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Equilibrium job search models allow for labor markets with homogeneous
workers and �rms to yield nondegenerate wage densities. However, the
resulting wage densities do not accord well with empirical regularities. Ac-
cordingly, many extensions to the basic equilibrium search model have been
considered (e.g. heterogeneity in productivity, heterogeneity in the value
of leisure, etc.). It is increasingly common to use nonparametric forms
for these extensions and, hence, researchers can obtain a perfect �t (in a
kernel smoothed sense) between theoretical and empirical wage densities.
This makes it di�cult to carry out model comparison of di�erent model
extensions. In this paper, we �rst develop Bayesian parametric and non-
parametric methods which are comparable to the existing non-Bayesian
literature. We then show how Bayesian methods can be used compare
various nonparametric equilibrium search models in a statistically rigorous
sense.

�I would like to thank Mark Steel for helpful comments.



1 Introduction

Most potential policy initiatives in labor markets (e.g. minimum wage legislation) have ef-

fects on both workers1 and employers. Hence, it is strongly desirable that policy analysis be

carried out in the context of an equilibrium model which takes into account the interaction

between worker and �rm behavior. This consideration has motivated the development of a

large literature on equilibrium job search models (see, among many others, van den Berg

and Ridder, 1998, Ridder and van den Berg, 1997, Bontemps, Robin and van den Berg,

1999, Mortenson, 1990, 1998, Burdett, 1990 and Kiefer and Neumann, 1993). Details of the

equilibrium search model will be provided in the next section, su�ce it to note here that

it assumes a �xed number of homogeneous workers and �rms with full information about

all the parameters in the model. Workers and �rms interact in a market where jobs arrive

and are destroyed at random exogenous rates. Assuming workers maximize the expected

value of their future income stream and �rms maximize expected steady state pro�t ow,

it turns out that a non-degenerate wage o�er distribution exists with density given by:

f(wi) /
1p
p� wi

;

for wi 2 [r; h] where wi is the wage o�er to individual i for i = 1; ::; N , p is the productivity
of workers (i.e. their marginal value product), r their reservation wage and h is the upper

bound on the wage distribution. Further details will be provided in the next section, at

this point the key thing to note is that the wage o�er density is increasing in w. However,

empirical wage o�er densities are invariably roughly bell-shaped, but skewed to the right.

Accordingly, a conict exists. One the one hand, the equilibrium search model is structural

and, hence, well-suited for policy analysis. On the other hand, it does a very poor job of

�tting the data.

1Throughout this paper we use the term "worker" to refer to individuals, regardless of whether they
are employed or unemployed.
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In response to this conict, many of the recent papers in the literature add a new

component to the basic equilibrium search model (see, among others, Bontemps, Robin

and van den Berg, 1999, 2000, Mortenson, 1998, Nielsen and Rosholm, 1999, Koning,

Ridder and van den Berg, 1995). This component might be unobserved heterogeneity in

productivity or in workers' value of leisure, measurement error in wages or an economic

concept like an investment in training function. From a statistical point of view, the wage

o�er density can be written as f(wij�1; h(�2)), where �1 and �2 are parameter vectors and
h(:) is the appropriate new component. This approach can be criticized on the ground that

economic theory rarely is a reliable guide to the choice of functional form for h(:). For

instance, Koning, Ridder and van den Berg (1995) assume h(:) is log-Normal in a model

which allows for heterogeneity in productivity. The choice of log-Normality does not have

any basis in economic theory. One of the chief advantages of equilibrium search models over

earlier partial search models (see, e.g., Lancaster, 1997) was that the former used a wage

o�er distribution which was derived using an assumption of rational �rm behavior, whereas

the latter merely made assumptions of convenience (e.g. the wage density is assumed to

be log-Normal or exponential). Merely adding a new ad hoc component such as h(:) into

the equilibrium search model could be interpreted as a regressive step away from structural

and back towards reduced form modelling. Nevertheless, the use of a parametric form

for h(:) implies a parametric likelihood function and, thus, estimation, testing and model

comparison can be done using either Bayesian or non-Bayesian likelihood-based paradigms.

Recent work (e.g. Bontemps, Robin and van den Berg, 1999, 2000 and Nielsen and

Rosholm, 1999), perhaps in realization that economic theory is rarely a guide to choice

of h(), does not specify a functional form for it. Instead nonparametric kernel smoothing

algorithms are used. In essence, kernel methods are used to �t f(:) (or the earnings density

which is a simple transformation of f(:)) and then the implied form of h(:) required to

provide this perfect �t can be obtained. Since f(:) is usually the key element of the likeli-

hood function, this method can be loosely interpreted as saying "Let us �t the likelihood
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function perfectly2, and then see what it implies h(:) must look like." Such an approach

has the advantage of not making an ad hoc functional form assumption for h(:), but also

has drawbacks. For instance, it attributes all of the departures from the basic equilibrium

search model to a particular source. One paper might say all such departures are due to

heterogeneity in productivity, another might attribute them to measurement error, another

to e�ects relating to investment in training, etc. It is di�cult to choose between di�er-

ent models since all �t the likelihood function perfectly. In the previous paragraph, the

parametric approach was criticized since it involved an ad hoc functional form assumption.

The nonparametric approach does not su�er from such a criticism, but does still depend

on strong assumptions that are di�cult to test (e.g. that all departures from the basic

equilibrium search model are due to unobserved heterogeneity in productivity).

These considerations motivate the present paper. In previous work (Koop, 2001), it was

argued that Bayesian methods provided a useful tool for analyzing the equilibrium search

model and computational methods for doing so were developed. One contribution of the

present paper is similar to this. That is, methods of Bayesian inference for the extensions of

the equilibrium search model described in the previous paragraphs are developed. A partic-

ular focus is the development of a Bayesian nonparametric approach which is comparable

to the non-Bayesian nonparametric approach of Bontemps, Robin and van den Berg (2000).

There is a sizeable statistical literature on Bayesian nonparametric methods, but relatively

little of this has made it over to the �eld of econometrics (exceptions include Campolieti,

1997 and Ruggiero, 1994). In the present paper, Bayesian nonparametric methods are

developed for various extensions of the basic equilibrium search model.

