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Abstract

This paper investigates the use of magnetically active materials in the matching

layer of a piezoelectric transducer. This then allows the performance of the device

to be dynamically altered by applying an external field. The effect that this new

matching layer has on the performance of a typical device is theoretically investigated

here. It transpires that the additional flexibility of an active matching layer can be

used to maintain the efficiency of the device as the external load is varied.

Keywords: MAGNETORHEOLOGICAL, ULTRASONIC TRANSDUCER, MATCH-

ING LAYER, MODELLING
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1 Introduction

The transmission and detection of ultrasonic energy forms the basis for a large number of

modern instrumentation and measurement systems. Applications include biomedical ther-

apy and diagnosis, underwater sonar, non-destructive testing, structural condition moni-

toring, industrial processing and analysis, and materials characterisation. The requirement

for efficient generation and detection over a desired frequency band is paramount and very

often the limiting component of the entire system relates to the front end transducer de-

sign [1]. These transducers comprise of an active piezoelectric layer sandwiched between

a backing material for damping and bandwidth control and some form of matching layer

for interfacing to the mechanical load medium. Sensitivity and bandwidth depend on the

efficiency of the active material, the quality of matching to the load and the degree of

damping. The operating frequency is governed by the active piezoelectric layer and to

a slightly lesser extent, by the properties of the front face matching layer. Since it is a

resonant system, sensitivity and bandwidth also tend to be mutually exclusive, with the

highest sensitivity being achieved under narrowband, low loss, resonant conditions. This is

often in direct conflict with many of the new application requirements, such as harmonic

imaging, where detection of the upper, even harmonics is required and high resolution,

high frequency sonar, where pulse compression methods are needed to achieve an adequate

signal to noise ratio. The standard front face matching, by means of a quarter wavelength

layer, is effective only over a relatively narrow frequency range. This paper investigates the

possibility of using magnetically active materials in the matching layer so that, by applying

an external field, the resonant behaviour of the device can be dynamically altered. There

has been considerable interest in recent years in the area of magnetorheological fluid [2].

Application of an external magnetic field rapidly induces alignment of conducting parti-

cles suspended in a viscous fluid. This in turn changes the mechanical properties of the

material. For thickness mode transducers, the dynamics can be approximately described
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by a one-dimensional model. By coupling the piezoelectric constitutive equations with the

one-dimensional wave equation for the mechanical displacement, the linear systems model

(LSM) can be derived [3]. In a series of papers, the dependency of both the reception and

transmission characteristics of transducers with passive (i.e. non-active) matching layers

has been investigated [4, 5, 6].

In the next section the key equations in the LSM model are presented and the resulting

multilayer matrix formulation described. In Section 3 a model of the magnetorheological

matching layer is presented. Section 4 then investigates the effect that this new matching

layer has on the performance of a typical device. It is found that the additional flexibility of

an active matching layer can be used to maintain the efficiency of the device as the external

load is varied.

2 Linear Systems Modelling

Composite transducers, consisting of a low impedance passive phase combined with the

piezoelectric ceramic, do lower the effective mechanical impedance, thereby improving front

face matching and bandwidth. Composite transducers are typically manufactured by slicing

the piezoelectric ceramic into a bristle block of vertical pillars and then filling the inter-pillar

space with a passive polymer. Since the ceramic has a connectivity in only one direction

whilst the polymer has connectivity in all three directions, this topology is described as 1-3

(see Figure 1).

In order to utilise the LSM the effective properties of the 1-3 composite transducer must

be derived [7]. The piezoelectric constitutive equations can be described, when the electric

field and the strain are chosen as independent coordinates, as [8]

Ti = cijSj − eijEj, (1)

Di = eijSj + εijEj (2)
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Figure 1: Illustration of a 1-3 composite transducer where the ceramic is black and the

polymer is white.

for i, j = 1, 2, 3, where Ti is the stress tensor, Si is the strain tensor, cij are the elastic

stiffnesses, Di is the electric displacement vector, eij = himεmj are the piezoelectric stress

coefficients, εij are the permittivity coefficients and Ej is the external electric field vector [10,

