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ABSTRACT. The scaled boundary finite element method caters well for soil-structure interaction 
problems, but the formulation does not cater for the presence of changing pore pressures with 
time, body loads and tractions. A detailed formulation is presented in this paper to consider the 
general 2D analysis case for modelling coupled consolidation, accounting for body forces and 
surface tractions in both the bounded and unbounded media. The advantages of this method 
compared to conventional methods are also explained in this paper.  
 
1. Introduction 
 
In general, the current methods used to numerically model the unbounded far-field boundary in 
dynamic soil-structure interaction problems truncate the remote boundaries and then impose free 
or fixed boundary conditions. If input waves originate at the structure and propagate through the 
soil towards infinity, the artificial far-field domain boundary would reflect waves back into the near-
field and structure, thus producing erroneous results. Several methods of circumventing this have 
been used but are either restricted to very simple cases, or involve too many approximations. The 
recently developed scaled boundary finite element method (Song and Wolf, [2]) achieves an 
accurate representation as the radiation boundary condition at infinity is satisfied exactly. This 
however only exists for a single-phase medium, and very recently two-phase medium with no body 
loads, and is thus not applicable to a wide range of practical geotechnical problems, where the 
medium modelled is a two-phase fully saturated soil and the body forces are nearly always present.  
 The method combines many advantages of both the finite-element and boundary-element 
methods, while avoiding many of their disadvantages. For example, unlike the boundary-element 
method, the scaled boundary finite element method does not require a complex fundamental 
solution or encounters singular integrals. A reduction of the spatial dimensions by one is also 
achieved (Song and Wolf, [3]).  Moreover, among the advantages of the scaled boundary finite 
element method (which is a semi-analytical fundamental-solution-less boundary-element method 
based on finite elements) is the non-discretisation of the free surfaces, or between material 
interfaces. The full scaled boundary finite element method is covered comprehensively by Wolf and 
Song [4].  Wolf and Hout [5] recently extended the method to two-phase media but assumed no 
body forces and omitted the surface tractions. The aim of this paper is to formulate the ordinary 
differential equations for the two-phase media considering the body forces and including the 
surface tractions.  
 
 
2. The Governing Equations 
 
The coupled consolidation equations, developed by Biot [1], comprise a system of simultaneous 
differential equations which satisfy; (a) the equilibrium conditions (the dynamic equations of motion) 
and (b) the continuity equations. The 2D form of these equations in the frequency domain are 
shown as equations (1a) and (1b). 
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The differential operator [ ]L  is defined by equation (2). σ ′  is the effective stress,  is the fluid 
pressure (in which the total stress 

p
σ  relates to the fluid pressure by { } { } { }pm+′= σσ ), u , ω , k, n, Kf 

and ρ  are the displacement, frequency, soil permeability and porosity, fluid bulk modulus and 
density respectively, and { }b  is a vector representing the body forces per unit volume. 
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3. Scaled Boundary Transformation of Geometry 
 
Consider a finite line element 1-2 forming the base of the triangle shown in Fig. 1. Any point A on 
the boundary line element 1-2, with local coordinates , can be represented by its position 
vector 

(x, y)
r , where . If the origin, O , of the Cartesian coordinates  coincides with the 

apex of the triangle, then a point within the domain may be described in the Cartesian coordinates 
by its global position vector  as r

jir yx += ˆ ˆ(x, y)

r̂ jix̂ˆ ŷ+= . To transfer from the Cartesian to the curvilinear co-
ordinate system , any point within the domain (in which ( , )ξ η 1=ξ  at the boundary and 0=ξ  at 
the scaling centre) may be described by scaling using the position vector of the corresponding 
boundary point; rr ξ=ˆ . Fig. 1 shows the geometry of the line boundary with the tangential vector 
(slope) in the η  direction, represented by the derivative of the point A’s position vector on the line 
as shown in equation (3) : 
 

jir ,,, ηηη yx +=  (3)
 

1  (x1,y1)

2  (x2,y2)

ξ=1
ξ

η=1

η=-1

ξ=0 
O

η 

η=0 

A(x,y) 