A second contribution of the paper derives from the fact that all of the models in the

paper, including the nonparametric ones, involve a well-de�ned probability density for the

data. This implies that standard statistical tools for model comparison3 can be calculated.

2Here, and throughout the paper, by "perfect" �t we mean only in a kernel smoothed sense.
3The posterior model probability (i.e. the probability that a given model generated the data) is the
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Using the Bayesian approach, two nonparametric models (i.e. with h(:)s arising from

di�erent sources of heterogeneity) can both �t the data perfectly yet be compared using

formal statistical methods. The paper describes how to do this and how to interpret

the model comparison measures which are calculated. Loosely speaking, the Bayesian

approach forces the researcher to specify what a reasonable form for h(:) might be, but

they do not impose this form. If the data force large departures from this reasonable form,

Bayesian tools of model comparison will indicate less support for the model. We argue

that this formalizes what researchers do informally. For instance, suppose the researcher

believes that heterogeneity in productivity may exist, but is relatively small and unimodal.

However, the nonparametric distribution exhibits large dispersion and is multi-modal. In

this case, the researcher might reject the model with heterogeneity in productivity. The

Bayesian methods outlined below are a statistically coherent formalization of the sensible

but informal actions of the researcher.4

The paper is organized as follows: The following section outlines the basic equilib-

rium search model. The third section derives equilibrium search models with heterogeneity

introduced in various parametric ways. The fourth section is similar to the third, but

heterogeneity is introduced in various nonparametric ways. The �fth section contains an

empirical application using the data set of Bowlus, Kiefer and Neumann (1995). Compu-

tational algorithms are provided in the Appendix.

main tool of Bayesian model comparison. The posterior odds ratio is the ratio of two posterior model
probabilities. The posterior odds ratio is also the ratio of the marginal likelihoods for the two models (i.e.
the Bayes factor) times the prior odds ratio.

4It is worth stressing that one reaction to the literature discussed in this paper might be that the
researcher should just go out and get better data (e.g. matching employer/employee data). This is a
sensible reaction. The point of the present paper is to argue that, insofar as such data is not available
and one is interested in working with the sorts of (widely used) models described here, it is good to use a
formal statistical approach such as the one adopted here.
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2 The Basic Equilibrium Search Model

The basic equilibrium search model assumes a �xed, homogeneous population of workers

and �rms. The ratio of the measure (number) of workers to �rms is m. Workers are

initially unemployed and job o�ers arrive as events in a Poisson process at a rate of �0.

Once workers are employed they can continue searching and new job o�ers arrive at a rate

of �1. Firms lay o� workers at a rate of �2. The distribution of wage o�ers is given by

F (w), the corresponding density is denoted by f(w). The value of leisure to individuals is

equal to b. When working, their productivity (i.e. their marginal value product) is p. We

assume workers and �rms know the values of all parameters and distributions.

To derive the likelihood function worker and �rm behavior must be speci�ed. Here we

provide only the �nal results and a few details of the derivation. Complete details, along

with extensive intuition, are given in many of the papers listed at the beginning of the

Introduction. Ridder and van den Berg (1997) includes a great deal of survey material

which is particularly useful.

If workers maximize the expected value of future income, then unemployed workers will

set a reservation wage, r, and accept the �rst wage o�er above it. The optimal reservation

wage is given by:

r = �b+ (1� �)p; (2.1)

where

� =

�
1 + �1

�2

�2
�
1 + �1

�2

�2
+
�
�0
�2
� �1

�2

�
�1
�2

:

Employed workers accept any wage o�er above their current wage.

Firm behavior is described by F (w), which is determined endogenously assuming that

the job market is in a steady state equilibrium. Given that �rms know the acceptance
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strategies of workers, the supply of labor to a �rm who o�ers wage w every time a vacancy

arises can be derived and denoted by l(w) (see, e.g., Ridder and van den Berg, 1997,

equation (8)). Assuming a linear production function, the steady state pro�t ow of a �rm

o�ering wage w is given by:

�(w) = (p� w)l(w):

No �rm will ever o�er a wage below r, since no worker would accept it, hence we know

the support of f(w) begins at r. Furthermore, in equilibrium all wage o�ers must yield

the same pro�t ow (i.e. �rms must have no incentive to change their o�ers). Using these

facts, it can be shown that:

f(w) =
�2 + �1
2�1

1p
p� rpp� w; (2.2)

for w 2 [r; h]. The highest wage o�ered is given by:

h = �2r + (1� �2)p; (2.3)

where

� =
�2

�2 + �1
:

The contributions of this paper all relate to the wage o�er distribution, as opposed to

the duration of unemployment or employment spells. Accordingly, we simplify the analysis

by assuming we only observe wi for i = 1; ::; N where wi is the wage o�er accepted by

initially unemployed worker i. Identi�cation issues relating to the structural parameters,

�0; �1; �2; b; p are often of great interest in models of search (see Koop and Poirier, 2002

and Koop, 2001). However, to focus the paper, we ignore these issues and work only with

the identi�ed parameters which directly a�ect the shape of the wage density, p and r: We
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also de�ne � = �2
�1
;  = ln(r) and � = ln(p).5 Accordingly, the likelihood function for

W = (w1; ::; wN)
0 is given by:

L(W ; p; r) =
NY
i=1

f(wi); (2.4)

where

f(wi) =
1 + �

2�

1q
(p� r)pp� wi

I(B); (2.5)

and I(B) is an indicator function for the bounds of the wage distribution. That is, B is

de�ned by r < wi < h and h = �
2r+(1��2)p with � = 1

1+�
. Note that all the parameters

enter B:

Bayesian inference can be carried out by specifying a prior and using a Markov Chain

Monte Carlo (MCMC) algorithm for posterior simulation. Details are given in the Appen-

dix.

