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The Concept of Mass-Density in Classical Thermodynamics
and the Boltzmann Kinetic Equation for Dilute Gases

S. Kokou Dadzie and Jason M. Reese

University of Strathclyde, Department of Mechanical Eregiring,
Glasgow G1 1XJ, Scotland, United Kingdom
kokou.dadzie @strath.ac.uk

Abstract. In this paper we discuss the mass-density of gas media &sesyied in kinetic theory. Itis argued that conventional
representations of this variable in gas kinetic theory i@atitt a macroscopic field variable and thermodynamic ptype
classical thermodynamics. We show that in cases where deassty variations exist throughout the medium, introdgci
the mass-density as a macroscopic field variable leads tsteucauring of the diffusive/convective fluxes and implies
some modifications to the hydrodynamic equations desgyigas flows and heat transfer. As an illustration, we consider
the prediction of mass-density profiles in a simple heat aotidn problem between parallel plates maintained at rdiffe
temperatures.
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INTRODUCTION

The kinetic theory of gases uses statistical mechanics aizhpility theory concepts such as the probability density
distribution of molecules. From this probability densityacroscopic field variables such as the thermodynamic prop-
erties (mass-density, volume, pressure, temperatureagtcconstructed by considering moments of the probability
density. Given simple monatomic gases, the probabilitystemlistribution is defined on the phase space that com-
prises molecule positions and velocities as two indeperdaedom variables, then the moments are taken with respect
only to the velocity. Therefore, any physical macroscogngities, in particular the thermodynamic mass-density of
the medium, are associated with reduced probabilitiesdptsition subspace.

The way that measurable macroscopic properties are defiitleith& molecular-based description of a continuum
fluid is not straightforward, and some foundational questiand paradoxes can be raised [1, 2]. Maxwell himself
circumscribed the use of probability distribution funcisoin the kinetic theory of gases [3]. Meanwhile, difficutie
concerning how a physical mass-density can be obtainedtfremtistribution function involved in the derivation of the
Boltzmann kinetic equation have led other kinetic theeristdefine a coarse-grained distribution function to embody
macroscopic features [4, 5].

We present here the contradictions that arise in the gati&theory consideration of physical densities, in patfacu
in the derivations of the kinetic equations. We investigateapproach where a complementary microscopic random
variable is introduced in order to incorporate a proper figldable representation of the mass-density of the medium.

BACKGROUND

Physical space is referenced with a fixed inertial fraddg X2, X3), in which exists a gas. We denote a differential
element in the position sub-phase spabe= dx, dx,dx,, and a differential element in the velocity sub-phase space
dg = dg,dg,dg,. Let us define the following two probability densities:

(A) A probability density functiorfa(t, X, &) such thatfa(t, X, & )dxd; represents the probable number of molecules
that, at timet, have their positions located withii+ dx and their velocities within the eleme&t- ds.

(B) A probability density functionfg(t, X, &) regarding an arbitrary single gas molecule, such faét X, £ )dxd;
represents the probability that, at timye¢he velocity of this single molecule is within the elemént d; and the
position of this single molecule is with)§ + dx.



The above two probability density functions are evidently different concepts. In particulgi\) gives a number
of molecules, whilgB) does not. Derivation of the Boltzmann kinetic equation innammic dilute gases can be
found in the literature starting with any of the above praligtdensities. Starting with the one-molecule distriiout
function defined in(B), a Liouville equation is written [6]

2 (& D)ot (R D) fo =0, ®
wherel = (9/9X1,0/0Xz,0/0X3) is the traditional spatial gradient operator dngddenotes the similar operator in
the velocity space, i.elJ; = (0/0&1,0/0&2,0/0&3). In equation (1) the third term on the left hand side corresiso
to the total force exerted on a given arbitrary moleculesTbice encompasses both external actions and the potential
forces exerted by the surrounding molecules. The routea@#s kinetic equation is concerned with modelling the
force term. Instead of maintaining the continuous actiotinefintermolecular forces, this force componentis reglace
by discontinuous changes that occur instantly onto the méune of the single molecule [6]. The resulting equation
is the Boltzmann equation in the one-particle phase spatttemwhen ignoring external forces as

2 (€ D fe=1(Ta.fo). @

The term on the right hand side that arose from the internutdedorces is the collision integral, restricted by the
assumption that molecules are uncorrelated in both theiposind velocity spaces. For hard-sphere molecules, this
is written,

1(1,1) = [1FX )X E) = 11X ) F(LX, &) &bebeldl, ©

whereé andé; refer to post-collision velocities of the interacting males & * andé; refer to pre-collision velocities,
& =|& — & is the two colliding molecules’ relative velocity, is the azimuthal impact anglb,is the distance of
closest approach of the undisturbed trajectories in theeari-mass frame of reference. We recall that this calfisi
integral is based on the elementary dynamic laws of a cotlibetween two point-mass molecules and that it does not
describe any spatial configuration changes during thestatis apart from exchanges of momentum and energy .

