9 (sea waves 89 

static), Stolt migration (using a constant sound velocity, ~ 1470 m/s) and band pass filtering 90 

(10 - 600 Hz). The Kingdom Suite Software (Version 2015) was used for interpretation and 91 

visualization.  92 

 93 

4. Bathymetry of the study area 94 

The study area is located on the shelf edge and the upper continental slope, with water depths 95 

of 110 to 600 m (Fig. 2). At the shelf break in about 140 m water depth the slope steepens 96 

from 0.5° to 1.2° at the outer shelf edge. The central part of the area shows a gentle terrain 97 

between 140m to 250 m water depths, where the slopes are steeper in the north (~1.8°) than in 98 

the south (1.2°). The eastern part of the area shows a more complex bathymetry. A multiphase 99 

landslide seafloor structure exists in the northeast, creating escarpments along its boundaries 100 

(Fig 2). In the southeast, the seafloor depth increased rapidly by about 400 m (Fig. 2), forming 101 

a valley as a result of the Rezovo fault described by Dimitrov and Dontcheva (1994). Between 102 

this valley and the landslide area, the seafloor appears as a saddle-shaped protrusion without 103 

clear slump features. Upslope of the landslide area and south of it, seventeen elongated 104 

depressions have developed almost parallel to the isobaths between 250 and 300 m water 105 

depth (Fig. 2 & 3).  106 
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 107 

Fig. 2 Multibeam bathymetry map of the southern Bulgarian slope area, with indications for 108 

the shelf break, the northern boundary of the Rezovo valley, surface and buried slide 109 

escarpments as well as elongated depressions. Locations of seismic lines in Fig. 4 and 5 are 110 

indicated. 111 

 112 

The lengths of the depressions range from 540 m to 3720 m and their width varies between 113 

100 m and 300 m. The depressions are < 10 m deep with an average of about 5.5 ± 2 m. Most 114 

of the depressions are slightly curved, while some are bifurcated (depression #6, 7, 9 and 14; 115 

Fig. 3). The depressions are asymmetrical, and usually the upper (shallower) flanks have a 116 

steeper slope (2 - 6 º) than the lower flanks (2 - 4 º; Fig. 3b). The elongated depressions can be 117 

grouped into a southern (depression 1 - 10) and a northern group (depression 11 - 17), with 118 

landslide escarpments between them. Compared to the southern depressions, the northern 119 

group depressions are smaller. The average length of depressions in the south (1 – 10) is 2450 120 

± 1000 m with most of them being 1300 m to 3700 m long. The average length in the north 121 
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(11 – 17) is only 1280 ± 430 m. The average width and depth of the southern depressions (235 122 

± 50 m and 6.5 ± 2 m respectively) are larger than those found in the north (200 ± 50 m and 4 123 

± 0.8 m respectively).  124 

 125 

Fig. 3 Bathymetric map (a) and slope map (b) of the elongated depressions area (Fig. 2). 126 

Depressions are outlined by grey lines and numbered. 127 

 128 

5. Seismic interpretation 129 

The sparker seismic reflection profiles have imaged the sedimentary layers at the uppermost 130 

150-300 ms of two-way travel time (TWT). In general, the reflectors are subparallel to the 131 

bathymetry dipping towards the basin in the east. Existing faults do not influence the 132 

Quaternary deposit structures significantly, except at the southeast part of the study site where 133 

the Rezovo fault shapes the Rezovo valley (Fig. 2, Dimitrov and Dontcheva, 1994). In the 134 

northeast, landslides are indicated by escarpments and chaotic reflections in the seismic 135 
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profiles (Fig. 4). Two slipping surfaces are clearly identified at ca. 90 -110 ms TWT and ca. 136 

20 - 40 ms TWT below the seafloor. The deeper slipping surface also exists further 137 

downslope of all seafloor escarpments (indicated by both the grey and black lines in Fig. 2) 138 

and sedimentary layers above this slipping surface at 40 ms TWT are disturbed. The 139 

shallower slipping surface is located downslope of the seafloor escarpments (indicated by the 140 

black line in Fig. 2 and 4). Above this surface, either all sedimentary layers have been 141 

disturbed up to the seafloor, or the sedimentary layers have been disturbed as well except for 142 

the top ca. 10 ms TWT of the sediment. 143 

 144 

 145 

Fig. 4 The seismic profile Spux 26 (see Fig. 2 for location) shows slides and slide slipping 146 