3 Parametric Extensions of the Equilibrium Search

Model

3.1 Heterogeneity in Productivity

The basic equilibrium search model assumes homogeneity of workers and �rms. Hetero-

geneity can be introduced in many ways. Perhaps the most common is to allow for hetero-

geneity in productivity. Here, following much of the literature (e.g. Koning, Ridder and

van den Berg, 1995 or Bontemps, Robin and van den Berg, 1999), we assume heterogeneity

5Formally, � is identi�ed. However, without data on durations, identi�cation only occurs through the
bounds of the wage density. In practice, this means identi�cation is weak and, accordingly, we simply set
� = 2 which is roughly what is typically observed. An earlier version of this paper treated � as an unknown
parameter, and all results on model comparison were qualitatively the same to those given in the present
version.
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in productivity arises since the labor market is segmented into many smaller homogeneous

markets. Each of these homogeneous markets has a di�erent productivity.6 Following

Koning, Ridder and van den Berg (1995), it is assumed that productivity is log-Normally

distributed. That is, the log-productivities of the workers, �i for i = 1; ::; N , are i.i.d. draws

from the Normal distribution:

p(�i) = fN(��; �
2
�); (3.1)

where ��; �
2
� are unknown parameters to be estimated and fN(c; C) denotes the Normal

density with mean c and variance C. This parametric distribution for productivity can, as

in Koning, Ridder and van den Berg (1995), be treated as part of the likelihood function.

Alternatively (and equivalently), it can be interpreted as a hierarchical prior for �i. We

�nd it more natural to use the latter interpretation and, hence, refer to (3.1) as a prior.

The likelihood function is as in the basic model, except for adding a subscript. That is,

(2.5) becomes

f(wi) =
1 + �

2�

1q
(pi � r)

p
pi � wi

I(B); (3.2)

where pi = exp(�i) and B is de�ned by r < wi < hi and hi = �
2r + (1� �2)pi. Note that

the assumption of a reservation wage common to all workers, r, is retained. This can be

justi�ed if unemployed workers do not know, a priori, which market they will be working

in and, hence, all use �� to select their reservations wages.

Computational methods for Bayesian inference of this model are given in the Appendix.

Heuristically, conditional on knowing �i for i = 1; ::; N , the posterior for the remaining

6In the jargon of the literature, we are assuming "between market" rather than "within market" het-
erogeneity. The latter is much more di�cult to deal with theoretically. The interested reader is referred to
Bontemps, Robin and van den Berg (1999) or Koning, Ridder and van den Berg (1995) for more discussion
of this issue.

8



parameters is essentially the same as for the basic search model. Furthermore, the posterior

for �i is relatively easy to work with (see Appendix). Hence, an MCMC algorithm with a

data augmentation step can be used to e�ciently carry out Bayesian inference. In contrast,

classical analysis (see, e.g., Koning, Ridder and van den Berg, 1995) involves integrating

over the productivity distribution at each iteration, which greatly adds to the computational

burden.

3.2 Measurement Error in Wages

The wage data used in empirical analyses of job search models is invariably taken from sur-

veys. The measurement error which undoubtedly arises from individuals misrepresenting

their wages could explain why the basic equilibrium search model �ts empirical wage distri-

butions so poorly, although intuitively it seems unlikely to do so. Remember, the basic job

search model implies an increasing wage density when empirical wage densities are roughly

bell-shaped. For measurement error to explain this divergence it must be of a form that

is somewhat unusual. That is, measurement error must work in such a way to convert an

observed bell-shaped wage density into one where the true wages imply an increasing wage

density. Nevertheless, measurement error is often mentioned as being important in labor

market data sets. For this reason, and in order to illustrate our econometric methodology,

we present an equilibrium search model which includes measurement error.

Let w�i be the true, unobserved, wage of individual i and assume:

w�i = wi + "i; (3.3)

where "i is measurement error, assumed to be independent of wi; and i.i.d. with density

p("i) = fN(�"; �
2
"): (3.4)

Note that �" is allowed to be non-zero, so a systematic bias in reporting of wages is allowed
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for.

Assuming the basic equilibrium search model holds for the true wages, a likelihood

function can be derived by replacing wi by w
�
i in (2.5) and using (3.3) to write:

f(wi) =
1 + �

2�

1q
(p� r)pp� wi � "i

I(B); (3.5)

where B is de�ned by r < wi + "i < h. Analogous to the model with heterogeneity in

productivity, we can treat (3.4) either as a part of the likelihood functional or as part of a

hierarchical prior. If we do the latter, "i for i = 1; ::; N , can be interpreted as parameters

with prior given by (3.4). Hence, (3.5) and (2.4) give the likelihood function for the observed

data, wi, for i = 1; ::; N:

Computational methods for Bayesian inference of this model are given in the Appendix.

The informal motivation of these are similar to the model with heterogeneity in productivity

and an MCMC algorithm with data augmentation can be derived.

3.3 Other Models

In order to focus on the econometric methodology, we do not consider any further extensions

to the basic equilibrium search model. However, it is worthwhile noting in passing that the

issues discussed in this paper hold for a wide range of models which introduce observation-

speci�c heterogeneity in some way (e.g. a model where individuals are heterogeneous

with respect to their value of leisure and, hence, their reservation wage). Furthermore,

the Bayesian computational tools developed here will, with some modi�cation, be suitable

with many sorts of extensions to the basic job search model. It is also possible to work

with models using several extensions of the basic model at one (e.g. a model with both

heterogeneity in productivity and measurement error) by extending the tools of the present

paper in a simple, obvious way.
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4 Nonparametric Extensions of the Equilibrium Search

Model

4.1 Heterogeneity in Productivity

Although rarely used in the econometrics literature (exceptions include Ruggiero, 1996

and Campolieti, 1997), various methods which can be called "nonparametric" exist in the

Bayesian statistics literature. The most common of these approaches uses mixtures of

Dirichlet processes to model a distribution with unknown form (see among many others,

Antoniak, 1974, Ferguson, 1973, West, Muller and Escobar, 1994 and Escobar and West,

1995). In this section, we derive and motivate this approach for the case of the equilibrium

search model with unobserved heterogeneity in productivity. Computational methods for

Bayesian inference are given in the Appendix. For notational convenience, we will suppress

the dependence of the wage distribution below on all parameters other than �.