Let us define the following quantity:

Bn(tax):/fB(taxvf)dfv (4)

which defines another probability density function in thesifion sub-space. According to the definition of the
distribution functionfg, Bn(t, X)dx represents the probability of finding a single molecule anteinity of positionX,
regardless of its velocity. In kinetic theoB(t, X) is conventionally associated with the mass-density of thdiom
through the following assertion [7]: consider a fixed numli§exs the total number of gaseous molecules; assume

fa=Nfg, %)

and then interpref fad; as an average number of molecules per unit of gas volumeelBafic X) (or NBy(t, X)). An
elementary volume of gas is representedlpyand the distribution functiofy, follows the same equatigi2) because

N is just a constant. However, this assertion and equdbdpresupposes that the summation over the one-particle
distribution functions corresponding to each individualetule gives the average number of molecules around a given
position. This implies that each molecule is statisticailyependent (this is without referring to the collisioreigtal),
which means the true collective nature of the moleculestitating the medium, and the real spatial configurations of
the molecules, are disregarded. For example, the positiagiven molecule relative to another is ignored.

A second common route to express the Boltzmann kinetic exjui to start the derivation with the distribution
function fa directly. Then equation (4) written witfiy reads directly as an average number of molecules per unit
volume and this is then interpreted as the mass-densityeahidium. In this derivation, it is simply assumed that “the
variation of a number of molecules in a cell defined ByH(ds) @ (X 4 dx) is due to collision between molecules”
[8], and that collision itself is an operation occurringyim the velocity sub-space. Then,

of
¢ HE D fa=1(fafa). (6)
There are some incompatibilities inherent in this formolatConsidering a positioX in the gas, there is not a given

single molecule but a collection of molecules associatel thiis point, and in a similar manner the velocity (some



references use the term “molecules of a kind” [3, 8]). Acaogty, collisions can be regarded as interactions between
two groups of molecules. This contrasts with the usual detson of the dynamics of a collision as an interaction
between two individual molecules coming from two differeositions. The concept of many molecules sitting at the
same position at the same time can be regarded as problemeatjaation (6).

Specifically, a “mass-density” or “physical density” of asgaedium as it is conceived in classical continuum
mechanics is a macroscopic thermodynamic property anéftiveran average value. It is viewed as an amount of
mass divided by the macroscopic volume in which is spreadrizgiss. While this macroscopic volume is made up of
empty spaces and real volumes of the molecular objectsit#el a thermodynamic variable in classical equilibrium
thermodynamics. Accordingly, the mass-density, and #s@ated specific volume, have at first sight no predefined
assignment to the mathematical measures or probabilitsitgemnctions.

Expression (4), written either witfy, or fg, contradicts the macroscopic field variable and thermoayoproperties
of the mass-density: first, equation (4) is not a macroscap&age of any microscopic field variable or random
variable, it is rather a reduced probability density. Sel;@m elementary volume of a gas representedybwithin
this definition is a frame-dependent quantity, in contraghwa thermodynamic property that should be a frame-
independent quantity.

In some more complex derivations of the Boltzmann equasioch as those based on the Liouville equation written
for a complete distribution function of a system of a fixed tn@mN molecules, the mass-density appears as a constant.
The mass-density of the medium is defined as a normalizagictofN/V in front of a distribution function, where
N is the total number of molecules in a fixed voluMeof a container [9]. This also shows up in the derivation
of an equilibrium solution to the Boltzmann equation. Thatthe Maxwell-Boltzmann distribution is essentially
a distribution in the velocity subspace regardless of nuesssity. The Boltzmann H-theorem, associated with the
derivation of the Maxwell-Boltzmann distribution as theyaquilibrium distribution, is strictly derived only if its
admitted first that the medium is spatially uniform, and thatnding wall effects are neglected [8]. Otherwise, some
other derivations have been based on an asymptotic limlysisahat involvesN tending to infinity. Even in this
case, problems still remain because as the number of meketiids to infinity the distribution function also tends to
infinity (i.e. the number of molecules per unit of physicalurme becomes infinite). Then a re-scaling such as equation
(5) has to be used [10].

