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Abstract

The large number of degrees of freedom in the design of piezoelectric

transducers requires a theoretical model that is computationally efficient

so that a large number of iterations can be performed in the design op-

timisation. The materials used are often lossy, and indeed loss can be

used to enhance the operational characteristics of these designs. Mo-

tivated by these needs, this paper extends the one-dimensional Linear

Systems Model to incorporate frequency dependent elastic loss. The re-

ception sensitivity, electrical impedance and electromechanical coupling

coefficient of a 1-3 composite transducer, with frequency dependent loss

in the polymer filler, is investigated. By plotting these operating charac-

teristics as a function of the volume fraction of piezoelectric ceramic an

optimum design is obtained. A device with a non-standard, high shear

attenuation polymer is also simulated and this leads to an increase in the

electromechanical coupling coefficient. A comparison with finite element

simulations is then performed. This shows that the two methods are in

reasonable agreement in their electrical impedance profiles in all the cases

considered. The plots are almost identical away from the main resonant

peak where the frequency location of the peaks are comparable but there

is in some cases a 20 percent discrepancy in the magnitude of the peak

value and in its bandwidth. The finite element model also shows that the

use of a high shear attenuation polymer filler damps out the unwanted,

low frequency modes whilst maintaining a reasonable impedance magni-

tude.

Keywords: ANISOTROPIC COMPOSITES, ULTRASONIC TRANSDUCER,

ELASTIC LOSS

PACS Code: 43.35.+d
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1 Introduction

This objective of this paper is to extend the Linear Systems Model (LSM) of

piezoelectric ultrasonic transducers by incorporating frequency dependent elas-

tic loss. This then facilitates a discussion of high shear attenuation fillers for

composite designs and also a comparison with results from a finite element model

(FEM). The motivation stems from the use of such models in the rapid proto-

typing of these transducers and the fact that the materials used are lossy, and

indeed loss can be used to enhance the operational characteristics of the design.

The large number of degrees of freedom in such designs require a model that is

computationally efficient so that a large number of iterations can be performed

in a design optimisation. The methodology is therefore to derive and implement

an LSM with elastic loss and, in order to gauge the effect that this frequency

dependent loss has on the operational characteristics of composite piezoelectric

transducers, present a series of model simulations. The effect that frequency

dependent loss in a standard polymer filler has on the transmission sensitivity,

electrical impedance and electromechanical coupling coefficient is described. An

anisotropic passive phase material is also analysed, along with the effect of vary-

ing the volume fraction (i.e. the device architecture) of the ceramic phase. Fi-

nally a comparison between this approach and a Finite Element Method (FEM)

is discussed.

Composite transducers composed of a piezoelectric ceramic and a passive

polymer phase provide better electromechanical coupling and acoustic impedance

characteristics than conventional single phase transducers [1]. For the transducer

to operate efficiently it is required that the acoustic impedance of the piezoelec-

tric component (Zc) matches, as well as is possible, the acoustic impedance of

the load medium (ZL). A closer acoustic impedance matching with the load

medium reduces internal wave reflection at the front face of the transducer.

Typically the load medium has a far lower impedance than the piezoelectric

ceramic and so the inclusion of a low mechanical impedance polymer in a com-
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posite piezoelectric component serves to enhance the energy transfer. Ideally a

single longitudinal mode in the thickness direction will drive the transducer in a

piston like fashion. Other modes, propagating in other directions, can interfere

with this behaviour and hence it is of interest to theoretically predict the design

criteria, material parameters, etc. that will ensure a large frequency band gap

between the desired thickness mode and these other waves. This will enhance

the amplitude and bandwidth of the transmission and reception sensitivity.

2 Linear Systems Modelling

For thickness mode transducers, the dynamics can be approximately described

by a one-dimensional model. By coupling the piezoelectric constitutive equa-

tions with the one-dimensional wave equation for the mechanical displacement,

the LSM can be derived [2]. In a series of papers, the dependency of both the

reception and transmission characteristics of the transducer on its physical pa-

rameters has been investigated using a systems block diagram approach [3, 4, 5].