8] (in the passive polymer phase eij = 0). A well known model exists to obtain the averaged

constitutive relations of a 1-3 composite assuming a set of constraints that, being strong, are

good approximations of the real physical situation [7]. These conditions are (i) the electric

field and the strain are functions of z only, where z is directed along the pillar length (the

vertical direction in Figure 1), (ii) the transducer is a large thin plate, (iii) the ceramic and

polymer move together in the z direction, (iv) the electric field is the same in both phases,

(v) the lateral stresses are equal in both phases and (vi) the lateral periodicity is sufficiently

fine that the effective total stress T̄3 and electric displacement D̄3 can be approximated by

volume averaging [7]. The effective constitutive equations are then

T̄3 = c̄D
33
S̄3 − h̄33D̄3 (3)

Ē3 = −h̄33S̄3 + β̄33D̄3 (4)

where cD
33

= c̄33 + (ē33)
2/ε̄33, the piezoelectric constant is h̄33 = ē33/ε̄33 and β̄33 = 1/ε̄33.

The one-dimensional wave equation for the mechanical displacement u(x, t) is

ρ̄
∂2u(x, t)

∂t2
= c̄D

33

∂2u(x, t)

∂x2
(5)
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where ρ̄ is the volume averaged density, and the boundary conditions of continuity of dis-

placement and force into the adjacent media apply. For a complete transducer system

composed of an active piezocomposite resonator, a backing material at the rear piezocom-

posite mechanical port (subscript B), a resonant matching layer at the front mechanical

port (subscript M) and a real load as the propagating medium, the equations for the me-

chanical displacement, the force and the voltage at each transducer interface can be derived

by transforming the above equations into the Laplace domain and assuming that (i) there

is no initial displacement or velocity, (ii) there is no free charge inside the transducer and

so Gauss’s Law can be applied, and (iii) the transducer is placed in parallel with a load

impedance ZE and the combination is placed in series with a load Z0 as shown in Figure

2. The equations are as follows

PSfrag replacements
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Figure 2: Schematic of the transducer circuit.

ui = Aie
−

sx

vi +Bie
sx

vi , (6)

Fi = sZci
(−Aie

−
sx

vi +Bie
sx

vi ) +
hiV̄i

sb
− hiV̄s

sZ0

, (7)

V̄T = −Uh33(AT (e−stT − 1) +BT (estT − 1)) +
UVs

sZ0C0T

, (8)

where Zci
= ρiviAr is the acoustic impedance of layer i, ρi is the density of layer i, Ar is

the cross-sectional area, vi is the velocity of a longitudinal wave in layer i, s is the Laplace

variable, Vi is the voltage in layer i, Vs is the circuit driving voltage, C0T
= Ar ε̄33/LT is the
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clamped capacitance of the piezoelectric layer, Li is the thickness of layer i, ti is the transit

time of a longitudinal wave in layer i, U = sC0T
b/(1+sC0T

b), and b = ZEZ0/(ZE +Z0). At

each layer interface, continuity of displacement and force is imposed. In the backing layer

it is assumed that the incoming wave is damped as it travels to the left and hence there is

no reflected wave travelling to the right in this region, that is AB = 0. In a similar way, by

assuming that the mechanical load is infinite in extent, we obtain BL = 0. In each layer

a local coordinate system is used to simplify the algebra and the resulting set of algebraic

equations can be expressed in matrix form as Ξ ν = ζ where

Ξ =





































1 −1 −1 0 0 0 0

sZB sZT −sZT 0 0 0 h33U(e−stT − 1)

0 e−stT estT −1 −1 0 h33U(estT − 1)

0 −sZT e
−stT sZTe

stT sZM −sZM 0 0

0 0 0 e−stM estM −1 0

0 0 0 −sZMe
−stM sZMe

stM sZL 0

0 −h33/(sb) h33/(sb) 0 0 0 1





































,

ν =
[

BB AT BT AM BM AL VT

]T

,

and

ζ =
[

0 −h33Vs/(sZ0) 0 h33Vs/(sZ0) 0 0 UVs/(sZ0C0T
)

]T

.