A MODIFIED KINETIC APPROACH TO GAS MEDIA

A New Probability Density Distribution

Considering an arbitrary molecule, we define the followingjgability density distribution:

f(t,X,&,v) is such that {t,X,¢&,v)dxdsdy is the probability of an arbitrary single molecule to be, at a
given time t, located in the vicinity of position X with itda@@ty in the vicinity of velocity, while the
configuration of its surrounding molecules at that time iadable with a microscopic parameter whose
measurable value is around v.

Variablev takes a positive value so thatending to zero represents packed gaseous molecules wikparation
distances, and tending to infinity represents an isolated molecule. A dilgas properly lies between these two
limiting cases. This new variable bears information abdlieomolecules, and the cohesive nature of the medium, and
therefore completes the one-molecule description. Itssim&d to be a random variable, independent of position and
velocity variables; it will not be important if continuum m@scopic field variables based on collections of molecules
such as mass-density and pressure, are not considerei (ie.are only to describe a single moving molecule).
More precisely, ifd is on average the distance between a target single molendlétsa surrounding molecules,
then the geometrical variablemay be given a handleable value of the volume of the spheraditis(d/2), i.e
v=(4m/3)(d/2)3.

A total variation in time of the new one-molecule distrilmutifunction is given by,

of of oX oé ovof
—+(—-D)f+(—-D5)f+§W, (7)

S5t at ot ot
whered/dt denotes the total time derivative following microscopictimns. The rate of change of position with time
is the velocity of the molecule, siX/dt = £. The rate of change of momentum with time is the sum of forgested



on the molecule, s&¢ /ot = Fext + Fint, WhereFex denotes external forces such as grahy, denotes internal forces
due to other molecules (per unit mass). The last term in @quék) results from the local changewfi.e. the change
in the spatial configuration of the molecular ensemble dwhtmges in the properties of the medium.

Definition of Macroscopic Field Variables

We define first the following average quantity:

An(t, X) :'/;m/;mf(t,x,.{,v)dvdg . ®)

This quantity refers, according to the definition of the mlsttion functionf (t, X, £,v), to a reduced probability in the
position space, i.e the probability of finding a moleculelen@X regardless of its velocity and the distribution of the
other molecules. This is not therefore a proper thermodymarass-density of the medium.

The local mean valué€)(t, X), of any propertyQ can be defined according to classical statistical mechéyics

QX =55 [ [ Qtex £ vdd (©)
) _An(t,x) o Jo IEATA ) vag -

For example, the local averagewfi.e. the local mean-free-volume around each gaseous mie|és given by,

1 4o oo
Wt,X):mlw/() VEE, X, E,v)chds - (10)

From this mean value of the volume around a molecule we canalafimass-density in the vicinity of positidh
through:

An(t,X)M M
An(t,X)V(t,X) — V(t,X)
whereM is the molecular mass. The specific volume is then givenbx)/M.

Two mean velocities can be defined using two different wéightalues. First, a local mean mass-velodity(t, X),
is given through

plt.X) = (11)

»+00 400

An(t, X)Un(t, X) :/ EF(LX,E,v)dhdg. (12)

J—0o JO
As the molecular mass is constant in single-component médias been canceled out in equation (12). According
to the definition of the distribution function, this averagglocity can be viewed as the average velocity at which
molecules are travelling; it is independent of the masssitienf the medium. Using the microscopic free volume as a
weighting, a local mean volume-velocity(t, X), can also be defined:

Tt X)An(t, X)Uy (t, X) = /:)w'/(;wvff(t,X,E,v)dvdg. (13)

If the distributions of the molecules are such that molesniaintain on average the same separation distances between
each other, in particular the measurable volume betweemtiecules is always and everywhere the same, tisn
a constant and it is seen tha(t,X) andUy(t,X) coincide. This uniformity situation represents a homogeise
medium, where mass-density is constant throughout. ibicdithat a difference between these two velocities occurs
in a non-homogeneous medium, where variations of masstgensst.

From the two previous macroscopic velocities, we have twiuli@ velocities expressed by,

C:E_Umv (14)

and
cC'=&-uU,. (15)

Accounting for macroscopic expansions or compressions®ftedium, the proper random motions which are
classically associated with diffusive processes are tfrose which both the macroscopic velocitigg, andU, have
been subtracted.



Note that in the above definitions of macroscopic varialites yolumev and the velocityé are the basic random
variables, with their expected values (or expected valfiébaidr functions) being associated to the flow properties.
The timet and positionX play a different role. Therefore any macroscopic flow propkas an assigned microscopic
random variable. This is different from the classical dgdiom in the Boltzmann equation, where the mass-density
has no randomized component or, more precisely, is asedaidgth the “constant random variable”, 1.