Composite transducers are typically manufactured by slicing the piezoelectric ce-

ramic into a bristle block of vertical pillars and then filling the inter-pillar space

with a passive polymer. When the ceramic has a connectivity in only one direc-

tion whilst the polymer has connectivity in all three directions, this topology is

described as 1-3. Alternatively, a 2-2 composite is made by cutting the ceramic

longitudinally in only one direction so that there is connectivity in two directions

for both the ceramic and polymer.

In order to utilise the LSM the effective properties of the 1-3 composite

transducer must be derived. The piezoelectric constitutive equations are reduced

to a one-dimensional caricature of the composite [6] and then the electrical

impedance of the device (ZT ) is given by

ZT =
1

pCo

(

1 − h2

33
Co

KFTF +KBTB]

2pZc

)

. (1)

where p is the Laplace variable, C0 = Ar ε̄33/L is the (clamped) capacitance of the

4



piezoelectric component of the device (L is its thickness, Ar is its cross-sectional

area, ε̄33 is its effective permittivity), h33 = ē33/ε̄33 is its effective piezoelectric

constant, TF = 2Zc/(Zc + ZL), TB = 2Zc/(Zc + ZB), KF = ((1 − e−pξ)(1 −

RBe
−pξ))/(1 − RFRBe

−2pξ), KB = ((1 − e−pξ)(1 − RFe
−pξ))/(1 − RFRBe

−2pξ),

RF = (Zc − ZL)/(Zc + ZL) is the reflection coefficient at the front face of the

transducer, and RB = (Zc−ZB)/(Zc+ZB) is the reflection coefficient at the back

face of the transducer. The transit time of a plane wave through the piezoelectric

component of the transducer is ξ = L/v where the longitudinal phase velocity

is v =
√

c̄D
33
/ρ̄, ρ̄ is the volume averaged density, and cD

33
= c̄33 + (ē33)

2/ε̄33

is the stiffened elastic modulus. The acoustic impedance of the transducer is

Zc = ρ̄vAr, and the transducer has a backing material (subscript B) and (for

simplicity) no matching layer; the device transmits directly into a load medium

(subscript L).

The force produced at the front face of the transducer (FF ) is maximised at

the electrical resonant frequency (fe) which coincides with the first minimum

in the electrical impedance plot (absolute value) when viewed as a function of

frequency. The general transfer function relating the stress wave generated into

the load medium to the input voltage (Vs) is the transmission sensitivity given

by

FF

Vs

= −h33a(AF/2)Y KF (1 − h2

33
Y (KFTF +KBTB)/(2pZc))

−1 (2)

where Y = C0/(1 + pC0b), b = Z0ZE/(Z0 + ZE), AF = 2ZL/(Zc + ZL),

a = ZE/(Z0 + ZE), the transducer is placed in parallel with an electrical load

impedance ZE and the combination is placed in series with an electrical load

impedance Z0. A similar derivation can be performed for the reception mode to

give the reception sensitivity ; the ratio of the received voltage to the magnitude

of the incident force

V

FF

=
−h33TFKFU/pZc

1 − h2

33
(KFTF/2 +KBTB/2)U/(p2ZcZE)

, (3)

where U = pC0b/(1+pC0b). When in response mode the aim is to maximize the

voltage resulting from a force at the front face, and this occurs at the mechan-
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ical resonant frequency (fm). Finally, a measure of the efficiency with which

the transducer converts electrical energy to mechanical energy is given by the

electromechanical coupling coefficient k [2]. In equation (1) the dimensionless

expression h2

33
C0/pZc, is the square of the electromechanical coupling coefficient.

Since KF , KB, TF and TB are O(1) then k must also be O(1) so that the two

additive terms in equation (1) are of similar order and resonant behaviour can

then occur. For a half-wavelength active layer device this expression can be

re-expressed as

k =
ē33

√

cD
33
ε̄33
. (4)

3 Incorporation of Elastic Loss

In this paper a frequency dependent, elastic loss mechanism is incorporated

into the passive phase. To illustrate the approach, the shear modulus G = cs
44

is

considered; the Bulk and Young’s moduli (Y ) can be treated in a similar fashion.

