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The Concept of Mass-Density in Classical Thermodynamics
and the Boltzmann Kinetic Equation for Dilute Gases

S. Kokou Dadzie and Jason M. Reese

University of Strathclyde, Department of Mechanical Engineering,
Glasgow G1 1XJ, Scotland, United Kingdom

kokou.dadzie@strath.ac.uk

Abstract. In this paper we discuss the mass-density of gas media as represented in kinetic theory. It is argued that conventional
representations of this variable in gas kinetic theory contradict a macroscopic field variable and thermodynamic property in
classical thermodynamics. We show that in cases where mass-density variations exist throughout the medium, introducing
the mass-density as a macroscopic field variable leads to a restructuring of the diffusive/convective fluxes and implies
some modifications to the hydrodynamic equations describing gas flows and heat transfer. As an illustration, we consider
the prediction of mass-density profiles in a simple heat conduction problem between parallel plates maintained at different
temperatures.
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INTRODUCTION

The kinetic theory of gases uses statistical mechanics and probability theory concepts such as the probability density
distribution of molecules. From this probability density,macroscopic field variables such as the thermodynamic prop-
erties (mass-density, volume, pressure, temperature etc.) are constructed by considering moments of the probability
density. Given simple monatomic gases, the probability density distribution is defined on the phase space that com-
prises molecule positions and velocities as two independent random variables, then the moments are taken with respect
only to the velocity. Therefore, any physical macroscopic densities, in particular the thermodynamic mass-density of
the medium, are associated with reduced probabilities in the position subspace.

The way that measurable macroscopic properties are defined within a molecular-based description of a continuum
fluid is not straightforward, and some foundational questions and paradoxes can be raised [1, 2]. Maxwell himself
circumscribed the use of probability distribution functions in the kinetic theory of gases [3]. Meanwhile, difficulties
concerning how a physical mass-density can be obtained fromthe distribution function involved in the derivation of the
Boltzmann kinetic equation have led other kinetic theorists to define a coarse-grained distribution function to embody
macroscopic features [4, 5].

We present here the contradictions that arise in the gas kinetic theory consideration of physical densities, in particular
in the derivations of the kinetic equations. We investigatean approach where a complementary microscopic random
variable is introduced in order to incorporate a proper fieldvariable representation of the mass-density of the medium.

BACKGROUND

Physical space is referenced with a fixed inertial frame(X1,X2,X3), in which exists a gas. We denote a differential
element in the position sub-phase space,dX = dX1dX2dX3, and a differential element in the velocity sub-phase space,
dξ = dξ1

dξ2
dξ3

. Let us define the following two probability densities:

(A) A probability density functionfA(t,X,ξ ) such thatfA(t,X,ξ )dXdξ represents the probable number of molecules
that, at timet, have their positions located withinX±dX and their velocities within the elementξ ±dξ .

(B) A probability density functionfB(t,X,ξ ) regarding an arbitrary single gas molecule, such thatfB(t,X,ξ )dXdξ
represents the probability that, at timet, the velocity of this single molecule is within the elementξ ±dξ and the
position of this single molecule is withinX±dX.



The above two probability density functions are evidently two different concepts. In particular,(A) gives a number
of molecules, while(B) does not. Derivation of the Boltzmann kinetic equation in monatomic dilute gases can be
found in the literature starting with any of the above probability densities. Starting with the one-molecule distribution
function defined in(B), a Liouville equation is written [6]

∂ fB
∂ t

+(ξ ·∇) fB +(Ftot ·∇ξ ) fB = 0, (1)

where∇ = (∂/∂X1,∂/∂X2,∂/∂X3) is the traditional spatial gradient operator and∇ξ denotes the similar operator in
the velocity space, i.e.,∇ξ = (∂/∂ξ1,∂/∂ξ2,∂/∂ξ3). In equation (1) the third term on the left hand side corresponds
to the total force exerted on a given arbitrary molecule. This force encompasses both external actions and the potential
forces exerted by the surrounding molecules. The route to the gas kinetic equation is concerned with modelling the
force term. Instead of maintaining the continuous action ofthe intermolecular forces, this force component is replaced
by discontinuous changes that occur instantly onto the momentum of the single molecule [6]. The resulting equation
is the Boltzmann equation in the one-particle phase space, written when ignoring external forces as

