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Abstract— This paper examines optimal solutions of control
systems with drift defined on the orthonormal frame bundle
of particular Riemannian manifolds of constant curvature.
The manifolds considered here are the space forms Euclidean
spaceE3, the spheresS3 and the hyperboloids H3 with the
corresponding frame bundles equal to the Euclidean group of
motions SE(3), the rotation group SO(4) and the Lorentz
group SO(1, 3). The optimal controls of these systems are
solved explicitly in terms of elliptic functions. In this paper, a
geometric interpretation of the extremal solutions is given with
particular emphasis to a singularity in the explicit solutions.
Using a reduced form of the Casimir functions the geometry
of these solutions are illustrated.

I. I NTRODUCTION

This paper deals with affine control systems with drift
defined on the frame bundles of simply connected manifolds
of constant sectional curvature, denotedM . In particular the
frame bundles of the space forms Euclidean spaceE3, the
spheresS3 and the hyperboloidsH3 with the corresponding
frame bundles equal to the Euclidean group of motions
SE(3), the rotation groupSO(4) and the Lorentz group
SO(1, 3) respectively. IndeedE3 = SE(3)/SO(3), S3 =
SO(4)/SO(3) and H3 = SO(1, 3)/SO(3). Orthonormal
frame bundles of space forms coincide with their isometry
group and therefore the focus shifts to control systems
defined on Lie groups. The cotangent bundleT ∗G is then
realized as the product ofG with the dual of its Lie algebra
g∗ and leads to non-canonical coordinates, thus in this paper
the use of the Maximum Principle of optimal control shifts
the emphasis to 6-dimensional Hamiltonian systems defined
on matrix Lie groups. Applications motivating this study
are connected with controlling nonholonomic mechanical
systems and in particular systems whose kinematics can be
defined as affine control systems on Lie groups see, (see
[1]). A simplified kinematic model of an airplane whose
configuration can be described bySE(3) i.e it will always
fly forward and the controls may yaw, pitch and roll the
aircraft, has been used to find optimal landing trajectories
for airplanes, (see [2]). The configurationSO(4) has a di-
verse range of applications from such fields as mathematical
physics (see [3]), to modelling power conversion in electrical
circuits and in particular, Wood [4] has shown that switched
electrical networks such as those used in power conversion

can be modelled as bilinear systems with state transition
matrices that evolve on the Simple Orthogonal groupSO(n),
where n is dependent on the number of capacitors and/or
inductors in the circuit. In addition the spherical space form
S3 can be used to represent spin systems in quantum control
through the isomorphismS3 → SU(2). The Lorentz group
has applications in physics and special relativity, indeed it is
the isometry group of the 4-dimensional Minkowski metric.
This paper explicitly solves for the optimal controls and
the extremal solutions in terms of elliptic functions for
the Euclidean, elliptic and hyperbolic case. In addition a
geometric interpretation of these solutions is given using
the invariant surfaces described by the Hamiltonian and
Casimir functions. This illuminates the classical picture of
elliptic curves as the intersection of quadric hypersurfaces
in projective 3-space [5]. Finally, a geometric picture of the
extremal solutions is given at a singularity of the system.
At this singularity the solution is shown to be periodic and
closed and the corresponding optimal controls trigonometric
functions.

II. EXPLICIT SOLUTIONS ONse(3)∗, s0(4)∗AND s0(1, 3)∗

The groupG is used to represent the frame bundle of the
space forms corresponding to the matrix Lie groupsSE(3),
SO(4) andSO(1, 3) respectively. We identifyTG with G×g
whereg is the Lie algebra ofG and consider only the left
translation. The elastic problem concern the solutionsg(t)
of the left-invariant differential system

dg

dt
(t) = g(t)(A0 +

3∑

i=1

uiAi) (1)

whereA0, ..., A3 are given matrices in the Lie algebrag of
G and for our particular case (see [7] for a derivation):

dg

dt
(t) = g(t)