The elastic loss is introduced via the complex expression [7]

G = G′ + iG′′ (5)

where

G′ = Gr +
(Gu −Gr)ω

2τ 2

G

1 + ω2τ 2

G

, (6)

G′′ =
(Gu −Gr)ωτG

1 + ω2τ 2

G

, (7)

Gr is the relaxed shear modulus, Gu is the unrelaxed shear modulus, ω is the

angular frequency and τG is the shear relaxation time. The degree of loss can be

expressed in terms of a dimensionless loss tangent tan δ [7], or an attenuation

coefficient αG (Nepers/m)[8], where

tan δ =
G′′

G′
, (8)
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and a Taylor series expansion relates the two expressions via

αG =
ω

2cG
tan δ, (9)

where cG is the (measured/real part of the) shear wave velocity. To find τG, Gu

and Gr, the attenuation coefficient and the wave speed must be measured over a

range of frequencies. Using basic calculus an expression for the frequency where

tan δ achieves its maximum (ωmax) can be derived. It can then be shown that

τG =
−cGαG(ω2

I + ω2

max) +
√

c2Gα
2

G(ω2

I + ω2
max)

2 + ω4

Iω
2
max

ω2

Iω
2
max

. (10)

where ωI is the particular frequency where the real part of the shear modulus

(G′

I = ρcG(ωI)
2) is experimentally determined. Further analysis shows that

Gu =
G′

I(2cGαG + ω2

IτG)

ω2

IτG
, (11)

and

Gr = G′

I(1 − 2cGαGτG). (12)

Table 1 shows the values that were obtained using these equations for a standard

polymer used in ultrasonic transducer design. The remaining coefficients of

the elastic modulus tensor are then given by cs
12

= G(2G − Y )/(Y − 3G) and

cs
11

= cs
12

+ 2G.

4 Results

In order to gauge the effect that frequency dependent loss has on the operational

characteristics of composite piezoelectric transducers a series of model simula-

tions are now presented. In the first section the effect that frequency dependent

loss in a standard polymer filler has on the transmission sensitivity, electrical

impedance and electromechanical coupling coefficient is investigated.

4.1 A Hardset Passive Phase (HY1300/CY1301)

In this section a piezoelectric composite transducer composed of a hardset poly-

mer filler material (see Table 1), a backing material (see Table 2) and a ceramic
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Parameter Symbol/Units Value

Shear modulus (real part) G′(kg m−1s−2) 1.57 × 109

Young’s modulus (real part) Y ′(kg m−1s−2) 4.28 × 109

Shear Velocity cG(m s−1) 1.17 × 103

Longitudinal Velocity cY (m s−1) 2.51 × 103

Density ρ ( kg m−3) 1.15 × 103

Dielectric constant ε(−) 4

Frequency of measurement fI (Hz) 5.00 × 105

tan δ frequency maximum fmax(Hz) 3.15 × 105

G Attenuation Coefficient α0

G(Np/m) 41b

Y Attenuation Coefficient α0

Y (Np/m) 16b

Calculated Values

Unrelaxed shear modulus Gu(kgm
−1s−2) 1.60 × 109

Relaxed shear modulus Gr(kgm
−1s−2) 1.50 × 109

Shear relaxation time τG(s) 4.88 × 10−7

Unrelaxed Young’s modulus Yu(kgm
−1s−2) 4.35 × 109

Relaxed Young’s modulus Yr(kgm
−1s−2) 4.11 × 109

Young’s relaxation time τY (s) 4.91 × 10−7

Table 1: Physical properties of the polymer phase HY1300/CY1301 Hardset [9].

phase PZT5H (see Table 3) is investigated.

