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Abstract—This paper examines optimal solutions of control can be modelled as bilinear systems with state transition
systems with drift defined on the orthonormal frame bundle  matrices that evolve on the Simple Orthogonal grédp(n),
of particular Riemannian manifolds of constant curvature. wheren is dependent on the number of capacitors and/or

The manifolds considered here are the space forms Euclidean . . o - .
space E%, the spheresS® and the hyperboloids H® with the inductors in the circuit. In addition the spherical space form

corresponding frame bundles equal to the Euclidean group of S° can be used to represent spin systems in quantum control
motions SE(3), the rotation group SO(4) and the Lorentz through the isomorphis§8® — SU(2). The Lorentz group
group SO(1,3). The optimal controls of these systems are has applications in physics and special relativity, indeed it is
solved explicitly in terms of elliptic functions. In this paper, a the isometry group of the 4-dimensional Minkowski metric.
geometric interpretation of the extremal solutions is given with - L .

particular emphasis to a singularity in the explicit solutions. This paper eXp“C't_ly SOI,VeS for the Opf['mal ContrOIS and
Using a reduced form of the Casimir functions the geometry the extremal solutions in terms of eIIIptIC functions for
of these solutions are illustrated. the Euclidean, elliptic and hyperbolic case. In addition a

geometric interpretation of these solutions is given using
the invariant surfaces described by the Hamiltonian and

This paper deals with affine control systems with driftCasimir functions. This illuminates the classical picture of
defined on the frame bundles of simply connected manifoldsliptic curves as the intersection of quadric hypersurfaces
of constant sectional curvature, denofed In particular the in projective 3-space [5]. Finally, a geometric picture of the
frame bundles of the space forms Euclidean sgatethe extremal solutions is given at a singularity of the system.
spheresS? and the hyperboloid&I® with the corresponding At this singularity the solution is shown to be periodic and
frame bundles equal to the Euclidean group of motionslosed and the corresponding optimal controls trigonometric
SE(3), the rotation groupSO(4) and the Lorentz group functions.

i 3 3
gggi’)%(ge(z?egz\d/egg Iidesegz(l,3)/%%??3)/.Sgr(ti)énirmal [I. EXPLICIT S.OLUTIONS ONse(3)*, so(4)*AND so(1,3)*
frame bundles of space forms coincide with their isometry The groupG is used to represent the frame bundle of the
group and therefore the focus shifts to control systemiPace forms corresponding to the matrix Lie grosgs(3),
defined on Lie groups. The cotangent bundleG is then SO(4) andSO(1,3) respectively. We identiff"G with G'x g
realized as the product @ with the dual of its Lie algebra Whereg is the Lie algebra ofz and consider only the left
g* and leads to non-canonical coordinates, thus in this papéanslation. The elastic problem concern the solutigfty
the use of the Maximum Principle of optimal control shiftsOf the left-invariant differential system

I. INTRODUCTION

the emphasis to 6-dimensional Hamiltonian systems defined dg 3
on matrix Lie groups. Applications motivating this study E(t) =g(t)(A4p +Z“Z’Ai) Q)
are connected with controlling nonholonomic mechanical i=1

systems and in particular systems whose kinematics can Where A, ..., A5 are given matrices in the Lie algebgaof

defined as affine control systems on Lie groups see, (seeand for our particular case (see [7] for a derivation):
[1]). A simplified kinematic model of an airplane whose

configuration can be described B (3) i.e it will always d (1) Bg _(L 1?
fly forward and the controls may yaw, pitch and roll the —g(t) =g(t) 3 2 2
i : ; ; : : dt 0 us 0 —u
aircraft, has been used to find optimal landing trajectories 0 —u " 0
—u2 1

for airplanes, (see [2]). The configurati®tO(4) has a di-
verse range of applications from such fields as mathematioahere =0 for the Euclidean casi?, =1 for the elliptic
physics (see [3]), to modelling power conversion in electricataseS? and =-1 for the hyperbolic cas&l®. Equation (2)
circuits and in particular, Wood [4] has shown that switchedescribes the deformations on the frame bundleof M
electrical networks such as those used in power conversisnbject to the assumption that for any curw&) € M,



| % | = 1, and z is parameterized by its length from the Therefore, the optimal controls are defined in terms of the
initial point on the curve. In this optimal control problem wemomentum functiors(-).

