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Abstract— The Plane Wave Expansion (PWE) method has been
proposed as a theoretical model for periodic composite ultrasonic
transducers. This paper extends previous work by importantly
including viscoelastic loss in the material parameters. Some
of the issues with model formulation, such as ill-conditioning
in the large matrices, have been addressed through parameter
scaling and Tikhonov regularisation. Identification of each mode
of vibration has been carried out by visualising the spatial
and temporal profiles of the displacement, electrical potential
and Poynting vector. A comparison between the theoretical
predictions and experimental data from a piezoelectric composite
device is presented. The effect that the elastic properties of the
passive phase have on device performance is also investigated. It
is found that high shear attenuation in the passive phase gives
rise to a large frequency stop band gap around the fundamental
thickness mode.

I. INTRODUCTION

Piezoelectric composite transducers are generally accepted
as the design of choice in many biomedical, sonar and non-
destructive testing applications ([1], [2]). The most frequently
used designs are made by dicing the ceramic into a series
of pillars and then filling the void with a passive polymer
phase [3]. A problem with this architecture is the presence of
unwanted waves, which are generated between the adjacent
pillars (inter-pillar modes) or within the pillars (intra-pillar
modes), interfering with the piston like behaviour of the main
thickness mode [4]. It has been suggested that a passive
material with a low transverse coupling could damp out
these unwanted modes ([4], [5]). Theoretical modelling of the
transducer can enhance the understanding of the underlying
physics and help in the prototyping of new designs ([6],
[7], [8], [9]). A complementary approach to Finite Element
(FE) modelling is the plane wave expansion (PWE) method
introduced by Wilm et al [10]. This paper extends this model
by incorporating loss into the formulation; vital for accurate
representation of transducer behaviour since it has been shown
to affect crosstalk between adjacent ceramic pillars. The next
section details the geometry of the transducer, its description
in terms of a Fourier analysis and a brief outline of the
PWE method. This section follows the derivation of Wilm et
al [10] and so only a brief outline is given. The inclusion

of viscoelastic loss into the model is described, followed
by a discussion on the use of scaling and regularisation
in the method’s implementation. A comparison between the
PWE method, FE modelling and experimentally measured
transducer behaviour is reported. Dispersion curves, electrical
impedance plots and a modal analysis using displacement and
Poynting vector profiles are used to discuss the operating
characteristics. Finally, a composite transducer with a high
shear loss passive phase is analysed and the results show an
improvement in the device’s stop band gap surrounding the
fundamental thickness mode.

II. FORMULATION OF THE MODEL

The model is configured for periodic 2-2 and 1-3 compos-
ites, with thickness in the x3 direction. Due to the periodicity
of the structure, the material constants, such as the density ρ,
the elasticity tensor cijkl , the piezoelectric stress tensor eijk

and the permittivity tensor εij , are expanded as spatial Fourier
series in the x1−x2 plane. For the 1-3 composite structure, the
material constants only depend on x1 and x2 and hence the
dependent variables propagating within these periodic struc-
tures can be expressed as Floquet series. The physical model
of the transducer is provided by the piezoelectric constitutive
equations together with Newton’s second law and Gauss’s law
for dielectric media [11]

Tij = cijkluk,l + elijφ,l (1)

Di = eikluk,l − εilφ,l (2)

ρ
∂2uj

∂t2
= Tij,i (3)

Di,i = 0. (4)

Equations (1) to (4) constitute 16 equations in the 16 un-
knowns which are the stresses Tij , the displacements uk, the
electric potential φ and the electrical displacements Di. By
substituting the Floquet representation into the model, a gen-
eralised eigenvalue problem arises in the thickness direction



wavenumber k3. Lengthy algebraic manipulations lead to the
following approximation for the dependent variables ([10],
[12])
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where r = (x1, x2, x3), t is time, ω is the angular frequency,
k = (k1, k2, k3) is the wave vector, the generalized dis-
placement field is u = (u1, u2, u3, φ), the generalized stress
vector is ti = (Ti1, Ti2, Ti3, Di), the 8(2N + 1)2 eigenvalues
k

(r)
3 have corresponding eigenvectors [uq t

q
3]

(r) and relative
amplitudes A(r), and N is the number of Fourier coefficients.
Energy distribution within the transducer can be used to clarify
particular types of modes in conjunction with examining the
profiles of the displacements, stresses and electric potential.
To examine the energy distribution in the device the Poynting
vector (Pj) is used. This can be shown to be [12]

Pj = −ω(cijkluk,l +elijφ,l)ui + ωφ(ejkluk,l − εjlφ,l). (6)

The method is sufficiently general to cope with a wide range of
boundary conditions. For simplicity the mechanical boundary
condition of a stress free plate and the electrical boundary
condition of a fixed electrical potential at the top and bottom
of the transducer are employed when deriving dispersion
relationships. An alternative electrical boundary condition of
continuity and smoothness in the electrical potential at the
electroded surfaces is employed for the calculation of the
relative amplitudes and hence the dependent variables, using
equation (5). One advantage of studying piezoelectric compos-
ites is that the electrical operating characteristics provide an
alternative means of deriving the dispersion curves, whereby
the resonant modes are signified by maxima in the real part of
the admittance (Y ). Using continuity of the electrical potential
at the front interface gives [10]

Y (k1, k2, ω) = ω
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where κ =
√

(k1 + G
q
1)

2 + (k2 + G
q
2)

2.