By solving this system for ν the electrical and mechanical behaviour of the transducer can

be analysed. In particular the electrical impedance of the device is given by

ZT =
VT b

aVs − VT
(9)

where a = ZE/(Z0 + ZE), and the transmission sensitivity is given by

Φ(ω) =
FL(0)

Vs

=
−sZTAL

Vs

. (10)
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The transmission voltage response (TVR), in decibels, is then given by TVR = 20 log
10

(Φ(ω)).

In the next section a potential matching layer material is discussed whose properties can be

dynamically altered by the use of a magnetic field. The effect that this has on the electrical

and mechanical behaviour of a typical device is then presented.

3 Magnetorheological Matching Layer

Recent work on a the propagation of elastic waves in magnetorheological fluids has shown

that a large change in the longitudinal wave velocity (around fifty percent) can be achieved

by the application of a magnetic field [2]. The material consists of hard, spherical particles

randomly suspended in a viscous carrier fluid. The application of the external field aligns

the particles into columnar structures by forming magnetic dipole-dipole interactions be-

tween them. This stiffens the material and increases the longitudinal wave velocity in the

direction parallel to this alignment. The resonant behaviour of the transducers described in

the previous section depends on the mechanical coupling between the three layers (backing,

piezoelectric and matching). Therefore, by using a matching layer that can change its me-

chanical properties the electrical and mechanical behaviour of the entire device is affected.

To incorporate this effect into the LSM, a model of wave propagation in a suspension of

particles in a fluid [9] is supplemented by an empirically derived expression for a magnetic

field enhancement of the effective particle volume fraction [2].

Using a coupled-phase model the effective velocity in the matching layer is given by

v̄M = <(ω/k) where [9]

k =

√

ω2((1 − ϕ)βf + ϕβp)ρf(ρp(1 − ϕ+ ϕψ) + ρfψ(1 − ϕ))

ρp(1 − ϕ)2 + ρf(ψ + ϕ(1 − ϕ))
, (11)

ψ =
1

2
(
1 + 2ϕ

1 − ϕ
) +

9δ

4p
+ i

9

4
(
δ

p
+
δ2

p2
), (12)

δ =
√

2η/(ωρf), η = ηf(1+2.5ϕ+7.3ϕ2), the compressibility of the particles (and the fluid)

is βp = 1/(ρpv
2

p) (and βf = 1/(ρfv
2

f), ηf is the fluid viscosity, ϕ is the volume fraction of the

8



particles of diameter p, vp/f is the longitudinal wave velocity in the particle/fluid, ρp/f is the

density of the particles/fluid, ω is the angular driving frequency and k is the wavenumber.

The presence of the magnetic field aligns the particles into columnar structures and the

mechanical energy is then conveyed through the resulting fluid channels that contain a far

smaller volume fraction of particles (ϕsat). This effect is captured by the model by using

the magnetic field strength H to enhance the particle volume fraction via the empirical

relationship [2]

ϕ̄ = (ϕ− ϕsat)e
−cH + ϕsat (13)

where ϕsat = 0.052 is the effective volume fraction of the particles for very high magnetic

field amplitudes, and c = 0.0091. As the volume fraction of particles increases from zero

the effective longitudinal wave velocity of the material decreases from the pure fluid’s value

down to a minimum at around ϕ = 0.4 and then it rises monotonically until it attains

the particle’s value at ϕ = 1. At typical particle volume fractions of around ϕ = 0.3 the

addition of the magnetic field will give rise to a smaller effective particle volume fraction

(ϕ̄) and hence the longitudinal velocity will increase.

In the next section, numerical results from the combined models of this section and the

previous one are shown. It transpires that the matrix Ξ is ill-conditioned due to the large

variations in the magnitudes of the various parameters (for example 20 orders of magnitude

can exist between elastic moduli and the permittivities). To alleviate this problem the

matrix entries are balanced by scaling the parameters of the model (see Table 1). Each of

the parameters is made, as close as is feasible, O(1) by a judicious choice of the scalings

α, β, γ and ϕ in terms of the fundamental units of length (L̄ = βL), mass (M̄ = αM),

time (T̄ = γT ) and charge (C̄ = φC). This is done by scaling the layer thickness L by

specifying β, scaling the density ρ by specifying α, scaling the piezoelectric stress tensor

eijk by specifying φ, scaling the elasticity tensor cijkl by specifying γ and this results in an

appropriate scaling for the permittivity tensor εij. The electrical and mechanical units are

9



related to each other via energy considerations.