wish to minimize the expressioiqfoT (u(t)Qu(t))dt, subject 1

to the given boundary conditiog(0) = go, 9(T) = ¢1, @ uf = —p(A;) (6)

is diagonal and positive definite, and the diagonal entries Ci

will be denoted byc;’s. In the mechanics literature the's  \yherei — 1,2,3. Also letp; = p(Ao) andM; = p(4;), then

are analogous to its principle moments of inertia and in thg,pstituting these back into (4) gives the optimal Hamiltonian
analogy to the elastic rod reflect the physical characteristics

of the bar related to the geometric shape of its cross section o — 1 /M M3 M2
[6]. Hereu; play the role of the controls. It is interesting to =Pt 2\ ¢ + o + c3
note thate coincides with the constant sectional curvature _ ) )
viewed as a continuous parameter representing the curvatfiggranged to give

of an arbitrary Riemmanian manifold with constant curvature

(7

4 . . . . 0 — 0 0
e. However, in this papee will be discrete and its value dg 1 0 —My)e My e
will distinguish between the three cases. The maximum ¢~ '— = 3/%3 2/2 (8)
principle of optimal control then identifies the appropriate dt 0 Ms/es 0 —Mi /e
0 _MQ/CQ M1/Cl 0

left-invariant Hamiltoniand on the dual of the Lie algebra
g*, specificallyse(3)*, so(4)" andso(1,3)*. The maximum |n addition to the Hamiltonian defined on these groups it

principle considers the lift of the optimization problem to thes also essential to recognize some geometric facts about
Cotangent manifold™*G. The control Hamiltonian is written these Lie a|gebras_ Any element of these Lie a|gebras can be

as: naturally split into two spaces and¢t, following the Cartan
3 1S ) decompositiong = p @ ¢, which satisfy the classic relations.
H(p.g,u) = plgAo) + Y _uip(gAi) —pog D _ciu; () [e,¢ C ¢, [p.¢] C p andp.p| €
=1 =1 wheret consists of all matrices of the form

wherep € T,;G andpy, € R is a constant of motion.

The two cases wherg, is either 1 or 0, correspond to 0 0 0 0

normal extremals and abnormal extremals respectively. That 00 —az a 9)
is there are two Hamiltonian functions to consider. Indeed, 0 as 0 —a

all these cases admit abnormal extremals. However, because 0 —az o 0

of the regularity of these variational problems each optimaé{ndp consists of the matrices

trajectory is a projection of a regular extremal curve (see [7]),

therefore, we assumg = 1. The Hamiltonian is defined on 0 —eby —eby —ebs

the cotangent manifold™G which can be pulled back to b1 0 0 0 (10)
G x g*. The Hamiltonian function can be pulled back by by 0 0 0

the left or right action of an element e G. Explicitly the bs 0 0 0

pullback mapping by the left translated value can be defined ] . ]
asp(-) = p(g()) hencep(-) = p(g~ (). i.ep € T*G is For notational convenience write the elemelgtas B;. The

pulled back to give a functiop € g*. Specifically,p(-) is ~corresponding adjoint representation foandp whereA; €
defined via the non-degenerate Killing form en(4) and ¢ and B; € p are:
50(1,3). In the case oke(3) the trace form is degenerate