The equilibrium search model with unobserved heterogeneity in productivity implies a

wage distribution for a �rm with log-productivity �i, which we denote by F (wij�i), where

F (wij�i) =
1 + �

�

 
1�

s
pi � wi
pi � r

!
I(B); (4.1)

where pi = exp(�i) (i.e. this is the integral of the wage density given in equation 3.2). In the

preceding section, we assumed �i came from a known distribution (i.e. its density was given

by p(�i) = fN(��; �
2
�)). In the present section, we assume �i comes from a distribution,

G(�i), with unknown form and use Bayesian nonparametric methods. From a Bayesian

viewpoint, G(:) is best interpreted as a prior. However, it can equally be interpreted as

part of the likelihood and the non-Bayesian may prefer to interpret it that way.

Formally, we assume G(:) is a Dirichlet process. A precise de�nition of the Dirichlet

process is given in any of the citations mentioned at the beginning of this section. Here

we give an intuitive motivation of how Dirichlet processes can be used to carry out non-
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parametric Bayesian inference. In standard Bayesian inference, one begins with a prior

distribution for the unknown parameters in the model and then updates using data infor-

mation to obtain a posterior. In nonparametric Bayesian inference, one begins with a prior

for the unknown distribution, G(:), and then updates with data information to obtain a

posterior. Let G0 be this base prior distribution which is the prior expectation for G(:):
7

Here, we let G0 be Normal with mean �� and variance �
2
�. In other words, our prior for

the nonparametric model is that it is the same as the parametric model of Section 3.1. The

next element in the Bayesian nonparametric analysis involves the researcher specifying the

prior parameter, �, which is a scalar precision parameter which represents the weight of

our belief in the prior G0: The exact role of � will be clari�ed below. Formally, we have,

for i = 1; ::; N :

wij�i � F (wij�i);

�i � G(:)

Gj� � D(�G0);

where "�" denotes "is distributed as", and the last equation is notation for "G is a random
distribution generated by a Dirichlet process with base measure �G0".

Antoniak, 1974 (or the other citations in this section) give more details about precisely

what the previous sentence means. However, its implications are best understood by con-

sidering what the Dirichlet process prior implies for certain conditional prior distributions.

It can be shown that:

�ij�(i) � �aN�1G0 + aN�1
NX

j=1;j 6=i
�(�j); (4.2)

7See Escobar and West (1995) for a discussion (and further citations) that argue that this "prior" plays
a role that is similar to the kernel in nonparametric kernel smoothing algorithms.
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where �(i) = (�1; ::; �i�1; �i+1; ::; �N)
0; �(�j) = 1 if �i = �j (=0 otherwise) and aN�1 =

1
�+N�1 . In other words, a priori, �i is either drawn from G0 (in this paper, the Normal

distribution) or randomly chosen from the other realized values, �(i). Equation (4.2) also

makes clear the role of �. As � approaches zero, the �rst term on the right hand side

of (4.2) vanishes and the conditional prior becomes purely nonparametric. That is, �ij�(i)

approaches a discrete distribution with points of support given by the other realized values.

Equivalently, (4.2) becomes a histogram of the other realized values, �(i): In contrast, as �

approaches in�nity the prior becomes more and more parametric and, in the limit, �ij�(i) �
G0(�i). In the present case, we approach the model of Section 3.1 with productivity being

log-Normally distributed across individuals.

The conditional posteriors analogous to (4.2) provide additional intuition. It can be

shown that these are:

�ij�(i);W � qi0Gi0 +
NX

j=1;j 6=i
qij�(�j); (4.3)

where

gi0 = f(wij�i)g0(�i); (4.4)

qi0 / �
Z
f(wij�i)g0(�i)d�i; (4.5)

qij / f(wij�j); (4.6)PN
l=0 qil = 1 and gi0(:); g0(:) and f(:) are densities corresponding to the distributions

Gi0(:); G0(:) and F (:), respectively.

Note �rst that (4.3), like (4.2) is a mixture of a parametric and nonparametric part.

The parametric part is a posterior obtained by updating the base prior via the likelihood
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function for one observation, wi (i.e. it is the posterior we would have obtained using the

parametric model of Section 3.1 with one data point). The nonparametric part involves

merely the other realizations, �(i). Secondly, the weight placed on the parametric part is

given by (4.5). Note that this is proportional to the marginal density of the realized data

point wi (i.e. the marginal likelihood which would have obtained in Section 3 if we only

had one data point). Loosely speaking, this measures how likely the observed data point

could have come from the parametric model. If qi0 is high, then more weight is placed on

the parametric model. Secondly, the prior parameter, �, also enters (4.5). As discussed

above, as � goes to zero less and less weight is placed on the parametric part of the model.

As � goes to in�nity, the model goes to the purely parametric model of Section 3. Thirdly,

the weight placed on any of the other realizations in �(i) is given by (4.6). This is the wage

density assuming a log-productivity of �j evaluated at the i
th observation. Hence, this is a

measure of how plausible it is that wi is generated from the wage density calculated using

�j. Classical nonparametric kernel algorithms can be interpreted as �tting a density at a

point using weighted averages of nearby data points. Note that this is exactly what the

Bayesian method is doing. The weights in the local averaging are given by qij which can

be interpreted as a measure of how "close" or "plausible" �j is for each j 6= i. Fourthly, for
�xed �, as N goes to in�nity the parametric part of (4.3) will receive less and less weight.

Hence, asymptotically the approach becomes increasingly nonparametric. Fifthly, (4.3) can

be interpreted as a smoothed histogram where the smoothing is provided by Gi0.