surfaces as well as the subsurface structures of the elongated depressions that root at the 147 

buried slide. 148 

 149 

Vertical acoustic turbidity zones and areas of high amplitudes with reverse polarity (gas 150 

pockets) which are typical for gas seepage areas can be seen below the depressions (Fig. 5b & 151 

c). The sub-bottom structure below the elongated depressions varies from one depression to 152 

the other. It also shows difference in lateral direction within the same depression. These 153 

differences are related to (1) the depths of the acoustic turbidity under the depressions, (2) the 154 

appearance of gas pockets, (3) the position of possible related landslides. Based on these 155 

differences, we classified the sub-bottom structures beneath the elongated depressions into 156 

three types, with a summary shown in Fig. 5a, and typical examples shown enlarged in Fig. 6. 157 

 158 
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 159 

Fig. 5 (a) Overview of the three types of  sub-surface structures under the depressions. Seismic line 160 

Spux 04 (b) runs perpendicular to depression 6 and Spux 08 (c) runs along its axis, showing the 161 

varying distribution of acoustic turbidity zones and gas pockets. 162 
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Type I—gas focusing conduits 163 

For one set of depressions several seismic profiles show that the lower limit of the acoustic 164 

turbidity zone exceeds the recording depth of the sparker data (> 200 ms TWT below the 165 

seafloor, Fig. 6a). At least one profile of each depression in the southern group shows an 166 

acoustic turbidity zone deeper than 200 ms TWT below the seafloor, while only one profile 167 

shows a deep rooted acoustic turbidity zone underneath a depression in the north (Fig. 5a). 168 

Seismic profiles that lie perpendicular to the elongated depressions image a narrow acoustic 169 

turbidity zones (Fig. 5b), but show an acoustic turbidity zone at least 700 m long in profile 170 

Spux 08 that runs along depression 6 (Fig. 5c). This indicates that the acoustic turbidity zones 171 

are narrow cuboid volumes and not cylindrical isolated chimneys. These acoustic turbidity 172 

zones reach deeper than both slipping surfaces of landslides. Sedimentary layers on the two 173 

sides of the acoustic turbidity zones do not show a significant dislocation. In the area beneath 174 

the elongated depressions, gas pockets are common along the acoustic turbidity zones. 175 

 176 

Type II—shallow rooted structure without gas pockets 177 

In other seismic profiles the lower boundary of the acoustic turbidity zones could be imaged 178 

at 70 ms TWT below the seafloor (Fig. 6b). These acoustic turbidity zones cover the depth 179 

interval of the landslides. The sedimentary layers on both sides of the acoustic turbidity zones 180 

do not show a significant dislocation, and gas pockets are not found in these profiles.  181 

 182 

Type III—structure rooted in the re-deposited landslides 183 

The acoustic turbidity zones under depression 13 and 16 link to re-deposited sediments of 184 

buried landslides. The acoustic turbidity zones under depression 13 link to the chaotic 185 

reflections of a buried slide (Fig. 4), while turbidity areas under depression 16 just occur 186 

above the headwall of the slide (Fig. 4 & 6c). The acoustic turbidity zones root in the chaotic 187 

reflections of landslides, and do not penetrate the slipping surface. 188 

 189 
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 190 

Fig. 6 The seismic profiles show three kinds of typical structures under the depressions. (a) type I -- 191 

the acoustic turbidity zone roots deeper than 200 ms TWT below the seafloor, and gas pockets are 192 

found. (b) type II -- the acoustic turbidity zone roots shallower than 30 ms TWT below the seafloor, 193 

and there are not gas pockets. (c) type III -- the acoustic turbidity zone roots in the buried landslides. 194 

See Fig. 5b for locations of profiles a and b, see Fig. 4 for location of profile c. 195 

 196 
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6. Discussion 197 

The close proximity of landslides with elongated depressions and the presence of shallow gas 198 

pockets underneath these depressions imply that their location and formation results from a 199 

combined effect of slope instability and gas migration/seepage. Seafloor pockmarks have 200 

often been interpreted as indicators for (past) fluid/gas seepage and in some circumstances 201 

they have been found adjacent to and often upslope of landslides (Hovland et al., 2002). 202 

Typical examples are the Storegga Slide area at Nyegga, offshore mid-Norway (Reiche et al., 203 