∂ fB
∂ t

+(ξ ·∇) fB = I( fB, fB). (2)

The term on the right hand side that arose from the intermolecular forces is the collision integral, restricted by the
assumption that molecules are uncorrelated in both the position and velocity spaces. For hard-sphere molecules, this
is written,

I( f , f ) =

∫

[ f (t,X,ξ ∗) f (t,X,ξ ∗
1 )− f (t,X,ξ ) f (t,X,ξ1)]ξrbdbdεdξ1

, (3)

whereξ andξ1 refer to post-collision velocities of the interacting molecules,ξ ∗ andξ ∗
1 refer to pre-collision velocities,

ξr = |ξ − ξ1| is the two colliding molecules’ relative velocity,ε is the azimuthal impact angle,b is the distance of
closest approach of the undisturbed trajectories in the centre-of-mass frame of reference. We recall that this collision
integral is based on the elementary dynamic laws of a collision between two point-mass molecules and that it does not
describe any spatial configuration changes during the collisions apart from exchanges of momentum and energy .

Let us define the following quantity:

Bn(t,X) =

∫

fB(t,X,ξ )dξ , (4)

which defines another probability density function in the position sub-space. According to the definition of the
distribution functionfB, Bn(t,X)dX represents the probability of finding a single molecule in the vicinity of positionX,
regardless of its velocity. In kinetic theory,Bn(t,X) is conventionally associated with the mass-density of the medium
through the following assertion [7]: consider a fixed numberN as the total number of gaseous molecules; assume

fA = N fB, (5)

and then interpret
∫

fAdξ as an average number of molecules per unit of gas volume; henceBn(t,X) (or NBn(t,X)). An
elementary volume of gas is represented bydX, and the distribution functionfA follows the same equation(2) because
N is just a constant. However, this assertion and equation(5) presupposes that the summation over the one-particle
distribution functions corresponding to each individual molecule gives the average number of molecules around a given
position. This implies that each molecule is statisticallyindependent (this is without referring to the collision integral),
which means the true collective nature of the molecules constituting the medium, and the real spatial configurations of
the molecules, are disregarded. For example, the position of a given molecule relative to another is ignored.

A second common route to express the Boltzmann kinetic equation is to start the derivation with the distribution
function fA directly. Then equation (4) written withfA reads directly as an average number of molecules per unit
volume and this is then interpreted as the mass-density of the medium. In this derivation, it is simply assumed that “the
variation of a number of molecules in a cell defined by (ξ ±dξ ) ⊗ (X±dX) is due to collision between molecules”
[8], and that collision itself is an operation occurring only in the velocity sub-space. Then,

∂ fA
∂ t

+(ξ ·∇) fA = I( fA, fA). (6)

There are some incompatibilities inherent in this formulation. Considering a positionX in the gas, there is not a given
single molecule but a collection of molecules associated with this point, and in a similar manner the velocity (some



references use the term “molecules of a kind” [3, 8]). Accordingly, collisions can be regarded as interactions between
two groups of molecules. This contrasts with the usual description of the dynamics of a collision as an interaction
between two individual molecules coming from two differentpositions. The concept of many molecules sitting at the
same position at the same time can be regarded as problematicin equation (6).

Specifically, a “mass-density” or “physical density” of a gas medium as it is conceived in classical continuum
mechanics is a macroscopic thermodynamic property and therefore an average value. It is viewed as an amount of
mass divided by the macroscopic volume in which is spread this mass. While this macroscopic volume is made up of
empty spaces and real volumes of the molecular objects, it isitself a thermodynamic variable in classical equilibrium
thermodynamics. Accordingly, the mass-density, and its associated specific volume, have at first sight no predefined
assignment to the mathematical measures or probability density functions.