but the functionp(-) is derived using a combination of the 8 8 3 8 8 8 8 (1)
Euclidean inner product and the Killing form (see [7] for A; = 00 0 —1 A = 0 0 0 0
details). The control Hamiltonian ogi* can be written as: 00 1 0 0 -1 0 0
3 3
H(pu) = p(Ao) + D wip(A) — 5 e (@) 000t oo
i=1 i=1 As = , By =
. o . 01 0 O 0 0 0O
The maximum principle states that the optimal contrets 0 0 0 0 0 0 0
will maximize the control Hamiltonian at every point of
T*G. The control Hamiltonian is a quadratic function of the 00 — 0 000 —e
scalaru; and 55713 < 0 implies that there exists exactly one B, = 60 0 0 ,B3 = 000 0
global maximum at each point of the Hamiltonian function. 1000 0000
Differentiating (4) with respect ta; gives: 00 00 100 0 11)
dH Define the Lie bracket to beX,Y] = XY — Y X for any

=p Aq’ — Cilg . . .
du; DA = ciu (5) elementX andY in g. The corresponding Lie bracket table

1=1,2,3 IS:



LI | A | A | Ay | By | By | By in [10] that the Casimir functions can be derived using a

Ay | O | A3 |-A2| O | -Bs | -B> combination of the Euclidean inner product gnand the
Ay |-A3 | 0 | Ay | -Bs | O | By Cartan-Killing form ont. The Hamiltonian and these Casimir
As | A2 | -A1 | O | By | -By 0 functions are:
Bl 0 Bg 'B2 0 8A3 -EA2 2 2 2

1 M M. M.
BQ -B3 0 Bl -€A3 0 EAl H = D1 —+ 5(71 —+ 2 + 73) (15)
Bg Bg -Bl 0 €A2 'EAl 0 ‘1 €2 €3

— 2 2 2 2 2 2
Using the optimal Hamiltonian (7), it is possible to construct L=pi+py+ps+e(My+M;+M3)  (16)
t_he Hamiltonian vector field§ using the Roisson brackgt de- Is = p1 My + po My + ps My a7
fined on the symplectic manifold. The Poisson bracket is as- _ .
sociated with the Lie bracket byMf;, M} = —p([A;, A;)) H, I, andI; are all constants of motion. Thus these functions
wherep; = p(B;) andM; = p(A;) fori — 1.2.3 Therefore. are constant along the Hamiltonian flow and geometrically

deriving: interpret hypersurfaces. The extremal solutions must exist
on each of these surfaces and thus are defined at their
aMy = {My, H*} intersection. For simplicity let; = c; = ¢3 = 1 in (13),
dt which is analogous to a particular case of the integrable
={My,p1} + ?{]\/[h M} + %{MI,MQ}JF tLhagtrange top in the Euclidean case, and immediately notice
1 2 a
M; 1 1 (12) M,
—{My, M3} =0+0— — MMz + —M3M> =0 (18)
C3 Co C3 dt
_ 278, and therefore\/; is a constant of motion denoted Asthe
caCs3 2 Hamiltonian vector fields (13) become
the remaining derivations of the Hamiltonian vector fields dMy
are left to the reader and yield: a P
M —MyMs MM dMs _
ddlz{Ml’H*}: oMy | MaMs =P
t C2 C3 dp1
M. My M. My M. e 5 — .
ddt2 = {Mp, H*} = —— — —— 4 py ar ~ P2Ms = Maps (19)
C1 C3 d
dMs (My, H'} = — M, My n My M, 0 % = psk — Mzp1 +eM3
dt » (&1 C2 2 (13) dp3
%:{m H*}:%JFILM?) 5 = P1Ma —kpa —eMy
ddt MCQ ]\;3 Therefore, the equations of motion in the Hamiltonian can
w2 _ {po, H*} = by DV Ly be written in a reduced form. Proceeding to solve for the
dt b2, 1 cs 3 | :
optimal controls:
d . M M.
%:{P&H}Z—ﬂ‘i‘M—EMQ dp;
2! 2 i p2 M3 — Mops
wherep, = p(B;). The Casimir functions are constant on A1y 99 9 (20)
co-adjoint orbits ofG, they are integrals of motion for any (g )T = paMs + psMy — 2paps MM