0 −ε 0 0
1 0 −u3 u2

0 u3 0 −u1

0 −u2 u1 0


 (2)

where ε=0 for the Euclidean caseE3, ε=1 for the elliptic
caseS3 and ε=-1 for the hyperbolic caseH3. Equation (2)
describes the deformations on the frame bundleG of M
subject to the assumption that for any curvex(t) ∈ M ,



∥∥dx
dt

∥∥ = 1, and x is parameterized by its length from the
initial point on the curve. In this optimal control problem we
wish to minimize the expression12

∫ T

0
(u(t)Qu(t))dt, subject

to the given boundary conditiong(0) = g0, g(T ) = g1, Q
is diagonal and positive definite, and the diagonal entries
will be denoted byci’s. In the mechanics literature theci’s
are analogous to its principle moments of inertia and in the
analogy to the elastic rod reflect the physical characteristics
of the bar related to the geometric shape of its cross section
[6]. Hereui play the role of the controls. It is interesting to
note thatε coincides with the constant sectional curvature
of the corresponding space form. In this senseε can be
viewed as a continuous parameter representing the curvature
of an arbitrary Riemmanian manifold with constant curvature
ε. However, in this paperε will be discrete and its value
will distinguish between the three cases. The maximum
principle of optimal control then identifies the appropriate
left-invariant HamiltonianH on the dual of the Lie algebra
g∗, specificallyse(3)∗, so(4)∗ andso(1, 3)∗. The maximum
principle considers the lift of the optimization problem to the
cotangent manifoldT ∗G. The control Hamiltonian is written
as:

H(p, g, u) = p(gA0) +
3∑

i=1

uip(gAi)− p0
1
2

3∑

i=1

ciu
2
i (3)

where p ∈ T ∗g G and p0 ∈ R is a constant of motion.
The two cases wherep0 is either 1 or 0, correspond to
normal extremals and abnormal extremals respectively. That
is there are two Hamiltonian functions to consider. Indeed,
all these cases admit abnormal extremals. However, because
of the regularity of these variational problems each optimal
trajectory is a projection of a regular extremal curve (see [7]),
therefore, we assumep0 = 1. The Hamiltonian is defined on
the cotangent manifoldT ∗G which can be pulled back to
G × g∗. The Hamiltonian function can be pulled back by
the left or right action of an elementg ∈ G. Explicitly the
pullback mapping by the left translated value can be defined
as p̂(·) = p(g(·)) hencep(·) = p̂(g−1(·)). i.e p ∈ T ∗G is
pulled back to give a function̂p ∈ g∗. Specifically,p̂(·) is
defined via the non-degenerate Killing form onso(4) and
so(1, 3). In the case ofse(3) the trace form is degenerate
but the functionp̂(·) is derived using a combination of the
Euclidean inner product and the Killing form (see [7] for
details). The control Hamiltonian ong∗ can be written as:

H(p̂, u) = p̂(A0) +
3∑

i=1

uip̂(Ai)− 1
2

3∑

i=1

ciu
2
i (4)

The maximum principle states that the optimal controlsu∗

will maximize the control Hamiltonian at every point of
T ∗G. The control Hamiltonian is a quadratic function of the
scalarui and d2H

du2
i

< 0 implies that there exists exactly one
global maximum at each point of the Hamiltonian function.
Differentiating (4) with respect toui gives:

dH

dui
= p̂(Ai)− ciui

i = 1, 2, 3
(5)

Therefore, the optimal controls are defined in terms of the
momentum function̂p(·).

u∗i =
1
ci

p̂(Ai) (6)

wherei = 1, 2, 3. Also letp1 = p̂(A0) andMi = p̂(Ai), then
substituting these back into (4) gives the optimal Hamiltonian

H∗ = p1 +
1
2

(
M2

1

c1
+

M2
2

c2
+

M2
3

c3

)
(7)

the optimal controlsui
∗ can be substituted into (2) and

rearranged to give

g−1 dg

dt
=




0 −ε 0 0
1 0 −M3/c3 M2/c2

0 M3/c3 0 −M1/c1

0 −M2/c2 M1/c1 0


 (8)