Expression (4), written either withfA or fB, contradicts the macroscopic field variable and thermodynamic properties
of the mass-density: first, equation (4) is not a macroscopicaverage of any microscopic field variable or random
variable, it is rather a reduced probability density. Second, an elementary volume of a gas represented bydX within
this definition is a frame-dependent quantity, in contrast with a thermodynamic property that should be a frame-
independent quantity.

In some more complex derivations of the Boltzmann equation,such as those based on the Liouville equation written
for a complete distribution function of a system of a fixed numberN molecules, the mass-density appears as a constant.
The mass-density of the medium is defined as a normalization factorN/V in front of a distribution function, where
N is the total number of molecules in a fixed volumeV of a container [9]. This also shows up in the derivation
of an equilibrium solution to the Boltzmann equation. That is, the Maxwell-Boltzmann distribution is essentially
a distribution in the velocity subspace regardless of mass-density. The Boltzmann H-theorem, associated with the
derivation of the Maxwell-Boltzmann distribution as the only equilibrium distribution, is strictly derived only if itis
admitted first that the medium is spatially uniform, and thatbounding wall effects are neglected [8]. Otherwise, some
other derivations have been based on an asymptotic limit analysis that involvesN tending to infinity. Even in this
case, problems still remain because as the number of molecules tends to infinity the distribution function also tends to
infinity (i.e. the number of molecules per unit of physical volume becomes infinite). Then a re-scaling such as equation
(5) has to be used [10].

A MODIFIED KINETIC APPROACH TO GAS MEDIA

A New Probability Density Distribution

Considering an arbitrary molecule, we define the following probability density distribution:

f (t,X,ξ ,v) is such that f(t,X,ξ ,v)dXdξ dv is the probability of an arbitrary single molecule to be, at a
given time t, located in the vicinity of position X with its velocity in the vicinity of velocityξ , while the
configuration of its surrounding molecules at that time is readable with a microscopic parameter whose
measurable value is around v.

Variablev takes a positive value so thatv tending to zero represents packed gaseous molecules with noseparation
distances, andv tending to infinity represents an isolated molecule. A dilute gas properly lies between these two
limiting cases. This new variable bears information about other molecules, and the cohesive nature of the medium, and
therefore completes the one-molecule description. It is assumed to be a random variable, independent of position and
velocity variables; it will not be important if continuum macroscopic field variables based on collections of molecules,
such as mass-density and pressure, are not considered (i.e.if we are only to describe a single moving molecule).
More precisely, ifd is on average the distance between a target single molecule and its surrounding molecules,
then the geometrical variablev may be given a handleable value of the volume of the sphere of radius(d/2), i.e
v = (4π/3)(d/2)3.

A total variation in time of the new one-molecule distribution function is given by,

δ f
δ t

=
∂ f
∂ t

+(
δX
δ t

·∇) f +(
δξ
δ t

·∇ξ ) f +
δv
δ t

∂ f
∂v

, (7)

whereδ/δ t denotes the total time derivative following microscopic motions. The rate of change of position with time
is the velocity of the molecule, soδX/δ t = ξ . The rate of change of momentum with time is the sum of forces exerted



on the molecule, soδξ/δ t = Fext+Fint, whereFext denotes external forces such as gravity,Fint denotes internal forces
due to other molecules (per unit mass). The last term in equation (7) results from the local change ofv, i.e. the change
in the spatial configuration of the molecular ensemble due tochanges in the properties of the medium.

Definition of Macroscopic Field Variables

We define first the following average quantity:

An(t,X) =

∫ +∞

−∞

∫ +∞

0
f (t,X,ξ ,v)dvdξ . (8)

This quantity refers, according to the definition of the distribution functionf (t,X,ξ ,v), to a reduced probability in the
position space, i.e the probability of finding a molecule aroundX regardless of its velocity and the distribution of the
other molecules. This is not therefore a proper thermodynamic mass-density of the medium.