left-invariant HamiltonianH . In addition the intersection of . . . o
the surface described by the Casimir functions and the energ/lyumplymg equation (15) by equation (16) write;
surface described by the Hamiltonian gives a geometric I2 —p} —e(k®) = p3 + p3 + (M3 + M3)
irr:terprgtation of tr|1e extremal solutionsz.3 A treatment of trr:e 2H —p1) — k? = M2 + M?
three dimensional case is given in [8]. However, in the

lonal. given in [8] ! (I = 2 — (k) (2(H — p1) — k)
study of 6-dimensional Hamiltonian systems, there is an o o 9o oo o o ) 919
additional Casimir function. These are derived explicitly in paMs + ps M3 + ps My + p3 Mz + (M3 + Mg) %1
[9] using the property that the Cartan-Killing forfd, -) = (21)
—E%Trace(L, -) is invariant, whereL is the projection of
extremal solutions on the Lie algebra, specifically

Another useful relation comes from the Casimir function
(17), writing this in a reduced form and squaring gives:

I3 — pik = pa My + p3 M3

0 —epr —ep2 —eps o oo 9.9 (22)
| m 0 —Ms M, ( o (I3 = p1k)” = pa My + p3 M3 + 2pa Maps M3
p2 Ms 0 =M Therefore, substituting (22) and (21) into (20) yields:
p3 —My M, 0 dp
1

— 2 _ 2 2 2
then calculating(L, L) and (L2, L?) gives the Casimir Flo1) = ( dt )7 = (2 —pi — (k7)) (2(H = p1) = k)
functions I, and I; respectively. In the Euclidean case the (I, — p, k)% — ((2H — k2 — 2p1)?)
Cartan-Killing form is non-degenerate, however, it is shown (23)



The function f(p;) is then a cubic function op; and the This is a 4-dimensional hypersurface and the intersection
gualitative behavior of the system will depend on where thef this with the Hamiltonian function (30) gives us the

roots of this cubic lie. Explicit solutions of (23) can be solvedextremal solutions. It is interesting to note that a classical
in terms of elliptic functions, see [11] and [2]. Proceeding ticture of an elliptic curve is the smooth intersection of
solve for M, and M3 using the Casimir function (15) where two quadric hypersurfaces in projective three space [5]. In

M, is a constantk, the reduced Casimir is:
M2+ M2 =2(H — py) — k? (24)

This suggests using polar coordinates fé¢s and M3 (M3 #

the Euclidean case where= 0, the Hamiltonian and the
function (33) implicitly define two quadric surfaces and
the extremal solutions can be expressed in terms of elliptic
curves, reinforcing the classical picture. In the non-Euclidean

0); case the hypersurface (33) is not a quadric, although the
M, explicit solutions are in terms of elliptic functions.
f = arctan A (25)
3 [1l. DEGENERATE SOLUTIONS ONse(3)*, 50(4)*,
- Mg M2 _M, M3 " 50(1,3)* AND THEIR GEOMETRY
0= M2+ M? (26) Recall thatp, is a solution of the cubic equation (23).
o . There is a qualitative difference in the solutions depending
substituting in the values fa#/, and Mj from (19) gives on where the three roots of the cubic lie. At any one of these
0= M3ps — Maps roots the solutions for the optimal controls degenerate from
o M2+ M2 7 elliptic functions to trigonometric functions asg is constant.
Is — kp; @7) A plot of the real roots (singularities) are given in Fig.(1) for
= 2(H — p1) — k2 ¢ = 0. The figure illustrates the real roots as a function
of k.
Solving explicitly for the radius in (24) gives:
r=20H —p) — k2 (28) pl

: 4
so, the optimal controls are

My(t) = k 3
Ms(t) = r(t) cos(6(t)) (29) /
My(t) = r(t)sin(8(1))