- Constant Units Value

Transducer thickness L m 6 × 10−3

Backing material impedance Z1 Rayls 2 × 106

Front material impedance Z2 Rayls 1.5 × 106

Table 2: Physical properties of the transducer

In Figure 1(a) the electrical impedance of the device, given by equation (1),

is plotted as a function of the driving frequency. The effect of incorporating
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frequency dependent loss into the model can be seen by comparing the no loss

case (dashed line) with the loss case (full line). It can be seen that introducing

loss for these materials has had very little effect on the profile except at the me-

chanical resonant frequency. Here there is a decrease of around ten percent in

the magnitude of the electrical impedance although its frequency (the mechan-

ical resonant frequency) remains constant. This reduction in amplitude gives

rise to a ten percent increase in the bandwidth. In Figure 1(b) the associated

transmission sensitivity, given by equation (2) is plotted. The addition of the

elastic loss does not affect the profile except at the third harmonic whose peak

value is reduced by ten percent.
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(FF
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Figure 1: (a) Electrical impedance |ZT | (Ω) against frequency f (MHz), and

(b) Transmission sensitivity (nondimensionalised) (FF/Vs)/(h33C0) against fre-

quency f (MHz) for a 1-3 composite transducer with the hardset material

HY1300/CY1301 (frequency dependent, elastic loss (full line), no loss (dashed

line)).

In Figure 2 the electromechanical coupling coefficient, given by equation (4),

is plotted as a function of the volume fraction of the ceramic phase (ψ). It can

be seen that the frequency dependent loss reduces the efficiency across the full

range of volume fractions. From a design perspective the highest efficiency (of

around k = 0.65) occurs at a ceramic volume fraction of around ψ = 0.6. The

diagram also highlights the benefits of using a composite design. The coefficient

has risen by around 30 per cent from k = 0.5 for the pure ceramic (ψ = 1) to

the optimum ceramic volume fraction of around ψ = 0.6.

In Figure 3(a) the reception sensitivity frequency profile, given by equation
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- Constant Units Value

elastic constant c11 Nm−2 12.72 × 1010

elastic constant c12 Nm−2 8.02 × 1010

elastic constant c13 Nm−2 8.47 × 1010

elastic constant c33 Nm−2 11.74 × 1010

dielectric constant ε33 - 1.70 × 103

dielectric constant ε11 - 1.47 × 103

Loss Tangent tan δ - 1/65

density ρb kg m−3 7.50 × 103

Piezoelectric stress coefficient e33 C m−2 23.30

Piezoelectric stress coefficient e31 C m−2 −6.50

Table 3: Physical properties of the ceramic phase PZT5H [10].

0.2 0.4 0.6 0.8 1
0.35

0.45

0.5

0.55

0.6

0.65

PSfrag replacements

ψ

k

Figure 2: Electromechanical coupling coefficient k against ceramic volume frac-

tion ψ for a 1-3 composite transducer with the hardset material HY1300/CY1301

with (a) frequency dependent, elastic loss (full line), and (b) no loss (dashed line)

(at the electrical resonant frequency).

(3), is plotted against the ceramic volume fraction. As the ceramic volume

fraction decreases the resonant frequencies also decrease. Since the mechanical

impedance decreases as the volume fraction of the polymer increases, then the

wave velocities decrease along with the associated resonant frequencies. It can

also be seen that the magnitude of the reception sensitivity increases as the
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polymer phase is slowly introduced to the pure ceramic (ψ = 1). In Figure 3(b)

the electrical impedance frequency profile is plotted as a function of the ceramic

volume fraction. Here it can be seen that an optimum profile (low amplitude

at the electrical resonant frequency, high value at the mechanical resonant fre-

quency) is achieved at an intermediate ceramic volume fraction. As the volume

fraction diminishes the resonant behaviour ultimately vanishes and the device

acts like a simple capacitor.