The local mean value,̄Q(t,X), of any propertyQ can be defined according to classical statistical mechanicsby,

Q̄(t,X) =
1

An(t,X)

∫ +∞

−∞

∫ +∞

0
Q f(t,X,ξ ,v)dvdξ . (9)

For example, the local average ofv, i.e. the local mean-free-volume around each gaseous molecule, is given by,

v̄(t,X) =
1

An(t,X)

∫ +∞

−∞

∫ +∞

0
v f(t,X,ξ ,v)dvdξ . (10)

From this mean value of the volume around a molecule we can define a mass-density in the vicinity of positionX
through:

ρ̄(t,X) =
An(t,X)M

An(t,X)v̄(t,X)
=

M
v̄(t,X)

, (11)

whereM is the molecular mass. The specific volume is then given by ¯v(t,X)/M.
Two mean velocities can be defined using two different weighting values. First, a local mean mass-velocity,Um(t,X),

is given through

An(t,X)Um(t,X) =

∫ +∞

−∞

∫ +∞

0
ξ f (t,X,ξ ,v)dvdξ . (12)

As the molecular mass is constant in single-component media, it has been canceled out in equation (12). According
to the definition of the distribution function, this averagevelocity can be viewed as the average velocity at which
molecules are travelling; it is independent of the mass-density of the medium. Using the microscopic free volume as a
weighting, a local mean volume-velocity,Uv(t,X), can also be defined:

v̄(t,X)An(t,X)Uv(t,X) =

∫ +∞

−∞

∫ +∞

0
vξ f (t,X,ξ ,v)dvdξ . (13)

If the distributions of the molecules are such that molecules maintain on average the same separation distances between
each other, in particular the measurable volume between themolecules is always and everywhere the same, thenv is
a constant and it is seen thatUm(t,X) andUv(t,X) coincide. This uniformity situation represents a homogeneous
medium, where mass-density is constant throughout. It follows that a difference between these two velocities occurs
in a non-homogeneous medium, where variations of mass-density exist.

From the two previous macroscopic velocities, we have two peculiar velocities expressed by,

C = ξ −Um , (14)

and
C′ = ξ −Uv . (15)

Accounting for macroscopic expansions or compressions of the medium, the proper random motions which are
classically associated with diffusive processes are thosefrom which both the macroscopic velocitiesUm andUv have
been subtracted.



Note that in the above definitions of macroscopic variables,the volumev and the velocityξ are the basic random
variables, with their expected values (or expected values of their functions) being associated to the flow properties.
The timet and positionX play a different role. Therefore any macroscopic flow property has an assigned microscopic
random variable. This is different from the classical description in the Boltzmann equation, where the mass-density
has no randomized component or, more precisely, is associated with the “constant random variable”, 1.

The Kinetic Equation and Subsequent Set of Hydrodynamic Equations

To derive a kinetic equation for the distributionf (t,X,ξ ,v) some physical assumptions are obviously required. Here
we assume that this distribution function is conserved in the new generalized phase space. In addition, changes in the
momentum of a given molecule are only important during instantaneous interactions with other molecules. It follows
that we may replace the force term in equation (7) and write:

∂ f
∂ t

+(ξ ·∇) f +(Fext ·∇ξ ) f +W
∂ f
∂v

= I( f , f ) , (16)

whereI( f , f ) is a Boltzmann type of collision integral andW = δv/δ t. Then a set of hydrodynamic equations may be
derived by taking moments of the kinetic equation with respect to the microscopic random variablesv, ξ andξ 2, and
the constant 1 [11]. This set of equations is written

DAn

Dt
= −An∇ ·Um , (17)

Dρ̄
Dt

=
ρ̄2

M

[

1
An

∇ · [AnJv]−W

]

, (18)

An
DUm

Dt
= −∇ ·An

(

P′−
1
v̄2 JvJv

)

, (19)

An
D
Dt

[

1
2

U2
m+e′in−

1
2v̄2J2

v

]

= −∇ ·An

[(

P′−
1
v̄2 JvJv

)

·Um

]

(20)

−∇ ·An

[

q′ +
1
v̄

P′ ·Jv +
1
v̄

(

e′in −
1
v̄2 J2

v

)

Jv

]

.