A. Frequency dependent, viscoelastic loss model

The degree of mechanical loss is usually expressed in terms
of a dimensionless loss tangent tan δ [13], a mechanical factor
Q, or an attenuation coefficient α [14]. Frequency dependent
loss is introduced into the ceramic phase via tan δ using
tan δ ∝ wγ , with γ ∈ [1, 2]. Loss is introduced into the
polymer by defining complex Lamé coefficients and deriving
expressions for their imaginary parts in terms of the natural

frequency and the attenuation coefficients. The degree of
shear loss is then varied by multiplying the shear attenuation
coefficient by a parameter ζ ∈ [1,∞). The effect that a high
shear attenuation polymer phase has on the frequency band gap
surrounding the thickness mode of the transducer can then be
investigated by simply varying ζ.

B. Implementation

The vibrational modes of the transducer must satisfy the
system of equations XA(r) = Q,where X(k, ω) is an 8(2N +
1)2 × 8(2N + 1)2 matrix and Q(k) is a column vector
of length 8(2N + 1)2. Unfortunately the matrix X is ill-
conditioned, mainly due to the exponential terms which arise
when calculating the boundary conditions at the mechanical
and piezoelectric discontinuities. To help obviate this problem,
the parameters are scaled to balance the matrix entries [12].
There are also numerical instabilities when the determinant of
X approaches zero, due to this ill-conditioning and Tikhonov
regularisation [15] has been used to circumvent such issues
[12]. This method converts the matrix to a real, symmetric
form and then translates the eigenvalues by a small amount, µ,
along the real axis, away from the origin. The determinant of
the resultant matrix is very large and the modes are identified
by the minima in the cost function surface log |X∗X + µI |,
parameterised by the angular frequency, ω ∈ R, and wavenum-
bers k1, k2 ∈ C. A particular mode for a 2-2 design is obtained
by setting k2 = 0, k1 to a real number (initially) and then
searching the cost function surface in the ω direction until
each local minima is found. These interim minima are used as
the initial values for a search in the direction of the imaginary
part of k1, although here the algorithm stops at the first local
minimum. This orthogonal stepping procedure is repeated a
set number of times and the whole process is then performed
for a range of k1 values [12].

III. RESULTS

The first section shows a typical lossy dispersion curve for
a 2-2 composite transducer. This is followed by a comparison
of the dispersion curves obtained by the PWE method, a FE
method and experimentally measured data for a 1-3 composite
transducer. The second section discusses the damping of
unwanted modes by the use of a polymer phase containing
high shear attenuation.

A. Comparison to FE Model and Experimental Data

Fig. 1 shows a lossy dispersion diagram where each modal
point has been shaded according to the size of the imaginary
part of the wavenumber (k1), with the lighter shades corre-
sponding to the highly attenuated modes. It can be seen that the
degree of attenuation increases with frequency and eventually
leads to each mode being cut off. It will be seen later that
the experimental data displays mode cut-off and hence the
inclusion of loss into the PWE method has considerably
improved its predictive capabilities. The PWE method was
then compared to experimental and FE modelling data from a
1-3 composite transducer composed of PZT5H ceramic (35%)
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Fig. 1. Phase velocity (vp) versus frequency thickness product for a 2-
2 composite transducer. The points are shaded according to the degree of
attenuation given by the magnitude of the imaginary part of the wavenumber
k1.

Data Values Constant Hardset
Shear modulus (real part) G′(kg m−1s−2) 1.57 × 109

Young’s modulus (real part) E′(kg m−1s−2) 4.28 × 109

Density ρ ( kg m−3) 1.149 × 103

Dielectric constant ε 4
1-1 elastic constant c11 7.1977 × 109

4-4 elastic constant c44 1.5739 × 109

Shear attenuation coefficient αs
0
(db/m) 356

Longitudinal attenuation coefficient αl
0
(db/m) 139

Frequency of measurement f0 (MHz) 0.5

TABLE I
PHYSICAL PROPERTIES OF THE POLYMER HY1300/CY1301 HARDSET

[16]