Note that ifp; is constant in (27) and (28) then the optimal ’\
-4 - 2/ !
\_-/1/

controls My and M3 in (29) degenerate to trigonometric
functions (a geometric interpretation of the extremal solu-
tions at these singularities is given in Section (I11)). With the
M; constant denoted, the Casimir functions reduce to:

2 4

H — 1I<;2 =p+ 1(M22 + M??) (30) Fig. 1. The singularities of the systesw0
2 2
Iy — ek? = p? + p3 4 p2 + (M2 + M32) (31) Fore=1 ande=-1, the analysis is also restricted to the real
poMs + p. Ms roots of the cubic (23). Continuing to study the system when
I3 — k= —"——"— (32) p, is constant and denoting this constantcathe Casimir

P functions (15), (16) and (17) reduce further to:
The left hand side of the equations (30), (31) and (32) are

constants and thus a reduced form of the Casimir functions. 2(H —¢) — k* = M3 + Mj (34)
Each of these equations implicitly describe an invariant 5 9 9 9 9 9

surface. (30) describes an elliptic paraboloid, (31) describes Iy —c” —e(k”) =p2 +p3 +e(My + M) (39)
the sphere forz=0, the 6-dimensional sphere ferl and Iy — ck = py My + psMs (36)

finally a non-generic 5-dimensional surface for-1. The

Casimir function (32) also implicitly defines a non-generigyhere the left hand side of these equations are all constants

5-dimensional surface. It is possible to write the two CaSimimong the Hamiltonian flow. Expressing equation (36)|n terms
functions as a single surface. Rearranging (32) in terms ef p, and squaring gives;

p2, Squaring and substituting in (31) gives:

2 (132 — 2]30k + 02k2) — 2[3]93M3 + QCkngg +p§M32
D2

1
o (eM3 (K? + M3 + M) + I3p] + k?p? + M3p M;
M3 (37)
+2kMspyps + M2p2 + M2p? — 2Ispy (kpy + Msps)) = I,  defining new constants = (I3 — 2I3ck + ¢*k*) and 3 =
(33) I,—c?—¢(k?) for simplicity, then by substituting? into (35)



the reduced Casimir function can be written as a non-generic
guadric surface ims3, My and M3, giving:

2(H — ¢) — k* = M2 + M2
BM3 = o+ p2 M3 + 2ckps M3 — 2I3p3 M3 (38)
+p2M3E 4 e(My + MZM3)

Proceeding more geometrically we analyze the solutions in
terms of the intersection of these two invariant surfaces.
It is necessary for illustration purposes to consider only
the critical values ofp; that are real and give a positive

reduced Hamiltonian (the left hand side of the first equation

in (38) is positive). In these cases the Hamiltonian invariant  Fig. 4. The hyperbolic case: intersection of invariant surfaces

surface (cylinder), intersects the reduced Casimir surface
(non-generic) see Fig.(2) far = 0, Fig.(3) fore = 1 and

Fig.(4) fore = —1. In all of these cases the vertical axis These surfaces were drawn using

ImplicitPlot3D

is the p; variable, and the horizontal axis ad, and A/;  code written by Steven Wilkinson for Mathematica see
respectively: http://library.wolfram.com/infocenter/MathSource/4189/

and as the name suggests enables one to plot surfaces that
are implicitly defined in 3 dimensions. The surfaces make

contact and in each case the intersection is a closed periodic
orbit. Fig.(5) shows the points of intersection fer= 0,
| this remains qualitatively unchanged in each casel and

e=—1.