2011), the Baiyun Slide on the northern slope of the South China Sea (Li et al., 2014), the 204 

NG1 slide area in the north-east Atlantic (Riboulot et al., 2013), the Humboldt Slide offshore 205 

California (Yun et al., 1999) or the Albemarle Currituck slide area at the U.S. Atlantic margin 206 

(Hill et al., 2004; Newman et al., 2008). Çifi̧ et al. (2003) proposed that elongated depressions 207 

(described by the authors as pockmarks) in the Turkish shelf of the Black Sea formed by the 208 

merging of circular pockmarks. However, most of the depressions in our survey area are 209 

kilometer scale, elongate features. Smaller circular pockmarks are not present in the research 210 

area (Fig. 2). Although a few depressions are slightly curved or bifurcate, the walls of the 211 

depressions are straight in general (Fig. 3). There is no clear evidence that individual circular 212 

pockmarks have been developed and thus the assumption that small circular pockmarks 213 

merged into elongated depressions seems unreasonable for the discussed research area.  214 

Hill et al. (2004) and Newman et al. (2008) suggested that the elongated asymmetric 215 

depressions along the U.S. Atlantic margin (termed “gas blowouts”) formed primarily by gas 216 

expulsion due to tensional stress, and the related downslope creep of sediments is linked to 217 

gas release along the seafloor of the shelf edge. The depression shapes in our research area are 218 

highly elongated and asymmetric (Fig. 3), showing similar shapes as those along the U.S. 219 

Atlantic margin. Along the Bulgarian slope research area, gas pockets are found along the 220 

acoustic turbidity zones which root deeper than the recording depth of the sparker data (Fig. 5 221 

& 6a), implying these turbidity zones (type I structure) are the main conduit for fluid 222 

migration. As the sedimentary layers on both sides of the acoustic turbidity zones do not show 223 

a significant dislocation, they are not formed by Quaternary faults (Fig. 5). These acoustic 224 

turbidity zones (> 200 ms TWT below the seafloor, Fig. 6a) reach deeper than the two 225 

detected slipping surfaces (Fig. 4), ruling out the possibility that they are formed by 226 

sedimentary instabilities that are related to sediment movement/landslides (Chapron et al., 227 

2004; Baeten et al., 2013; Laberg et al., 2013). We suggest that these vertical acoustic 228 
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turbidity zones are primarily fractured by gas migration and then serve as conduits for 229 

following gas. 230 

In contrast to many other more focused and round/oval ‘gas chimneys’, the gas conduits 231 

offshore Bulgaria have a more continuous wall-like shape that follows the elongated 232 

depressions at the seafloor surface (Fig. 5). The length of these gas-conduit walls can be 233 

laterally shorter than the depressions above. The wall-like shape of the conduits points to a 234 

tensional stress regime within the Quaternary sediments and they are present under each 235 

depression in the southern part of the working area (depression 1 to 10). In contrast, only one 236 

has been found under the northern group of depressions (depression 11-17). We interpret this 237 

as an artifact created by the limited coverage of seismic lines in the north (Fig. 5a). We thus 238 

suggest that the buoyancy induced gas migration through the sediment is responsible for the 239 

formation of the type I structure under the depressions, and that this controlled the location of 240 

the seafloor elongated depressions. 241 

Considering only the process of gas migration as the reason for the depression formation is 242 

not  comprehensive. This is because gas pockets are not found along type II and type III 243 

structures (Fig. 5a, 6b & c), which indicates that gas migration and trapping is/has been absent 244 

under some parts of the elongated depressions. Secondly, downslope sediment creeping, 245 

which is proposed to contribute shaping the feature of the “gas blowouts” along the U.S. 246 

Atlantic margin (Hill et al., 2004), is not found in our research area. 247 

Tension fractures，which are regarded as the initial stages of slope failure (Driscoll et al., 248 

2000; Reiche et al., 2011; Laberg et al., 2013; Greene et al., 2006; Baeten et al., 2013), are 249 

assumed to lengthen and shape the elongated depressions. Under some of them, acoustic 250 

turbidity zones occur in the same shallow depth down to 70 ms TWT below the seafloor (type 251 

II & III structures) and indications of landslides could be observed. This might implicate that 252 

the sedimentary slipping at this depth interval may have an influence on the formation of 253 

these acoustic turbidity zones, and thus the elongated shape of the seafloor depressions. 254 