Equations (4.3)-(4.6) can be used as part of an MCMC algorithm for carrying out

nonparametric Bayesian inference. Hence, the previous material is all one needs to know

in order to understand and implement Bayesian nonparametric methods. However, in

practice, we use a more e�cient algorithm outlined in West, Muller and Escobar (1994)

(see Appendix for more details).
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4.2 Measurement Error

The derivation of a model with measurement error having a distribution of unknown form

proceeds along similar lines to the previous subsection. In particular, the equilibrium search

model with measurement error implies a wage distribution for a �rm given by

F (wij"i) =
1 + �

�

 
1�

s
p� wi � "i
p� r

!
I(B): (4.7)

We assume "i comes from a distribution, G("i), with unknown form and model G(:) using

a Dirichlet process. Hence, we have

wij"i � F (wij"i);

"i � G(:)

Gj� � D(�G0);

where G0 is given by (3.4). With these choices (and with �s replaced by "s), the condi-

tional priors and posteriors are as in equations (4.2) through (4.6) and the same intuitive

motivation applies. Further details about Bayesian inference for this model are given in

the Appendix.

4.3 Interpretation of Bayesian Nonparametric Methods

The Bayesian nonparametric approach allows us to �t the wage distribution almost perfectly

in the same way as the nonparametric kernel approaches which are increasingly popular

in the empirical job search literature (see, e.g., Bontemps, Robin and van den Berg, 1999,

2000 and Nielsen and Rosholm, 1999). However, because the Bayesian approach is based

on a well-de�ned probabilistic model, all the usual tools of Bayesian model comparison
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and testing can be used. In particular, we can calculate the marginal likelihood for the

models described in this section and use them to calculate Bayes factors comparing a

nonparametric model to a parametric alternative. As is standard in Bayesian analyses,

the marginal likelihood will reect the �t of the model, but will also include a reward for

parsimony. Of course, the nonparametric model will �t the data better than corresponding

parametric alternative (e.g. the nonparametric model with heterogeneity in productivity

will �t better than the parametric model with hetergeneity in productitivy). However,

the reward for parsimony means that the more complicated nonparametric model may not

have the higher marginal likelihood. In essence, Bayesian methods provide us with a formal

measure, rooted in probability theory, of whether the added exibility of the nonparametric

model is of su�cient worth.

Furthermore, Bayesian methods allow for the comparison of two di�erent nonparametric

models. In other words, they allow for a valid statistical comparison of two models, both

of which might �t the data almost perfectly. In the context of the empirical job search

literature, where there are many di�erent ways of improving data �t (e.g. heterogeneity in

productivity or reservation wage, measurement error, etc.), the ability of Bayesian meth-

ods to allow for formal model comparison is an enormous advantage. Hence, it is useful

to explain what a Bayes factor comparing two nonparametric models will be capturing.

Traditionally, most authors have focussed on the fact that Bayes factors contain a reward

for parsimony (i.e. all else being equal, the Bayes factor supports the more parsimonious

model) and a reward for �t (i.e. all else being equal, the Bayes factor supports the model

which �ts best). However, Bayes factors also reward the model which evinces a higher

degree of compatibility between prior and likelihood function.8 If we are comparing two

nonparametric models, the �rst two of these rewards will tend to be quite similar and,

hence, the Bayes factor will likely be driven by the third. Thus, the choice between two

8See, for instance, Judge, Gri�ths, Hill, Lutkepohl and Lee, 1985, pp. 128-131 for a discussion of these
issues in the context of the Normal linear regression model.
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nonparametric models will come down to which one has least conict between prior and

data information. We would argue that this is a very sensible basis for model comparison.

Remember that a key component of the prior is a distributional assumption about the form

of heterogeneity. With heterogeneity in productivity, the base prior, G0, says productivity

is log-Normally distributed. In the other model, the base prior says measurement error is

Normally distributed.

Furthermore, the values selected for prior hyperparameters can be chosen to make

statements like "heterogeneity in productivity is likely to be fairly small", or "measurement

error will likely have mean zero", etc. A Bayes factor comparing the nonparametric model

with heterogeneity in productivity to the one with measurement error will support the

model where the data evidence is most consistent with these prior assumptions. So, for

instance, if we were to �nd the distribution of productivity to be very di�erent from log-

Normal, while measurement error was almost Normal, then the model with measurement

error would be supported. We argue that this is a very sensible basis (perhaps the only

basis) for comparison of models which �t perfectly. Furthermore, it formalizes a sensible

informal practice. If one were to estimate a nonparametric model and �nd the results

looked odd, this would be informal evidence against the model. The Bayesian approach

puts this reasonable practice on a �rm statistical footing.

5 Empirical Results

The data used in this paper are taken from Bowlus, Kiefer and Neumann (1995) who

provide details about the data (see also Kiefer and Neumann, 1993).9 Briey, the data

consists of N=697 weekly wages for white high school graduates taken from the NLSY and

reported in constant 1982 US dollars. All wages are for the �rst job taken after graduation

9The data were obtained from the Journal of Applied Econometrics data archive at
http://qed.econ.queensu.ca:80/jae/.
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which lasts for more than 2 weeks and involves more than 20 hours per week. Details

of the relatively noninformative priors used along with MCMC algorithms for posterior

computation are given in the Appendix. The mean, median, standard deviation, minimum

and maximum of the wages are 185.38, 175.00, 71.69, 73.92 and 364.72, respectively.

Table 1 contains point estimates and standard deviations of all parameters in each of

the �ve models (i.e. the basic model plus two models with heterogeneity in productivity

and two with measurement error). Table 2 contains the logs of the Bayes factors comparing

each pair of models

For the models with heterogeneity in productivity, a very large amount of heterogeneity

is present. For instance, the point estimates for the parametric model imply a 95% interval

for log-productivity of [5.127,6.161]. If we take the exponential of the upper and lower

bounds to obtain a rough idea of what this interval implies for productivity we obtain

[$168.51,$473.90]. In other words, in order extend the basic equilibrium search model to

obtain a better �t for the wage density, we have to allow for productivity of unskilled

workers in di�erent markets to vary from around $150 to $500 per week.