In addition to the Hamiltonian defined on these groups it
is also essential to recognize some geometric facts about
these Lie algebras. Any element of these Lie algebras can be
naturally split into two spacesp andk, following the Cartan
decomposition;g = p⊕ k, which satisfy the classic relations.
[k, k] ⊆ k, [p, k] ⊆ p and [p, p] ⊆ k
wherek consists of all matrices of the form




0 0 0 0
0 0 −a3 a2

0 a3 0 −a1

0 −a2 a1 0


 (9)

andp consists of the matrices



0 −εb1 −εb2 −εb3

b1 0 0 0
b2 0 0 0
b3 0 0 0


 (10)

For notational convenience write the elementA0 asB1. The
corresponding adjoint representation fork andp whereAi ∈
k andBi ∈ p are:

A1 =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


 , A2 =




0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0




A3 =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 , B1 =




0 −ε 0 0
1 0 0 0
0 0 0 0
0 0 0 0




B2 =




0 0 −ε 0
0 0 0 0
1 0 0 0
0 0 0 0


 , B3 =




0 0 0 −ε
0 0 0 0
0 0 0 0
1 0 0 0




(11)
Define the Lie bracket to be[X,Y ] = XY − Y X for any
elementX andY in g. The corresponding Lie bracket table
is:



[, ] A1 A2 A3 B1 B2 B3

A1 0 A3 -A2 0 -B3 -B2

A2 -A3 0 A1 -B3 0 B1

A3 A2 -A1 0 B2 -B1 0
B1 0 B3 -B2 0 εA3 -εA2

B2 -B3 0 B1 -εA3 0 εA1

B3 B2 -B1 0 εA2 -εA1 0

Using the optimal Hamiltonian (7), it is possible to construct
the Hamiltonian vector fields using the Poisson bracket de-
fined on the symplectic manifold. The Poisson bracket is as-
sociated with the Lie bracket by{Mi,Mj} = −p̂([Ai, Aj ]),
wherepi = p̂(Bi) andMi = p̂(Ai) for i = 1, 2, 3. Therefore,
deriving:

dM1

dt
= {M1,H

∗}

= {M1, p1}+
M1

c1
{M1,M1}+

M2

c2
{M1,M2}+

M3

c3
{M1,M3} = 0 + 0− 1

c2
M2M3 +

1
c3

M3M2

=
c2 − c3

c2c3
M2M3

(12)

the remaining derivations of the Hamiltonian vector fields
are left to the reader and yield:





dM1

dt
= {M1,H

∗} =
−M2M3

c2
+

M2M3

c3

dM2

dt
= {M2,H

∗} =
M1M3

c1
− M1M3

c3
+ p3

dM3

dt
= {M3,H

∗} =
−M1M2

c1
+

M1M2

c2
− p2

dp1

dt
= {p1, H

∗} =
−M2p3

c2
+

p2M3

c3

dp2

dt
= {p2, H

∗} =
M1p3

c1
− p1M3

c3
+ εM3

dp3

dt
= {p3, H

∗} = −M1p2

c1
+

p1M2

c2
− εM2

(13)

where pi = p̂(Bi). The Casimir functions are constant on
co-adjoint orbits ofG, they are integrals of motion for any
left-invariant HamiltonianH. In addition the intersection of
the surface described by the Casimir functions and the energy
surface described by the Hamiltonian gives a geometric
interpretation of the extremal solutions. A treatment of the
three dimensional case is given in [8]. However, in the
study of 6-dimensional Hamiltonian systems, there is an
additional Casimir function. These are derived explicitly in
[9] using the property that the Cartan-Killing form〈L, ·〉 =
−ε 1

2Trace(L, ·) is invariant, whereL is the projection of
extremal solutions on the Lie algebra, specifically