Parameter Typical Size Units Dimensions Scaling Typical Scaling

cijkl 1011 Nm−2 ML−1T−2 αβ−1γ−2 10−11

εij 10−9 Fm−1 M−1L−3T 2C2 φ2α−1γ2β−3 109

eijk 10 Cm−2 CL−2 φβ−2 10−1

ρ 103 kgm−3 ML−3 αβ−3 10−3

L 10−3 m L β 104

Ar 10−4 m2 L2 β2 108

VT 10 V ML2T−2C−1 αβ2γ−2φ−1 10−6

ω 106 rad s−1 T−1 γ−1 10−8

ZE 102 Ω ML2T−1C−2 αβ2γ−1φ−2 10−5

η 10 Nsm−2 ML−1T−1 αβ−1γ−1 10−3

Zs
c 106 Rayls ML−2T−1 αβ−2γ−1 10−7

C0T
10−9 Farads M−1L−2T 2C2 α−1β−2γ2φ2 1013

h33 109 Vm−1 MLT−2C−1 αβγ−2φ−1 10−10

F 104 N MLT−2 αβγ−2 10−3

vi 103 ms−1 LT−1 βγ−1 10−4

Φ(ω) 103 N/V L−1C β−1φ 103

Table 1: Dimensions and scaling parameters (β = 104, γ = 108, φ = 107 and α = 109).

4 Results

The results in this section pertain to a transducer that has a 1-3 piezocomposite resonator

with a PZ29 piezoceramic [12] (see Table 2) and a HY1300/CY1301 polymer [13] (see

Table 3) giving rise to the effective properties detailed in Table 4. The device dimensions,
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the load and backing material parameters and the electrical circuit details are given in

Table 5, and the active matching layer parameters are given in Table 6.

Parameter Units Value

c11 Nm−2 13.4 × 1010

c12 Nm−2 8.97 × 1010

c13 Nm−2 8.57 × 1010

c33 Nm−2 10.91 × 1010

ε33 F m−1 1.08 × 10−8

ρ kg m−3 7.46 × 103

e33 C m−2 21.2

e31 C m−2 −5.06

Table 2: Physical properties of the ceramic phase PZ29 [12].

Parameter Units Value

c11 kg m−1s−2 7.33 × 109

c12 kg m−1s−2 4.22 × 109

vs m s−1 1.17 × 103

vL m s−1 2.54 × 103

ρ kg m−3 1.15 × 103

ε - 3.54 × 10−11

Table 3: Physical properties of the polymer phase HY1300/CY1301 Hardset [11].

The backing layer impedance is given by ZB = ρBvBAr where vB = (1 − νB)/((1 +

νB)(1 − 2νB))YB/ρB, νB is its Poisson ratio, YB its Young’s modulus and ρB its density.

There are several metrics which are used to describe the transmission voltage response
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Parameter Units Value

ce
33

N m−2 3.10 × 1010

h33 V m−1 2.23 × 109

εe
33

F m−1 5.75 × 10−9

vT m s−1 3668

ρT kg m−3 4.43 × 103

Zs
cT

Rayls 16.20 × 106

Table 4: Effective properties of the ceramic and hardset polymer phase using [7], with a

ceramic volume fraction of 0.52.

Parameter Units Value

LT m 1.9 × 10−3

LM m 0.51 × 10−3

YB N m−2 6 × 107

ρB kg m−3 1.2 × 103

νB - 0.4

ZB Rayls 2 × 106

Ar m2 1 × 10−4

Z0 Ω 50

ZE Ω 1 × 107

Vs V 1

ZL Rayls 1.5 × 106

Table 5: Dimensions of the transducer, backing layer material properties, and electrical

circuit impedances.
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Parameter Units Value

p µm 12

ρf kg m−3 1.26 × 103

ρp kg m−3 7.86 × 103

ηf N s m−2 1.5

vp m s−1 5.18 × 103

vf m s−1 1.89 × 103

Table 6: Properties of the fluid (f) phase (glycerine) and the solid particle phase (p)

(iron) [2].