For the nonparametric model with heterogeneity in productivity, � is very large relative

to N. This indicates that the parametric part of the model is doing quite well at �tting the

wage density and the nonparametric part of the model does not add much (see equations

4.2 and 4.5).
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Table 1: Posterior Means of Parameters
(Posterior standard deviations in parentheses)

Basic Hetero-Param. Hetero-Non. Error-Param. Error-Non.

r
70.921
(2.878)

72.806
(1.115)

72.875
(1.042)

71.993
(1.994)

78.971
(11.59)


4.261
(0.042)

4.288
(0.016)

4.289
(0.015)

4.276
(0.029)

4.359
(0.142)

p
401.81
(0.487)

| |
333.98
(18.66)

403.30
(11.82)

�
5.996
(0.001)

| |
5.809
(0.054)

5.998
(0.032)

h
365.11
(0.331)

| |
304.87
(16.54)

331.19
(18.77)

�� |
5.644
(0.019)

5.643
(0.018)

| |

�� |
0.264
(0.017)

0.265
(0.017)

| |

�" | | |
9.781
(6.834)

16.61
(6.517)

�" | | |
37.213
(5.073)

31.195
(4.116)

� | |
5,669.8
(1245.8)

|
28.145
(42.969)

Notes to Table 1: The headings in columns 2-6 refer to the basic equilibrium search model (sec-

tion 2), the parametric model with heterogeneity in productivity (section 3.1), the nonparametric

model with heterogeneity in productivity (section 4.1), the parametric model with measurement

error in wages (section 3.2) and the nonparametric model with measurement error in wages (sec-

tion 4.2), respectively.

The model with Normal measurement error �nds �" to be very large. Interestingly, the

estimated upper bound on the wage distribution is less than the highest observed wage.

The reason for this anomoly is that the "is for the higher wages in the sample are very

negative. Remember that equation (3.4) implies that measurement errors are distributed
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Normally, independent of each other and the data. If we calculate the posterior means of

the "is they strongly seem to violate the latter assumption. In fact, the correlation between

the observed wages and the errors is -.88! That is, to �t the wage density (see equation

3.5) the model wants to use "i to adjust low wages upward and high wages downward.

Hence, �t considerations imply measurement error should be highly correlated with wages.

This is at odds with our assumption that measurement error is independent of the wages.

The tension between these two imperatives yields a model which �ts a bit better than

the basic model, but the conict between prior and data information implies that Bayes

factors give little support for the model with measurement error (see Table 2). In other

words, for measurement error to explain the poor �t of the basic model, it must be the

case that high wage individuals are consistently massively over-reporting their wages while

low wage individuals are under-reporting. Since this does not seem reasonable (where

"reasonableness" is measured by the prior) the Bayes factors massively reject the model.

The nonparametric model with measurement error in wages indicates that large depar-

tures from the base prior are required in order to �t the data (Remember that the base

prior, G0, has measurement error being i.i.d. Normal). One indication of this is that the

posterior for � indicates that it is quite small (relative to N). Hence, more weight is being

placed on the nonparametric part of the model (see equation 4.5).

These �ndings are reinforced in Figures 1 and 2, which plot the empirical wage density10

along with the wage densities for each of our models evaluated at the posterior means of

the parameters. To be precise, for the parametric model with measurement error the wage

density is given in (3.5). We plug posterior means for r and p into this formula. For each

of a grid of possible values for w, we take the posterior means of �"; �
2
" and repeatedly

simulate "s and evaluate (3.5) at each simulated draw and average the result. This allows

us to plot the wage density with " integrated out. A similar strategy is used for the other

parametric model. For the nonparametric models we use (4.2), evaluated at the posterior

10The empirical wage density is a simple histogram using 20 bins of equal size.
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mean for �, to integrate out " or �.

These �gures con�rm that the basic equilibrium search model implies an increasing wage

density and, thus, o�ers a very poor �t for the empirical wage density. In contrast, both of

the models with heterogeneity in productivity appear to o�er a very good �t (in a smoothed

sense). That is, the �tted wage densities for these models look like a nonparametrically

kernel smoothed version of the empirical wage density. However, the nonparametric model

o�ers very little improvement in �t over the parametric one.

Adding Normal measurement error to the equilibrium search model improves �t some-

what, but the �t is not nearly as good as that provided by the models with heterogeneity

in productivity. Allowing for measurement error in a nonparametric fashion seems to o�er

only slight improvements in �t. The reason for the apparent poor performance of the non-

parametric measurement error model is partly due to the way we have constructed Figure

2. Note that the observed wages are not used (i.e. we are integrating out " at each grid

point for the wages). But, in order to �t better, the wages and the errors have to be corre-

lated. The Dirichlet process implicitly does this through equation (4.6) of the posterior (i.e.

it groups clusters of workers with similar wages as having the same measurement error).

However, since we do not use the data in our �gures, we do not use (4.6). Intuitively,

Figures 1 and 2 are not well-designed to show the posterior �t of the nonparametric models

amd the apparent lack of a perfect �t (in a smoothed sense) by the nonparametric model

in Figure 2 is to be expected.

Nevertheless, it is the case that the �t of the nonparametric model with measurement

error is not as good as a kernel smoothed nonparametric estimate would provide. To see

why the relatively poor �t of this nonparametric model occured, we investigated what

sort of measurement errors would be required for the wage density from the model with

measurement error to match perfectly with the empirical wage density. To be precise, we

carried out the following experiment. Firstly, we used the raw wage data and constructed a

kernel smoothed estimate of the wage density. Secondly, we took equation (3.5) evaluated
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at the posterior means for p and r, and found the values of the "is which would cause (3.5)

to match exactly with the kernel smoothed density from the �rst step.

The resulting values of the "is were truly bizarre. For instance, the standard deviation of

the "is required to �t the wage density perfectly was 519,205. If the data is ordered so that

individual 1 has the lowest wage and individual N the highest, then the correlation between

"i and "i+1 is 0.99996. It seems that even Dirichlet mixtures of Normals have trouble �tting

a distribution with such properties when any sort of prior information is allowed for. By

letting the priors for �; �" and �" become almost completely noninformative, we could

obtain a better �t for the nonparametric model. However, such noninonformative prior

choices would tend to yield Bayes factors which always favored the parametric model. In

short, regardless of whether we make reasonable prior choices based on what we expect

measurement error to look like (as we have done in this paper), or use a noninformative

prior, we will always come to the conclusion that measurement error is not a good way of

extending the basic equilibrium search models.