L =




0 −εp1 −εp2 −εp3

p1 0 −M3 M2

p2 M3 0 −M1

p3 −M2 M1 0


 (14)

then calculating〈L,L〉 and 〈L2, L2〉 gives the Casimir
functionsI2 and I3 respectively. In the Euclidean case the
Cartan-Killing form is non-degenerate, however, it is shown

in [10] that the Casimir functions can be derived using a
combination of the Euclidean inner product onp and the
Cartan-Killing form onk. The Hamiltonian and these Casimir
functions are:

H = p1 +
1
2
(
M2

1

c1
+

M2
2

c2
+

M2
3

c3
) (15)

I2 = p2
1 + p2

2 + p2
3 + ε(M2

1 + M2
2 + M2

3 ) (16)

I3 = p1M1 + p2M2 + p3M3 (17)

H, I2 andI3 are all constants of motion. Thus these functions
are constant along the Hamiltonian flow and geometrically
interpret hypersurfaces. The extremal solutions must exist
on each of these surfaces and thus are defined at their
intersection. For simplicity letc1 = c2 = c3 = 1 in (13),
which is analogous to a particular case of the integrable
Lagrange top in the Euclidean case, and immediately notice
that

dM1

dt
= 0 (18)

and thereforeM1 is a constant of motion denoted ask, the
Hamiltonian vector fields (13) become





dM2

dt
= p3

dM3

dt
= −p2

dp1

dt
= p2M3 −M2p3

dp2

dt
= p3k −M3p1 + εM3

dp3

dt
= p1M2 − kp2 − εM2

(19)

Therefore, the equations of motion in the Hamiltonian can
be written in a reduced form. Proceeding to solve for the
optimal controls:

dp1

dt
= p2M3 −M2p3

∴ (
dp1

dt
)2 = p2

2M
2
3 + p2

3M
2
2 − 2p2p3M2M3

(20)

Multiplying equation (15) by equation (16) write;

I2 − p2
1 − ε(k2) = p2

2 + p2
3 + ε(M2

2 + M2
3 )

2(H − p1)− k2 = M2
2 + M2

3

∴ (I2 − p2
1 − ε(k2))(2(H − p1)− k2)

= p2
2M

2
2 + p2

2M
2
3 + p2

3M
2
2 + p2

3M
2
3 + ε((M2

2 + M2
3 )2)

(21)
Another useful relation comes from the Casimir function
(17), writing this in a reduced form and squaring gives:

I3 − p1k = p2M2 + p3M3

∴ (I3 − p1k)2 = p2
2M

2
2 + p2

3M
2
3 + 2p2M2p3M3

(22)

Therefore, substituting (22) and (21) into (20) yields:

f(p1) = (
dp1

dt
)2 = (I2 − p2

1 − ε(k2))(2(H − p1)− k2)

−(I3 − p1k)2 − ε((2H − k2 − 2p1)2)
(23)



The functionf(p1) is then a cubic function ofp1 and the
qualitative behavior of the system will depend on where the
roots of this cubic lie. Explicit solutions of (23) can be solved
in terms of elliptic functions, see [11] and [2]. Proceeding to
solve forM2 andM3 using the Casimir function (15) where
M1 is a constantk, the reduced Casimir is:

M2
2 + M2

3 = 2(H − p1)− k2 (24)

This suggests using polar coordinates forM2 andM3 (M3 6=
0);

θ = arctan
(

M2

M3

)
(25)

·
θ =

M3

·
M2−M2

·
M3

M2
2 + M2

3

(26)

substituting in the values forM2 andM3 from (19) gives

·
θ =

M3p3 −M2p2

M2
2 + M2

3

=
I3 − kp1

2(H − p1)− k2

(27)

Solving explicitly for the radius in (24) gives:

r =
√

2(H − p1)− k2 (28)

so, the optimal controls are

M1(t) = k

M2(t) = r(t) cos(θ(t))
M3(t) = r(t) sin(θ(t))

(29)