(a)
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1
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(b)
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1

1
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V̂ /FF

ψ

f
C0|ZT |C0|ZT |

Figure 3: (a) Reception sensitivity (nondimensionalised) V̂ /FF =

(V/FF )(Zc/(h33C0b)) against frequency f (MHz) and ceramic volume fraction ψ,

and (b) Scaled electrical impedance C0|ZT | (arbitrary units) against frequency

f (MHz) and ceramic volume fraction ψ, for a 1-3 composite transducer with

the hardset material HY1300/CY1301 and frequency dependent, elastic loss.

4.2 An Anisotropic Passive Phase

In this section the transmission and reception characteristics of a 1-3 composite

transducer, with an anisotropic passive phase featuring high shear attenuation,

are investigated; the shear attenuation in the supporting matrix is three or-

ders of magnitude larger than in the previous section. One possible approach

to realising such a material would be to use a high shear loss polymer phase

embedded with spherical particles that are spatially aligned in linear columns.

In the direction parallel to the ceramic pillars this alignment creates a striated

effect whereas, perpendicular to this direction, the material consists of randomly

arranged columns set in the supporting matrix. The frequency dependent elas-

11



tic loss for the Young’s (Y ) and shear (G) moduli are calculated independently

for both the inclusions and the supporting matrix. Although the LSM is one-

dimensional, the anisotropy in the passive phase does affect the calculation of

the effective material properties, particularly because of the high shear atten-

uation. The effective properties of the passive phase are then calculated using

mixing rules for parallel and series arrangements [11].
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Figure 4: (a) Electrical impedance |ZT |(Ω) against frequency f (MHz), and

(b) Transmission sensitivity (nondimensionalised) (FF/Vs)/(h33C0) against fre-

quency f (MHz), for an anisotropic passive phase, 1-3 composite transducer

(frequency dependent loss (full line), no loss (dashed line)).

In Figure 4(a) the electrical impedance frequency profile for such a device

is shown. Due to the high shear attenuation in this polymer there is a larger

reduction in the impedance amplitude when the loss is included (around 25 per-

cent). There is also a slight shift (around 5 percent) in the mechanical resonant

frequency to a lower value. The transmission sensitivity frequency response in

Figure 4(b) also shows a similar decrease in amplitude and a frequency shift. At

this volume fraction of supporting matrix (the volume fraction of the supporting

matrix is φ = 0.7) the material has lower values for its moduli than the hardset

material discussed in the previous section. However the anisotropy leads to a

similar amplitude for the peak transmission sensitivity. This efficiency is also

exhibited by the electromechanical coupling coefficient shown in Figure 5. The

peak value of around k = 0.73 is achieved at a volume fraction of polymer of

ψ = 0.55.

In Figure 6(a) the reception sensitivity frequency response is shown as a
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Figure 5: Electromechanical coupling coefficient k against the volume fraction of

the ceramic phase ψ for an anisotropic passive phase, 1-3 composite transducer

with (a) frequency dependent loss (full line), and (b) no loss (dashed line).
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Figure 6: (a) Reception sensitivity (nondimensionalised) V̂ /FF =

(V/FF )(Zc/(h33C0b)) against frequency f (MHz) and ceramic volume fraction ψ,

and (b) Scaled electrical impedance |C0ZT | (arbitrary units) against frequency

f (MHz) and ceramic volume fraction ψ, for an anisotropic passive phase, 1-3

composite transducer with frequency dependent loss.

function of the ceramic volume fraction. As before, the addition of the polymer

serves to increase the amplitude of the main lobe. As the volume fraction of the

ceramic decreases the main peak disappears and the device no longer displays

the desired resonant behaviour.