The previous discussion can be formalised by examining Table 2. As frequently happens

with Bayes factors, results are very strong.11 That is, there is a clear ranking of models in

terms of the posterior support they receive: 1) the parametric model with heterogeneity in

productivity, 2) the nonparametric model with heterogeneity in productivity, 3) the basic

model, 4) the nonparametric model with measurement error, and 5) the parametric model

with measurement error. The former two models �t the data very well and the assumption

of log-Normality for the productivity distribution seems to match the data quite well (i.e.

the prior and likelihood are in accordance). Accordingly these two models obtain strong

support over the basic equilibrium search model which implies a counterfactual increasing

wage density.

11Very loosely speaking, log Bayes factors often behave like the di�erence of log-likelihoods with ad-
ditional terms reecting the priors. The log-likelihoods of the models used in this paper are extremely
di�erent from one another, and the priors give a strong reward for parsimony. These considerations help
drive the strong �ndings of Table 2.
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The models with measurement error do very poorly relatively to the basic model, even

though they �t better. The reason for this was outlined above. Briey, in order to improve

�t, the model wants values of the errors which are very much at odds with the assumption

that errors should be independent of the wages. Hence, if one believes that measurement

error should be i.i.d. Normal (as the hierarchical prior for the parametric model implies)

or departures from i.i.d. Normality are not too large (as the prior for the nonparametric

model implies), then one should strongly reject measurement error as an explanation for the

failure of the equilibrium search model. The nonparametric model with measurement error

beats the comparable parametric model due to its improved �t and, more importantly, the

fact that its prior is more exible. Hence, the conict between prior and data information

is less for the nonparametric than the parametric model.

Table 2: Log Bayes Factors in Favor
of Model Listed in First Column

Basic Hetero-Param. Hetero-Non. Error-Param. Error-Non.
Basic 0.0
Hetero-Param. 298 0.0
Hetero-Non. 228 -70 0.00
Error-Param. -3361 -3659 -3589 0.00
Error-Non. -146 -444 -374 3215 0.00

6 Conclusions

In this paper, we have developed Bayesian methods for parametric and nonparametric in-

ference in various equilibrium search models. We have argued that a problem with the

existing literature is that there are numerous extensions to the basic model which, along

with nonparametric methods, can �t the observed wage density perfectly. This opens up

the risk that the empirical job search literature will develop in an unsatisfactory manner,

where each researcher has his or her own extension on the basic model and all researchers

�t the data perfectly. We have argued that Bayesian methods are a logical solution to
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the problem. Bayesian parametric or nonparametric methods allow for Bayes factors com-

paring competing models to be calculated. Bayes factors, apart from the usual goodness

of �t and reward for parsimony considerations, contain a reward for coherence between

data and prior information. Furthermore, the "priors" typically used in the job search

literature are hierarchical in nature so that a non-Bayesian would interpret them as part

of the likelihood (e.g. we use as a prior that productivity is log-Normally distributed,

however Koning, Ridder and van den Berg, 1995 treat an identical assumption as part of

the likelihood function). In the context of comparing models which all �t well, this re-

ward for coherence between prior and data information can potentially be very important.

That is, the researcher is required to specify what he/she thinks are sensible properties for

the extension under consideration (e.g. measurement error should be be roughly Normal,

heterogeneity in productivity should not be too large, productivity should increase with

training but diminishing returns to training should exist, etc.) and departures from the

prior are evidence against the model. This gives a formal basis for the informal strategy of

looking at the results one obtains and seeing if they look reasonable.

An empirical example using the data set from Bowlus, Kiefer and Neumann (1995) shows

the practicality and usefulness of our approach. Three parametric models (i.e. the basic

model and models with heterogeneity in productivity and measurement error) and two non-

parametric models (i.e. one with heterogeneity in productivity and one with measurement

error) were estimated. Before estimation, we argued that the models with heterogeneity

in productivity are much more reasonable than the others. Our empirical results bore out

this conjecture. For instance, we were able to provide strong statistical evidence against

the models with measurement error | even the nonparametric one which, in theory, could

have �t the data perfectly. In essence, it is possible to �t any wage density by allowing for

measurement error. However, in the present empirical example, this "measurement error"

has to be of such a strange form that it is highly questionable that it truly is measurement

error.

24



The example used in the present paper is purely illustrative. That is, we deliberately

chose one reasonable extension to the basic model (i.e. heterogeneity in productivity)

and one unreasonable one (i.e. measurement error), in order to illustrate our statistical

methods. However, as the theoretical job search literature develops new extensions to

the basic equilibrium search model, there will undoubtedly be an increasing number of

potential models all of which seems reasonable, a priori. The methods developed in this

paper provide a statistically rigorous basic for choosing among such competing theories.
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8 Appendix: Bayesian Inference and Computation

Inference in all models is accomplished by simulating the posterior using Markov Chain

Monte Carlo (MCMC) methods. Model comparison is done using Bayes factors (i.e. the

ratio of marginal likelihoods for two competing models). For the non-Bayesian reader,

de�nitions and explanations of all the technical terms used in this Appendix are given in

Geweke (1999).

8.1 The Basic Equilibrium Search Model

The notation used in the paper becomes simpler if we work in terms of the logs of the

reservation wage,  = ln(r), and productivity, � = ln(p). Let � = (; �)0 indicate the

parameters in the model. The likelihood function is given in equations (2.4) and (2.5).