η 
η=-1 η=1η=0 

1 2 

 

)ˆ,ˆ(Â xyŷ
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FIGURE 1.  Scaled boundary transformation of geometry of line finite element  
 Mathematically, the geometry of the boundary of the finite element shown in Fig. 1 may be 
represented by interpolating its nodal coordinates { }x  and { }y  using the local coordinates η  at the 
boundary as follows : 
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where  [ ] [ ] [ ] [ ]nn NNNNNNNN ....),(....),(),(),( 2121 === ζηζηζηζη  and  is the 
number of element nodes. Using the scaling relationship 

n
rr ξ=ˆ  to describe the position of any point 

within the domain leads to 
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 Equation (6) is used to transfer the differential operators in the (x  co-ordinate system to 
those corresponding to the ( ,  co-ordinate system. 
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where the Jacobian matrix is [ ] and the determinant is 
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the curved boundary, the outward normal vector is defined by equation (7). 
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 Similarly, the outward normal vector to the line ( )ξ  is :  ηg
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Substituting equation (9) into the differential operator [ ]L  in equation (2) results in equation (10). 
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the transpose of the differential operator, [ ]TL , may be expressed as [ ] [ ] [ ]
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Applying the transformation in equation (9) to the differential motion and continuity equations yields 
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4. Displacements and pore pressure shape functions 
 
Shape functions similar to the mapping interpolation functions may be used to interpolate the finite 
element displacements for all lines with constant ξ .  Using displacement shape functions [ ])(ηuN  
and displacements functions in the radial direction { })(ξu , the finite element displacement function 
may be represented as 
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Similarly, the pore pressure function may be represented using the shape functions [ ]),( ζηpN  and 
pressure functions in the radial direction { })(ξp . Hence the finite element pore pressure function 
may be represented as 
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The stresses, strains and displacements are related by 
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which can be expressed as 
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5. Weighted-residual finite element approximation 
 
To derive the finite element approximation, the Galerkin’s weighted-residual method is applied to 
the transformed differential equations of motion and continuity, equations (11) and (12), by 
multiplying them with a weighting function { } { } TT ww ),( ηξ=  and then integrating over the domain 

. Integration is from –1 to +1 for the boundary variable A η  while the integration in the ξ  direction 
is from 0 to +1 for bounded elements and from +1 to ∞ for unbounded elements.  
 The weighting function {  to be multiplied by the differential equation of motion can be 
represented by the same displacement function as 

}Tuw
{ } ( ){ } ( )[ ] ( ){ }ξηηξ uuuu www N, == . The weighting 

function {  to be multiplied by the differential equation of continuity, in turn, can be represented 
by the same pore pressure function as 

}TwP

{ } ( ){ } ( )[ ] ( ){ }ξηη PPN, w=ξPP ww = . Green’s theorem is finally 
applied to the line integral. The final equations are shown in Section 6. 
 
 
6. Summary of the Finite Element Coupled Consolidation Equations 
 
Due to the space restrictions, only the final formulation of the finite element derivation is presented 
in the form of equations 
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6. Conclusion 
 
A numerical formulation to correctly model the dynamic unbounded far-field boundary for two-
phase media has been developed. The method of analysis extends the existing single-phase 
scaled boundary finite element method into a two-phase coupled solid-fluid approach to produce a 
more realistic representation of saturated soil at the unbounded far-field boundary. Body forces and 
surface tractions are considered in the derivation. The concept of similarity, the compatibility 
equation and Biot’s coupled consolidation equations have been used to derive the formulation for 
the governing equations. The main difference from the single-phase version is the presence of pore 
water pressures as additional parameters to be solved for, in addition to the displacements, strain 
and stress. These are incorporated into the static-stiffness matrices by producing fully coupled 
matrices. Solving the resulting equations yields a boundary condition satisfying the far-field 
radiation condition exactly. The computed solutions are exact in a radial direction (perpendicular to 
the boundary and pointing towards infinity), while converge to the exact solution in the finite 
element sense in the circumferential direction parallel to the soil-structure boundary interface. 
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