YA W

Fig. 2. The Euclidean case: intersection of invariant surfaces

Fig. 5. Closed periodic orbit; intersection of invariant surfaces

(19) reduce to;

At this singularity 7+

dM,

dt =D3

aMs _ _

a b2

d

% = kps — cMs + M3
d

% = CM2 — k‘pg — EMQ
dp; Msps
- :O:> —_ 22
dt P2 =

= 0) the Hamiltonian vector fields

(39)

Fig. 3. The elliptic case: intersection of invariant surfaces in the frame(Mz’ M3,p3) these Hamiltonian vector fields



can be expressed independentlypgfas [3]

dMy

g b [4]
dMs  Moaps

at M; (40) 5
dps Ps3
P Mo(e — k22 —

dt 2(e M; ) 7]

Changing the initial conditions to perturb away from the
periodic orbit will mean that the constamt = c will have to  [8]
change if it is to remain a constant, i.e. the Casimir functions[9]
(34), (35) and (36) constrain the flow. The radius (28) will
then change accordingly and the extremal solution will again
be a closed periodic orbit with a different radius. From (40) itt
is deduced that the flow of these closed periodic orbits are jim]
a clockwise direction. From (40) it can be seen that there is a
fixed point atps = M, = 0, this corresponds to the explicit
solutions when = 0 in (28) i.e.2(H —p;)—k? = 0, in other
words when the reduced Hamiltonian is zero the periodic
orbit degenerates to a fixed point. Perturbing away from
the periodic orbit such thai; does not change accordingly

to remain a constant, them, will be an elliptic function.
Consequently the dynamics will then be described by the
Hamiltonian vector fields (19).

IV. CONCLUSION

The optimal controls and the extremal solutions for these
systems are explicitly solved in terms of elliptic functions
using the Hamiltonian formalism of Pontryagin’s maximum
principle. In addition it is shown that at a real singularity of
the system with positive Hamiltonian function the optimal
controls degenerate from elliptic to trigonometric functions.
This is an interesting case as it shows that trigonometric
controls are in some sense optimal. Indeed trigonometric
functions have been used to control systems for the Euclidean
group of motionSE(3), (see [1]). The elliptic solutions are
shown to correspond to the intersection of hypersurfaces
and in particular, for the Euclidean case the intersection
of quadric hypersurfaces in projective 3 space illucidates
the classical picture of elliptic curves. Finally, a geometric
picture of the extremal solutions at a singularity is given and
is shown to be the intersection of the reduced Hamiltonian
function (cylinder) and a non-generic quadric dependent on
€. At this singularity the extremal solutions are shown to
be periodic and closed. The differential equations describing
these periodic orbits can be interpreted as a constrained
dynamical system embedded in a higher dimension Hamil-
tonian system. Current and future research concerns the
corresponding elastic curves in the base sp&esS® and
H? when the optimal controls are trigonometric functions.

REFERENCES

[1] N. E. Leonard, “Averaging and motion control of systems on lie
groups,”PhD thesis, University of Maryland,College Park,MD094.

[2] G.W. R. Montgomery and S. Sastry, “Optimal path planning on matrix
lie groups,’Proceedings of IEEE Conference on Decision and Control
1994.

0. Bogoyavlensky, “Integrable euler equations on so(4) and their phys-
ical applications,"Communications in Mathematical Physie®l. 93,

pp. 417-436, 1984.

J. R. Wood, “Power conversions in electrical networkschnical
Report NASA Rep. No. CR-120830, Phd Thesis, Harvard University
1974.

D. HusemollerElliptic Curves Springer-Verlag , New York, 2000.

V. Jurdjevic, Geometric Control Theory, Advanced Studies in Mathe-
matics Vol. 52 Cambridge University Press, 1997.

V.Jurdjevic and F. Monroy-Peretje Systems in Control Theory in
Contemporary Trends in Nonlinear Geometric Control Theoworld
Scientific, 2002.

V. Jurdjevic, “Non-euclidean elastica®merican Journal of Mathe-
matics vol. 117, pp. 93-125, 1995.

——, Optimal Control Problems on Lie Groups, B. Jakubczyk and
W. Respondek, editors, Geometry of Feedback and Optimal Control
Marcel-Dekker, 1992.

0] ——, “Integrable hamiltonian systems on complex lie grougs,”

appear in American Journal of MathematicZ005.
D. Lawden, Elliptic functions and applications Springer-Verlag ,
New York, 1989.