Landslides accompanied by tension fractures have also been found in several other 255 

continental margins. For example, the extension of landslide headwalls as fractures, such as 256 

the cracks in the Santa Barbara Channel (Greene et al., 2006), has been confirmed by 3-D 257 

modelling to be shear fractures as described by Martel (2004). Cracks of the Norwegian 258 

continental slope (Laberg et al., 2013; Baeten et al., 2013) have been described at the upslope 259 

of landslide headwalls and were interpreted to be the result of tension fractures. Tension 260 

fractures are usually distributed en échelon as surficial expression (Laberg et al., 2013), while 261 
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the depressions in our study area are subparallel linear. The difference may be because of the 262 

influence of gas  migrateion along the type I structure or the saddle-shaped seafloor (Fig. 2) 263 

on the stress distribution. 264 

As a conceptual model, the following sequential stages of bubble migration, gas accumulation, 265 

sediment weakening and sediment sliding are considered as a likely process for the formation 266 

of the elongated depressions on the upper Bulgarian slope. With the accumulation of gas 267 

under impermeable sedimentary layers, especially in the area where the slope of the seafloor 268 

increases seaward (Fig. 7 stage 1), pore pressure increases initiating the breakthrough of gas 269 

bubbles at individual locations, a process similar to the formation of gas chimneys (Fig. 7 270 

stage 2). The vertical weakening of the sediment due to buoyancy driven gas bubble migration 271 

that fractures the sediment define the upper border of subsequent mass movement, but also the 272 

location and orientation of the elongated depressions. Near the gas-weakened conduit(s), the 273 

potential of gravitational forces to cause fracturing is highest, and these areas may turn into a 274 

growing gas migration plane in parallel to the slope. This will develop over time in the 275 

observed acoustic turbid ‘conduit wall’ with gas pockets (Fig. 7 stage 3, e.g. the type I 276 

structure in Fig. 5c). In stage 4, tension fractures may either occur together with landslides 277 

during one mass movement event, or form when the support from downslope or underneath 278 

sedimentary layers weakens. The areas upslope of landslide, the lateral/slope parallel 279 

extension of landslide headwalls and sedimentary layers above buried landslides are the most 280 

likely positions for the development of tension fractures. Areas with already weakened 281 

sediment structures as the ‘conduit walls’ give priority to a further development of tensional 282 

fractures/cracks causing that acoustic turbidity zones in shallow sedimentary layers are 283 

lengthened and widened (e.g. the type II structure in Fig. 5c), creating asymmetric elongated 284 

depressions on the seafloor (Fig. 7 stage 4). In stage 5, the elongated depression and the 285 

underneath ‘conduit wall’ or tensional cracks might transform into headwalls of sliding sites, 286 

facilitating the upslope retrogression of mass movement. One of those headwalls forms a 287 

slope-parallel extension of the depression developed in the north of depression 6 (Fig. 3b).  288 

 289 
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 290 

Fig. 7 Schematic outlining the formation process of elongated depressions. See text for explanation. 291 

 292 

7 Conclusions 293 

The series of asymmetric elongated depressions, imaged in seismic and multibeam-echo 294 

sounder data show a very close relation with gas migration and sediment sliding in the upper 295 

continental slope offshore southern Bulgaria. The lengths of the depressions range from 540 296 

m to 3720 m, the widths vary between 100 m to 300 m, and their depths are < 10 m. Three 297 

types of vertical acoustic turbidity zones are found below the elongated depressions, including 298 

gas focus conduits that rooted deeper than the recording depth of the sparker data, shallow 299 

rooted structure without gas pockets, and structure rooted in the re-deposited landslides. The 300 

data imply that no faults existed prior to the onset of vertical gas migrations. However, once 301 

gas bubble migration started to weaken the sediments vertically and laterally, slope-parallel 302 

fracturing began to evolve. When the buoyancy of gas-charged fluids exceeds the overburden 303 

pressure, fluids and gas expelled through the overlying sediments, creating gas focusing 304 

conduits. At the depth interval of sediment sliding, conduits are lengthened and widened, 305 

developing into tensional fractures or cracks and so pre-defining/shaping the elongated 306 

depressions on the seafloor. The weakened surface sediments in the depressions are prone to 307 

be eroded by bottom currents which further help to deepen and widen these depressions until 308 

the observed stage. 309 
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