Note that ifp1 is constant in (27) and (28) then the optimal
controls M2 and M3 in (29) degenerate to trigonometric
functions (a geometric interpretation of the extremal solu-
tions at these singularities is given in Section (III)). With the
M1 constant denotedk, the Casimir functions reduce to:

H − 1
2
k2 = p1 +

1
2
(M2

2 + M2
3 ) (30)

I2 − εk2 = p2
1 + p2

2 + p2
3 + ε(M2

2 + M2
3 ) (31)

I3 − k =
p2M2 + p3M3

p1
(32)

The left hand side of the equations (30), (31) and (32) are
constants and thus a reduced form of the Casimir functions.
Each of these equations implicitly describe an invariant
surface. (30) describes an elliptic paraboloid, (31) describes
the sphere forε=0, the 6-dimensional sphere forε=1 and
finally a non-generic 5-dimensional surface forε=-1. The
Casimir function (32) also implicitly defines a non-generic
5-dimensional surface. It is possible to write the two Casimir
functions as a single surface. Rearranging (32) in terms of
p2, squaring and substituting in (31) gives:

1

M2
2

(εM2
2 (k2 + M2

2 + M2
3 ) + I2

3p2
1 + k2p2

1 + M2
2 p2

1

+2kM3p1p3 + M2
2 p2

3 + M2
3 p2

3 − 2I3p1(kp1 + M3p3)) = I2

(33)

This is a 4-dimensional hypersurface and the intersection
of this with the Hamiltonian function (30) gives us the
extremal solutions. It is interesting to note that a classical
picture of an elliptic curve is the smooth intersection of
two quadric hypersurfaces in projective three space [5]. In
the Euclidean case whereε = 0, the Hamiltonian and the
function (33) implicitly define two quadric surfaces and
the extremal solutions can be expressed in terms of elliptic
curves, reinforcing the classical picture. In the non-Euclidean
case the hypersurface (33) is not a quadric, although the
explicit solutions are in terms of elliptic functions.

III. D EGENERATE SOLUTIONS ONse(3)∗, so(4)∗,
so(1, 3)∗ AND THEIR GEOMETRY

Recall thatp1 is a solution of the cubic equation (23).
There is a qualitative difference in the solutions depending
on where the three roots of the cubic lie. At any one of these
roots the solutions for the optimal controls degenerate from
elliptic functions to trigonometric functions asp1 is constant.
A plot of the real roots (singularities) are given in Fig.(1) for
ε = 0. The figure illustrates the real rootsp1 as a function
of k.

-4 -2 2 4
k

-1

1

2

3

4

p1

Fig. 1. The singularities of the systemε=0

For ε=1 andε=-1, the analysis is also restricted to the real
roots of the cubic (23). Continuing to study the system when
p1 is constant and denoting this constant asc, the Casimir
functions (15), (16) and (17) reduce further to:

2(H − c)− k2 = M2
2 + M2

3 (34)

I2 − c2 − ε(k2) = p2
2 + p2

3 + ε(M2
2 + M2

3 ) (35)

I3 − ck = p2M2 + p3M3 (36)

where the left hand side of these equations are all constants
along the Hamiltonian flow. Expressing equation (36)in terms
of p2 and squaring gives;

p2
2 =

(I2
3 − 2I3ck + c2k2)− 2I3p3M3 + 2ckp3M3 + p2

3M
2
3

M2
2

(37)
defining new constantsα = (I2

3 − 2I3ck + c2k2) and β =
I2−c2−ε(k2) for simplicity, then by substitutingp2

2 into (35)



the reduced Casimir function can be written as a non-generic
quadric surface inp3, M2 andM3, giving:

2(H − c)− k2 = M2
2 + M2

3

βM2
2 = α + p2

3M
2
2 + 2ckp3M3 − 2I3p3M3

+p2
3M

2
2 + ε(M4

2 + M2
2 M2

3 )

(38)