- Constant Units Value
elastic constants c11 Nm−2 12.72 × 1010

c12 Nm−2 8.02 × 1010

c13 Nm−2 8.47 × 1010

c33 Nm−2 11.74 × 1010

ε33 - 1700
dielectric constant ε11 - 1470

Piezoelectric constant h V m−1 2.6 × 109

density ρb kg m−3 7.5 × 103

Piezoelectric stress e33 C m−2 23.3
coefficients e31 C m−2

−6.5
loss tangent tan δ - 1/65

TABLE II
PHYSICAL PROPERTIES OF THE CERAMIC PHASE PZT5H [16]

and HY1300/CY1301 hardset polymer (65%) [2] (see Fig. 2,
Table I and Table II). In addition to predicting the Lamb
modes the PWE method also predicts the presence of bulk
waves and interpillar modes. These latter waves are driven by
the spacing between adjacent pillars and diagonally opposite
pillars and are displayed as constant wavelength ’loadlines’
in the dispersion diagram shown in Fig. 2. There is good
agreement with the experimental data although the FE model
predicts a larger frequency range for the a0 mode than was
observed experimentally. The PWE method is computationally

less intensive than the FE model and its strength lies in
providing a fast, qualitative prediction of the transducer’s
characteristics.

B. Damping of unwanted lateral modes

This section investigates a 2-2 composite transducer com-
posed of PZT5H (70%) ceramic and HY1300/CY1301 (30%)
hardset polymer. To simulate the effect of increasing the
shear attenuation, the scaling parameter ζ is used to scale
the shear attenuation coefficient. An alternative approach to
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Fig. 2. Phase velocity (vp) versus frequency (f ) for a 1-3 composite
transducer using the PWE method (triangles), FE modelling (squares) and
experimental data (solid line). The long and short dashed lines represent the
bulk modes and loadlines respectively.

calculating the dispersion curves is to utilise the electrical
behaviour of the transducer. By plotting the conductance (G)
as a function of frequency, each of the maxima can be analysed
in turn and the type of mode that is being supported at this
frequency classified (see Fig. 3). The standard classification
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Fig. 3. Conductance (G) versus frequency (f ) for a 2-2 composite transducer.
The solid and dashed lines represent low shear attenuation (ζ = 1) and high
shear attenuation respectively (ζ = 20).

of the modes is problematic here as the supporting medium
is heterogeneous, anisotropic, lossy and piezoelectric. As such
the descriptions of the waves in terms of their symmetry, or as
Lamb, Rayleigh, bulk waves etc. are only pseudo-descriptions
and the actual behaviour is far more complex. Identification
of modes is aided by spatial and/or temporal plots of the
displacement, the Poynting vector and the electrical potential.
It transpires that the thickness mode can be identified as
the central maximum in the admittance plot at around 0.65
MHz. The lower frequency maxima correspond to Lamb waves



whilst the inter/intra-ceramic modes are the first set of peaks to
the right of the thickness mode at around 1 MHz. The advan-
tages of plotting the conductance is that the relative importance
of each mode can be seen and in this way it eradicates any
spurious points found in the dispersion diagram. The electrical
conductance of the transducer can also be used to examine the
effect of varying the loss in the passive phase (see Fig. 3). It
can clearly be seen that the higher shear attenuation passive
phase damps out the unwanted inter/intra-ceramic modes and
attenuates the low frequency Lamb modes. To illustrate the
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Fig. 4. Normalised displacement of a 2-2 composite transducer at the
thickness mode.
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Fig. 5. Normalised Poynting vector (Pj ) in the x3-x1 plane of a 2-2
composite transducer at the thickness mode.

mode identification process, the behaviour of the device at the
thickness mode is examined. The displacement of the device
is shown in Fig. 4 and it can be seen that u1 is negligible
compared to u3, which has its largest values at the faces of
the transducer. Examination of the temporal evolution of the
device showed that the ceramic pillars are moving vertically
with very little motion in the x1 direction, and the polymer
is being pulled sideways with very little motion in the x3

direction. The in-plane Poynting vector can be viewed by
proportionally displacing the x1 and x3 components to show
where the energy is stored. For example, Fig. 5 shows that the
energy is distributed throughout the transducer, primarily in
the thickness direction. The symmetrical displacement profile
in both directions, the large amplitude of oscillation and the
dominant displacement being in the x3 direction all point to
this being the thickness mode.

IV. CONCLUSIONS

The plane wave expansion (PWE) method is a frequency
domain approach to studying the modal behaviour of periodic
piezoelectric composite transducers. This paper has shown

that the method can be extended to incorporate frequency
dependent loss in both phases. The subsequent minimisation
procedure culminates in a dispersion diagram which can high-
light the attenuation of the modes as the frequency increases.
Although the standard classification of the modes is difficult,
as the supporting medium is heterogeneous, anisotropic, lossy
and piezoelectric, pseudo-descriptions of the main supported
modes of vibrations using spatial and/or temporal plots of
the displacement and the Poynting vector can be given. Good
agreement between the PWE method, FE method and exper-
imental data was shown. Electrical device characteristics, for
low and high shear attenuation in the passive phase, were
compared and this showed that the use of a high shear loss
polymer phase results in an improved stop band gap around
the thickness mode.
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