(TVR) including the ringdown time (R), which gives the duration of the response of the

transducer to an impulse voltage. The time domain response is calculated from an Inverse

Fast Fourier Transform of the Transmission Sensitivity frequency spectrum (Φ(ω)) gener-

ated using equation (10). Due to the oscillations in the resulting signal an integration is

performed to smooth out the change in the ringdown as a function of the system param-

eters. Of particular interest here is the change in ringdown time as the magnetic field is

changed and as the volume fraction of particles is changed. Therefore the ringdown time

is calculated here using

R =

{

τ :

∫ τ

0
Φ̂(t)dt

∫

∞

0
Φ̂(t)dt

= 0.9

}

. (14)

A measure that is used in the frequency domain is the 3dB bandwidth (BW3)of the TVR

which gives a measure of the range of frequency over which the device can operate at a

reasonable level. It is worth noting that bimodal spectra can introduce discontinuities in

the bandwidth when viewed as a function of the system parameters. These discontinuities

arise at the parameter values where the maximum amplitude (TVR(fmax)) shifts from one

of the peaks to the other. This can be partially alleviated by calculating the bandwidth
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using

BW3 = (fr − fl)/((fr + fl)/2) × 100 (15)

where fr = min{f : f > fmax and TVR(f) = TVR(fmax) − 3} and fl = max{f : f <

fmax and TVR(f) = TVR(fmax) − 3}. The Gain Bandwidth Product (GBP) is then given

by GBP = TVR(fmax) ×BW3. To calculate the optimum thickness of the matching layer,

in terms of the 3dB bandwidth, the volume fraction of particles (ϕ) in the matching layer

was found such that ZM(ϕ) =
√
ZLZT . A plot of the conductance of this device, with an

air load (ZL = 410), as a function of frequency was then constructed and the thickness of

the matching layer (LM) was adjusted until the amplitudes of the two conductance peaks

were identical.

(a)

100 200 300 400 500
3.5

4.5

5

5.5

6

PSfrag replacements
H

Zs
M

(b) 100 200 300 400 500

1450

1500

1550

1600

1650

1700

1750

PSfrag replacements

H

Zs
M

H

vM

Figure 3: (a) The specific mechanical impedance of the matching layer (Zs
M(MRayls)) and

(b) the longitudinal wave velocity in the matching layer (vM (ms−1)), versus the magnetic

field strength (H (Gauss)).

In Figure 3(a) the specific mechanical impedance (Zs
M) of the matching layer is shown as

a function of the magnetic field strength H. The volume fraction of spherical iron particles

is fixed at ϕ = 0.5. In a standard device the optimal mechanical impedance of the matching

layer can be approximately given by the geometric mean of the mechanical impedances of

the two adjacent layers (see Tables 5 and 4). For the materials used here this value is 4.9

MRayls and this corresponds to a magnetic field strength of approximately H = 50 Gauss.
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Figure 4: (a) The specific mechanical impedance of the matching layer (Zs
M(MRayls)) and

(b) the longitudinal wave velocity in the matching layer (vM (ms−1)), versus the volume

fraction of particles in the matching layer (ϕ).

This material will therefore provide an excellent coupling between the piezocomposite and

the mechanical load. As the magnetic field strength increases the mechanical impedance

decreases. This is due to the particles aligning and allowing the longitudinal wave to

propagate unhindered in the relatively low mechanical impedance fluid. As H increases

the model lowers the effective volume fraction of particles according to equation (13), and

the optimal effective volume fraction is roughly ϕ̄ = 0.3. In Figure 3(b) the corresponding

longitudinal wave velocity is seen to increase, after an initial minimum, as the magnetic

field strength is increased. However the effective density decreases at a faster rate and the

net effect is a reduction in the mechanical impedance. In equation (12) this lowering of the

effective volume fraction of particles (ϕ̄) decreases the viscosity η, which decreases δ and this

results in the magnitude of ψ decreasing. The effect that this has on the wave number k in

equation (11) is complicated but after an initial phase it decreases monotonically leading to

the observed increase in phase velocity vM . This velocity remains below that of the fluid vf

and for very large H the velocity will asymptote to this value (see Table 6). In Figure 4(a)

the specific mechanical impedance is plotted as a function of the volume fraction of particles