Proceeding more geometrically we analyze the solutions in
terms of the intersection of these two invariant surfaces.
It is necessary for illustration purposes to consider only
the critical values ofp1 that are real and give a positive
reduced Hamiltonian (the left hand side of the first equation
in (38) is positive). In these cases the Hamiltonian invariant
surface (cylinder), intersects the reduced Casimir surface
(non-generic) see Fig.(2) forε = 0, Fig.(3) for ε = 1 and
Fig.(4) for ε = −1. In all of these cases the vertical axis
is the p3 variable, and the horizontal axis areM2 and M3

respectively:

Fig. 2. The Euclidean case: intersection of invariant surfaces

Fig. 3. The elliptic case: intersection of invariant surfaces

Fig. 4. The hyperbolic case: intersection of invariant surfaces

These surfaces were drawn using ImplicitPlot3D
code written by Steven Wilkinson for Mathematica see
http://library.wolfram.com/infocenter/MathSource/4189/
and as the name suggests enables one to plot surfaces that
are implicitly defined in 3 dimensions. The surfaces make
contact and in each case the intersection is a closed periodic
orbit. Fig.(5) shows the points of intersection forε = 0,
this remains qualitatively unchanged in each caseε = 1 and
ε = −1.

-1

0

1
M2

-1

0

1

M3

-0.5

0

0.5

p3

-1

0

1
M2

Fig. 5. Closed periodic orbit; intersection of invariant surfaces

At this singularity (dp1
dt = 0) the Hamiltonian vector fields

(19) reduce to;

dM2

dt
= p3

dM3

dt
= −p2

dp2

dt
= kp3 − cM3 + εM3

dp3

dt
= cM2 − kp2 − εM2

dp1

dt
= 0 ⇒ p2 =

M2p3

M3

(39)

in the frame(M2,M3, p3) these Hamiltonian vector fields



can be expressed independently ofp2 as

dM2

dt
= p3

dM3

dt
= −M2p3

M3

dp3

dt
= M2(c− k

p3

M3
− ε)

(40)

Changing the initial conditions to perturb away from the
periodic orbit will mean that the constantp1 = c will have to
change if it is to remain a constant, i.e. the Casimir functions
(34), (35) and (36) constrain the flow. The radius (28) will
then change accordingly and the extremal solution will again
be a closed periodic orbit with a different radius. From (40) it
is deduced that the flow of these closed periodic orbits are in
a clockwise direction. From (40) it can be seen that there is a
fixed point atp3 = M2 = 0, this corresponds to the explicit
solutions whenr = 0 in (28) i.e.2(H−p1)−k2 = 0, in other
words when the reduced Hamiltonian is zero the periodic
orbit degenerates to a fixed point. Perturbing away from
the periodic orbit such thatp1 does not change accordingly
to remain a constant, thenp1 will be an elliptic function.
Consequently the dynamics will then be described by the
Hamiltonian vector fields (19).

IV. CONCLUSION

The optimal controls and the extremal solutions for these
systems are explicitly solved in terms of elliptic functions
using the Hamiltonian formalism of Pontryagin’s maximum
principle. In addition it is shown that at a real singularity of
the system with positive Hamiltonian function the optimal
controls degenerate from elliptic to trigonometric functions.
This is an interesting case as it shows that trigonometric
controls are in some sense optimal. Indeed trigonometric
functions have been used to control systems for the Euclidean
group of motionSE(3), (see [1]). The elliptic solutions are
shown to correspond to the intersection of hypersurfaces
and in particular, for the Euclidean case the intersection
of quadric hypersurfaces in projective 3 space illucidates
the classical picture of elliptic curves. Finally, a geometric
picture of the extremal solutions at a singularity is given and
is shown to be the intersection of the reduced Hamiltonian
function (cylinder) and a non-generic quadric dependent on
ε. At this singularity the extremal solutions are shown to
be periodic and closed. The differential equations describing
these periodic orbits can be interpreted as a constrained
dynamical system embedded in a higher dimension Hamil-
tonian system. Current and future research concerns the
corresponding elastic curves in the base spacesE3, S3 and
H3 when the optimal controls are trigonometric functions.
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