4.3 Comparison to Finite Element Modelling

In Figure 7 the LSM is compared to FEM [12] by examining the impedance

characteristics of a range of 2-2 composite transducers, all with thickness 3.8 ×
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Parameter Symbol/Units Supporting Matrix Inclusions

Shear modulus (real part) G′(kgm−1s−2) 4.00 × 108 2.00 × 109

Young’s modulus (real part) Y ′(kgm−1s−2) 1.10 × 109 5.00 × 109

tan δ frequency maximum fmax(Hz) 3.00 × 105 3.00 × 105

Frequency of Interest fI(Hz) 5.00 × 105 5.00 × 105

G Attenuation Coefficient α0

G(Np/m) 2.00 × 104 100

Y Attenuation Coefficient α0

Y (Np/m) 200 10

Density ρ (kgm−3) 1.00 × 103 2.00 × 103

Dielectric constant ε(−) 2.4 1

Shear Velocity cG(m s−1) 6.32 × 102 1.00 × 103

Longitudinal Velocity cY (m s−1) 1.05 × 103 1.58 × 103

Calculated Values

Unrelaxed shear modulus Gu(kgm
−1s−2) 3.57 × 1010 2.08 × 109

Relaxed shear modulus Gr(kgm
−1s−2) 1.07 × 108 1.80 × 109

Shear relaxation time τG(s) 2.90 × 10−8 4.94 × 10−7

Unrelaxed Young’s modulus Yu(kgm
−1s−2) 1.20 × 109 5.03 × 109

Relaxed Young’s modulus Yr(kgm
−1s−2) 8.89 × 108 4.92 × 109

Young’s relaxation time τY (s) 4.56 × 10−7 5.24 × 10−7

Table 4: Physical properties of an anisotropic passive phase.

10−3m. Using the FEM to model a 1-3 composite structure requires a three

dimensional model and this is computationally expensive. A 2-2 design however

can be captured by a two dimensional FEM and this significantly decreases

the computation times. A to D in Table 1 are specific examples of the high

shear attenuation materials discussed in the previous section. For comparison

purposes plot (a) shows the response when using the hardset polymer which has

a low shear attenuation (see Table 1).

The oscillations in electrical impedance at the lower frequencies in plot(a)

represent the undesirable low frequency modes which interfere with the piston-
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Constant Softset Material A

G′(kg m−1s−2) 6.50 × 108 3.38 × 108

Y ′(kg m−1s−2) 1.84 × 109 9.68 × 108

cG(m s−1) 747 549

cY (m s−1) 2000 1605

ρ ( kg m−3) 1.16 × 103 1.12 × 103

ε 4 4

α0

G (db/m) 6063 21281

α0

Y (db/m) 825 565

fI (MHz) 0.5 0.5

Table 5: Physical properties of the passive phase materials.

Constant Material B Material C Material D

G′(kg m−1s−2) 2.76 × 108 2.304 × 108 4.35 × 108

Y ′(kg m−1s−2) 7.95 × 108 6.659 × 108 1.20 × 109

cG(m s−1) 539 498 676

cY (m s−1) 1635 1584 1533

ρ ( kg m−3) 0.95 × 103 0.93 × 103 0.95 × 103

ε 4 4 4

α0

G (db/m) 10388 10388 7062

α0

Y (db/m) 87 104 80

fI (MHz) 0.5 0.5 0.5

Table 6: Physical properties of the passive phase materials.

like motion of the device. It is necessary to use a higher dimensional model, such

as the FEM used here, to display these modes; the one-dimensional LSM method

has a smooth impedance curve at these frequencies. The two methods do agree

on the magnitude and trend of the curve in this low frequency region. However,

the LSM prediction of the electrical impedance magnitude at the first peak (the
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Figure 7: Electrical impedance characteristics for frequency dependent, elastic

loss transducers with the passive phase materials described in Tables 5 and 6

using FEM (solid line) and LSM (dashed line) with polymer phase (a) hardset,

(b) softset, (c) Material A, (d) Material B, (e) Material C and (f) Material D.

mechanical resonant frequency) is about double that given by the FEM, and a

larger bandwidth (about a four-fold increase) results. The location of this peak

is also slightly shifted (by about ten percent) to a higher frequency. In plot (b)

a softset polymer filler is used which has high shear and longitudinal attenua-

tion (see Table 5). This has damped out the unwanted, low frequency modes

but there may well be a decoupling of the ceramic and polymer phases. This

would subsequently inhibit its ability to transfer energy into the load medium
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and this explains the drop in the peak electrical impedance that can be seen.