The Kinetic Equation and Subsequent Set of Hydrodynamic Eqgations

To derive a kinetic equation for the distributid(t, X, &,v) some physical assumptions are obviously required. Here
we assume that this distribution function is conserved énrtbw generalized phase space. In addition, changes in the
momentum of a given molecule are only important during intstaeous interactions with other molecules. It follows
that we may replace the force term in equation (7) and write:

of of

EJr(E O)f + (Fext Df)f+Wd—:I(f,f), (16)
wherel (f, f) is a Boltzmann type of collision integral alld = dv/dt. Then a set of hydrodynamic equations may be
derived by taking moments of the kinetic equation with respe the microscopic random variablest andé&?, and
the constant 1 [11]. This set of equations is written

DA,
B ADUn. (17)
Dp _ p°[1
oL M[A—nm'[AnJv]—W}a (18)
An% = —D~An(P’——JVJV) (19)
NRENT ‘]v:| _ _D.An[(P/__JVJV) ] (20)
Dt 2 ™ ™ 2%

—DAn[q+J°/JV+ (dn ) ]

We have denoted the material derivativeDt = d/dt +Up- 0. Quantitiesl,, P/, andd’ are the fluxes of, respectively,
v, &, and &2, due to the real randomized component of molecular motian i$1C’. Consequently, they are here
associated with diffusive fluxes and may be approximateaigusbnventional phenomenological first order diffusion
models:

MPI/J / / aUVi aUVi aUVk
= s (G ) (21)
/
A R (22)
J —
V— = Km [p 1D§] ’ (23)

with " a dynamic viscositykj, a heat conductivity’ a bulk viscositykm the volume or mass diffusion coefficient,
all to be determined in this new framework. Any flux densittaiken in respect of the real macroscopic unit of volume
of gas,v. As the complete macroscopic motion, from which the momerflux P is defined as a diffusive flux, is
Uy, the phenomenological law of diffusion used to expi@sis applied with a gradient taken ovigy. The internal
energy ise,(n and the following relations are also derived from the basifinitions of macroscopic flow properties:

2 +n'=0,U, =Un+Vv 13, Me,, = (3/2)kT’ or p’ = (2/3)pe|,, with p’ the mean pressure aiidthe temperature.

The difference in this new set of macroscopic equations islyndue to the volume flux componedt, which is
also, in fact, a diffusive flux corresponding to the masssitgrof the medium, as spatial distributions of the molesule
are represented as a random process in our description cedngathe conventional description. The same type of
flux has been recently claimed by various authors to be of itapoe in continuum mechanics [12, 13].



DENSITY PROFILES IN A STEADY STATE HEAT TRANSFER PROBLEM

The prediction of mass-density profiles in a pure heat cotmoluproblem between two parallel plates is a good
initial test for the new set of hydrodynamic equations (7(20). In [14] a finite-difference analysis of the nonlinear
Boltzmann equation for hard-sphere molecules was usedue #us flow configuration and results were compared
to experiments. According to [14], “there is a considerabifierence between the mass-density distribution by the
full Boltzmann equation and the experiments”. Meanwhilghwhe same configuration, the classical set of Navier-
Stokes hydrodynamic equations do not predict any actuas+dessity profile because the continuity equation simply
vanishes while pressure is constant and the temperatunes.|

Consider the set of hydrodynamic equations (17) to (20) ime-dimensional steady state configuration with
Un = 0. Thex-axis is normal to the plates. The continuity equation (1aishes and equation (18) with a sensible
phenomenological description ¥f leads to [11]:

_ 0 [Kmdp 19p\*
Pa—x (Pﬁ&)—i_’(m(ﬁ_ﬁ) =0. (24)

Neglecting non-linear terms, equation (24) reduces to

7%

X2 = Oa (25)

which has the solutiop(x) = Ci» + xG1. Therefore the mass-density profile is linear, and this ipalerives from
the diffusive component appearing in the mass-densitytequél8) and not from an equation of state. According to
experimental data [14] the mass-density profiles are gldiadar.

CONCLUSION

In this paper, we have argued that conventional derivatibttse Boltzmann kinetic equation in dilute gases introduce
a definition of macroscopic mass-density of the medium whimhtradicts macroscopic thermodynamic properties.
In particular, the mass-density is associated with a cohstécroscopic random variable which implies a medium of

uniformly distributed molecules. By introducing a propandom variable associated with the spatial distributidns o

molecules into the microscopic kinetic description, wedhglvown that the resulting macroscopic hydrodynamic model
has a new diffusive component in the mass-density. Earty sa benchmark heat conduction problem indicate this
new model has some utility.
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