ϕ in the active matching layer. Throughout the magnetic field is absent and the value of
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the mechanical impedance at ϕ = 0.5 corresponds to the initial value in Figure 3(a). It

can be seen that the optimal mechanical impedance value of 4.9 MRayls corresponds to

a lower particle volume fraction of around ϕ = 0.3. As the particles are not aligned here

then by increasing the volume fraction of the relatively high mechanical impedance iron

particles the overall mechanical impedance for the matching layer increases. Although the

velocity profile in Figure 4(b) has a pronounced minimum the density of the iron particles

is far greater than that of the supporting fluid and dominates the resulting mechanical

impedance calculation (see Table 6). As ϕ increases the effective viscosity η increases,

leading to increases in δ and ψ in equation (12). The complex dependency of the wave

number k on ϕ in equation (11) leads to the quadratic shaped profile for the effective

velocity shown in Figure 4(b). It can be seen that this curve links the fluid velocity (vf)

at ϕ = 0 to the particle velocity (vp) at (ϕ = 1) (see Table 6). At intermediate volume

fractions the random orientation of the iron particles creates a tortuous path for the wave

energy to traverse leading to a longer transit time than that in either of the pure materials.
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Figure 5: (a) The 3dB bandwidth of the Transmission Voltage Response (TVR) and (b)

the Gain Bandwidth Product, versus the volume fraction of particles in the matching layer

(ϕ).

In the set of figures that now follow, the LSM model is used to calculate the various
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Figure 6: (a) The frequency (Hz) of the peak Transmission Voltage Response and (b) the

ringdown time (µs), versus the volume fraction of particles in the matching layer (ϕ).
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Figure 7: (a) The Transmission Voltage Response (TVR (dB)) against frequency (Hz) and

(b) the transmission sensitivity (N/V) against time (µs), versus the volume fraction of

particles in the matching layer (ϕ).

metrics which describe the efficiency of the device. In Figure 5(a) the 3dB bandwidth

of the TVR is shown as a function of the particle volume fraction, when the magnetic

field is absent (i.e. H = 0 and so ϕ̄ = ϕ). As anticipated from the preceding discussion,

the maximum bandwidth corresponds to a particle volume fraction of roughly ϕ = 0.3.

However there is a discontinuity in the profile at this point and later at ϕ = 0.55 that
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can be explained by examining Figure 7(a). As can be seen the TVR is unimodal for low

volume fractions but as the volume fraction is increased two peaks appear that gradually

separate and sharpen. In addition, the location of the maximum peak switches from the

lower frequency peak to the higher frequency peak (see Figure 6(a)). As the valley lying

between the two peaks deepens, the frequency of the left hand limit of the bandwidth (fl)

abruptly jumps from outside this valley (at a lower frequency) to inside this valley. This

then leads to a jump discontinuity in the bandwidth calculation given by equation (15). As

the amplitude (gain) of both peaks is similar the gain bandwidth product mirrors the jump

seen in the bandwidth profile (see Figure 5(b)). As ϕ increases the mechanical impedance of

the matching layer increases beyond the optimal value and this leads to reduced efficiency

in transmitting the mechanical energy of the device to the load medium. This internal

energy manifests itself as an additional mode of vibration in the system characterised by

the two peaks in Figure 7(a). As this problem becomes more acute at higher volume

fractions the piezoelectric layer and the matching layer almost decouple with the higher

frequency mode corresponding to the thin and stiff matching layer. The lower frequency

mode is approximately equal to the electrical resonant frequency of the piezoelectric layer

in vacuum (fe = 723 KHz). In Figure 6(b) the ringdown time, as defined by equation

(14), is shown as a function of the particle volume fraction. This has a minimum value of

R = 3.9µs at around φ = 0.1. This volume fraction is considerably lower than that found

for the optimum bandwidth but, as can be seen in Figure 7(a), at ϕ = 0.3 the TVR profile

is bimodal with some steep slopes. At lower volume fractions a unimodal response is seen

with shallow slopes corresponding to a reduced ringdown time. This dependency of the

ringdown time on ϕ is shown in Figure 7(b).