Here there is better agreement between the two methods on the magnitude of

the first peak impedance, although the frequency discrepancy remains. In plot

(c) a material with a high shear attenuation (three orders of magnitude larger

than the standard hardset filler) and a relatively low longitudinal attenuation

(about two orders of magnitude smaller than the shear attenuation) is modelled

(see Table 5, Material A). This material damps out the unwanted shear modes

which propagate through the polymer whilst having sufficient stiffness in the

thickness direction to remain in phase with the ceramic pillars. Both methods

are in agreement over the form of the electrical impedance profile with the FEM

approach predicting a far lower value (around 1 K Ω compared to 5 KΩ in the

LSM case) at the electrical resonant frequency (i.e. the first minimum). Plots

(d) and (e) show the electrical impedance curves for Materials B and C in Ta-

ble 6. These materials are similar to Material A, having high shear attenuation

and low longitudinal attenuation, although they are slightly less stiff (roughly

a 20 percent reduction in the Young’s and shear moduli) and the attenuation

coefficients are smaller. Both plots show reasonable agreement between the two

methods; the curves are almost identical away from the resonant peak, the fre-

quency location of the peak is comparable but there is roughly a 20 percent

discrepancy in the magnitude of the peak value and in its bandwidth. Material

D has a reduced degree of attenuation from these materials but it is slightly

stiffer (both the Young’s and shear moduli are doubled, see Table 6). Although

there is still good agreement between the two methods around the resonant

mode, this is less true at the lower frequencies. The FEM predicts a lowering

of the impedance in this range and this may well be due to some decoupling

between the polymer and ceramic phases.

17



5 Conclusions

In this paper the linear systems model (LSM) of a 1-3 composite piezoelec-

tric transducer is extended to incorporate frequency dependent elastic loss in

the polymer phase. This facilitates a study of the effect of elastic loss in such

polymers on the operating characteristics of these transducers. Composite trans-

ducers composed of a piezoelectric ceramic and a passive polymer phase provide

better electromechanical coupling and acoustic impedance characteristics than

conventional single phase transducers. Ideally a single longitudinal mode in the

thickness direction will drive the transducer in a piston like fashion, however

other parasitic modes, propagating in other directions, can interfere with this

behaviour. Hence it is of interest to theoretically predict the design criteria that

will provide a large frequency band gap between the desired thickness mode

and these other waves. One possibility is to use polymers that are highly at-

tenuative to shear waves in order to reduce the cross-talk between the ceramic

pillars. Theoretical results regarding the operating characteristics of a device are

reported for a range of passive phase materials including high shear attenuation

materials.

A hypothetical material was proposed which is composed of spherical inclu-

sions suspended in a softer supporting matrix. In the direction parallel to the ce-

ramic pillars the inclusions are aligned to create a striated effect whereas, perpen-

dicular to this direction, the material consists of randomly arranged columns set

in the supporting matrix. Although the LSM is one-dimensional, the anisotropy

in the passive phase does affect the calculation of the effective material proper-

ties, particularly because of the high shear attenuation. The effective properties

of the passive phase were calculated using mixing rules for parallel and series

arrangements. Due to the high shear attenuation in this polymer there was a

reduction in the impedance amplitude and a shift in the mechanical resonant

frequency to a lower value. The LSM model was then compared to a finite el-

ement model (FEM) by examining the impedance characteristics of a range of
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high shear attenuation, 2-2 composite transducers. The two methods showed

reasonable agreement in all the cases considered; the plots were almost identical

away from the resonant peak, the frequency location of the peaks were compa-

rable but there was in some cases a 20 percent discrepancy in the magnitude

of the peak value and in its bandwidth. The FEM showed that the use of a

high shear attenuation polymer damps out the unwanted, low frequency modes

whilst maintaining a reasonable impedance magnitude.
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