We have denoted the material derivativeD/Dt ≡ ∂/∂ t +Um· ∇. QuantitiesJv, P′, andq′ are the fluxes of, respectively,
v, ξ , andξ 2, due to the real randomized component of molecular motion that is C′. Consequently, they are here
associated with diffusive fluxes and may be approximated using conventional phenomenological first order diffusion
models:

MP′
i j

v̄
= p′δi j − µ ′

(

∂Uvi

∂Xj
+

∂Uvj

∂Xi

)

−η ′ ∂Uvk

∂Xk
δi j , (21)

Mq′

v̄
= −κ ′

h∇T ′ , (22)

Jv

v̄
= κm

[

ρ̄−1∇ρ̄
]

, (23)

with µ ′ a dynamic viscosity,κ ′
h a heat conductivity,η ′ a bulk viscosity,κm the volume or mass diffusion coefficient,

all to be determined in this new framework. Any flux density istaken in respect of the real macroscopic unit of volume
of gas, ¯v. As the complete macroscopic motion, from which the momentum flux P′ is defined as a diffusive flux, is
Uv, the phenomenological law of diffusion used to expressP′ is applied with a gradient taken overUv. The internal
energy ise′in and the following relations are also derived from the basic definitions of macroscopic flow properties:
2
3µ ′+η ′ = 0,Uv =Um+ v̄−1Jv, Me′in = (3/2)kT′ or p′ = (2/3)ρ̄e′in, with p′ the mean pressure andT ′ the temperature.

The difference in this new set of macroscopic equations is mainly due to the volume flux componentJv, which is
also, in fact, a diffusive flux corresponding to the mass-density of the medium, as spatial distributions of the molecules
are represented as a random process in our description compared to the conventional description. The same type of
flux has been recently claimed by various authors to be of importance in continuum mechanics [12, 13].



DENSITY PROFILES IN A STEADY STATE HEAT TRANSFER PROBLEM

The prediction of mass-density profiles in a pure heat conduction problem between two parallel plates is a good
initial test for the new set of hydrodynamic equations (17) to (20). In [14] a finite-difference analysis of the nonlinear
Boltzmann equation for hard-sphere molecules was used to solve this flow configuration and results were compared
to experiments. According to [14], “there is a considerabledifference between the mass-density distribution by the
full Boltzmann equation and the experiments”. Meanwhile, with the same configuration, the classical set of Navier-
Stokes hydrodynamic equations do not predict any actual mass-density profile because the continuity equation simply
vanishes while pressure is constant and the temperature is linear.

Consider the set of hydrodynamic equations (17) to (20) in a one-dimensional steady state configuration with
Um = 0. Thex-axis is normal to the plates. The continuity equation (17) vanishes and equation (18) with a sensible
phenomenological description ofW leads to [11]:

ρ̄
∂
∂x

(

κm

ρ̄2

∂ ρ̄
∂x

)

+ κm

(

1
ρ̄

∂ ρ̄
∂x

)2

= 0. (24)

Neglecting non-linear terms, equation (24) reduces to

∂ 2ρ̄
∂x2 = 0, (25)

which has the solution̄ρ(x) = Ct2 + xCt1. Therefore the mass-density profile is linear, and this mainly derives from
the diffusive component appearing in the mass-density equation (18) and not from an equation of state. According to
experimental data [14] the mass-density profiles are clearly linear.

CONCLUSION

In this paper, we have argued that conventional derivationsof the Boltzmann kinetic equation in dilute gases introduce
a definition of macroscopic mass-density of the medium whichcontradicts macroscopic thermodynamic properties.
In particular, the mass-density is associated with a constant microscopic random variable which implies a medium of
uniformly distributed molecules. By introducing a proper random variable associated with the spatial distributions of
molecules into the microscopic kinetic description, we have shown that the resulting macroscopic hydrodynamicmodel
has a new diffusive component in the mass-density. Early tests on a benchmark heat conduction problem indicate this
new model has some utility.
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