The final set of figures show the dependency of the device’s efficiency on the magnetic

field strength. In Figure 8(a) the bandwidth is plotted as a function of H at a volume

fraction of ϕ = 0.5. A single maximum is found at around H = 70 Gauss; slightly higher
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Figure 8: (a) The 3dB bandwidth of the Transmission Voltage Response (TVR) and (b)

the Gain Bandwidth Product versus the magnetic field strength in the matching layer (H

(Gauss)).
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Figure 9: (a) The frequency (Hz) of the peak Transmission Voltage Response and (b) the

ringdown time (µs), versus the magnetic field strength in the matching layer (H (Gauss)).

than the previous optimum value discussed in relation to Figure 3(a). However, if the

bandwidth calculation was performed for only the lower frequency peak (see Figure 9(a))

then the upper branch in Figure 8(a) would extend into the lower volume fractions and

may indeed have its maximum at a lower value of H. This agrees with Figure 10(a) where

the gradient near the peaks and the separation of the peaks is less pronounced than that in
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Figure 10: (a) The Transmission Voltage Response (TVR (dB)) against frequency (Hz) and

(b) the transmission sensitivity (N/V) against time (µs), versus the magnetic field strength

in the matching layer (H (Gauss)).

Figure 7(a). Again the GBP follows the bandwidth profile in Figure 8(b). In Figure 9(b)

the ringdown time is plotted as a function of H. At H = 0 the ringdown time of 6.5 µs

corresponds to the ringdown time shown in Figure 6(b) at ϕ = 0.5. As H increases the

effective volume fraction ϕ̄ decreases and so the monotonically decreasing curve shown in

Figure 9(b) corresponds to a traversal of Figure 6(b) in the direction of decreasing volume

fraction starting from ϕ = 0.5. As H increases the effective volume fraction attains its

limiting value of ϕsat = 0.052 and so the upward turn, seen at very low particle volume

fractions (i.e. less than 0.052) in Figure 6(b), is not seen in Figure 9(b). The ringdown

time does achieve a minimum value (a very shallow minimum) of around 3.8 µs at around

H = 230 Gauss. In Figure 10(a) the TVR changes from a bimodal response to a unimodal

response as the magnetic field is increased. This unimodal distribution slightly sharpens

for very high magnetic field values and hence the optimum time domain response occurs at

an intermediate value. The time domain plot in Figure 10(b) illustrates this further.

Having investigated the behaviour of the device as a function of two of the design

parameters (volume fraction of iron particles in the matching layer and the magnetic field
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H = 0

ZL Ringdown 3dB BW GBP

1.5 MRayls 4.55 µs 27.3 64.2

1.0 MRayls 6.66 µs 14.2 33.4

H = 500

ZL Ringdown 3dB BW GBP

1.0 MRayls 4.9 µs 27.2 64.1

Table 7: Enhanced ringdown time, 3dB bandwidth and gain bandwidth product (GBP)

using the active matching layer (ϕ = 0.3).

strength) it is useful to then examine how a given device could react to external influences to

enhance the device’s performance. The active layer provides an additional degree of freedom

that allows the transducer to be finely tuned once deployed. This could help in instances

where the external environment is changing. For example, the mechanical load could vary

from one patient to another depending on the region of the body being investigated, or

the salinity or depth of water could affect the mechanical load in sonar applications. In

Table 7 one such scenario is explored. When the mechanical load Zs
L is decreased from 1.5

MRayls to 1.0 MRayls there is a marked increase in the ringdown time and a corresponding

decrease in the bandwidth. By switching the magnetic field on (H = 500 Gauss) in the

active matching layer the device adjusts for this external change and recovers the original

efficient performance.
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5 Conclusions

A piezoelectric transducer comprising of an active piezoelectric layer sandwiched between a

backing material and an active matching layer has been theoretically modelled and analysed.

It was found that the additional flexibility of an active matching layer can be used to

maintain the efficiency of the device as external loads vary. The active layer provides an

additional degree of freedom which allows the transducer to be finely tuned once deployed.

The mechanical load was varied in the model and this resulted in a marked increase in the

ringdown time and corresponding decrease in the bandwidth. By switching the magnetic

field on in the active matching layer it was found that the device adjusted to this external

change and recovered the original efficient performance. This transducer concept could also

useful when investigating fluid-solid phase transitions and other physico-chemical reactions.
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