Given the non-conventional nature of the likelihood, there is no particular need to choose

any particular class of priors to facilitate computation. We stress that researchers can use

virtually any prior (including non-informative ones) they wish and the methods developed

here will apply. In the present paper, we assume p(�) = p()p(�), where a priori, p() =

fN(r0; R0); p(�) = fN(p0; P0). By letting the variance in the Normal go to in�nity we

can get priors which are noninformative relative to the data. Given that the empirical

example is largely illustrative and the contribution of the present paper does not relate to

prior elicitation, we make relatively noninformative choices for prior hyperparameters. Of

course, in a more serious empirical exercise more care should be taken with prior elicitation

and a prior sensitivity analysis should be carried out. Noting that we are using weekly

wages for recent high school graduates, setting r0 = 5 and p0 = 6 is reasonable, and setting

R0 = P0 = 2 makes the prior fairly at relative to what we expect the data to indicate.

Koop (2001) uses a random walk chain Metropolis-Hastings algorithm (see Chib and

Greenberg, 1995) to carry out Bayesian inference in this model. In the present paper we

use a slightly more e�cient MCMC algorithm which involves drawing sequentially from the
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conditional posteriors: p(�jW; ) and p(jW;�). To be precise, we have

p(jW;�) / p() 1

(exp(�)� exp())N2
I(B): (A.1)

To draw from this density we use rejection methods. In particular, we use p()I(B) as a

source density kernel and use the fact that 1

(exp(�)�exp())
N
2
is increasing in  over the interval

I(B) to obtain the appropriate bound necessary to calculate the acceptance probability.

Next we have

p(�jW; ) / p(�) 1

(exp(�)� exp())N2

NY
i=1

1

(exp(�)� wi)
1
2

I(B): (A.2)

To draw from this density we also use rejection methods. In particular, we use p(�)I(B) as

a source density kernel and use the fact that 1

(exp(�)�exp())
N
2

QN
i=1

1

(exp(�)�wi)
1
2
is decreasing

in � over the interval I(B) to obtain the appropriate bound necessary to calculate the

acceptance probability.

In order to calculate the marginal likelihood necessary for calculating Bayes factors, we

use the modi�ed harmonic mean approach �rst suggested by Gelfand and Dey (1994), as

implemented in Geweke (1999). This involves a truncation parameter labelled p in Geweke

(1999, Section 4.3) which we choose to be 0.95. Experimentation indicates that marginal

likelihood is not sensitive to choice of p.

8.2 Parametric Extensions of the Equilibrium Search Model

8.2.1 Heterogeneity in Productivity

The model and methods are similar to those outlined for the basic model above and we

use the same prior for common parameters. In particular, the posterior conditional for

 is identical to (A.1) except that p and � now vary over individuals and, hence, have a

subscript i and I(B) is altered by the fact that h now varies with i.
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The likelihood function is given by (2.4) and (3.2). The �rst stage in the hierarchical

prior is given by (3.1) (i.e. p(�i) = fN(��; �
2
�) where ��; �

2
� are unknown parameters to

be estimated). The second stage in the hierarchy is given by p(��) = fN(p0; P0) and

p(��2� ) = fG(�0; �0) where fG(a; b) denotes the Gamma density with mean a and b degrees

of freedom (see Poirier, 1995, page 100). By letting the degrees of freedom in the Gamma

go to zero we can obtain a prior which is noninformative relative to the data. Note that we

choose the same prior for �� as we did for � in the previous model (although, of course, we

could have chosen a di�erent prior). We set �0 = 1:0 and �0 = 1:0, relatively noninformative

choices which potentially allow for a huge amount of heterogeneity in productivity.

An MCMC algorithm can be derived by sequentially drawing from (A.1) along with

p(�jW; ; ��; �2�); p(��jW; ; �; �2�) and p(��2� jW; ; ��) where � now equals (�1; ::; �N)0. The
latter two posterior conditionals simplify to:

p(��j�; �2�) = fN(p1; P1) (A.3)

and

p(��2� j�; ��) = fG(�1; �1); (A.4)

where P�11 = P�10 +N��2� , p1 = P1(P
�1
0 �0+�

�2
�

P
�i), �1 = �0+N and �1 =

�1
�0�0+

P
(�i���)2

:

p(�jW; ; ��; �2�) =
QN
i=1 p(�ijwi; ; ��; �2�) and draws from p(�ijwi; ; ��; �2�) for i =

1; ::; N can be taken using rejection methods analogous to those used for the basic model.

To be precise, we use p(�i) truncated to ensure that pi � hi as the source density to generate
draws. An acceptance probability can be obtained by noting that p(�ijwi; ; ��; �2�) is
decreasing in �i and has a �nite value at exp(�i) = hi:

The marginal likelihood is calculated using the method outlined in Geweke (1999, sec-

tion 4.3). However, it is slightly complicated by the fact that the parameter vector includes

� which is N-dimensional. To simplify computation, we only include ; ��; �
2
� as the para-
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meters used to construct the function Geweke (1999) labels f(�). This choice is simulation

consistent and experimentation with arti�cial data indicates it to be a good one.

8.2.2 Measurement Error in Wages

The likelihood function is given by (2.4) and (3.5). The prior for  and � is as in the basic

model. The �rst stage in the hierarchical prior is given by (3.4). The second stage in the

hierarchy is given by p(�") = fN(e0; E0) and p(�
�2
" ) = fG(�"0; �"0). We set e0 = 0; E0 =

10:0; �"0 = 10:0 and �"0 = 0:0001: These values indicate that we expect measurement error

to have mean zero and be relatively small (i.e. typically less that $20), however we are very

uncertain about this prior expectation and hence make very noninformative choices for the

other hyperparameters.

Our MCMC algorithm involves sequentially drawing from (A.1) and (A.2) (with B

de�ned by r < wi + "i < h) and p("jW; ; �"; �2"); p(�"jW; ; �; �2") and p(��2" jW; ; �; �")
where " = ("1; ::; "N)

0. The latter two posterior conditionals simplify to:

p(�"j"; �2") = fN(e1; E1) (A.6)

and

p(��2" j"; �") = fG(�"1; �"1); (A.7)

where E�11 = E�10 + N��2" , e1 = E1(E
�1
0 e0 + �

�2
"

P
"i), �"1 = �"0 + N and �"1 =

�"1
�"0�"0+

P
("i��")2

:

p("jW; ; �"; �2") =
QN
i=1 p("ijwi; ; �"; �2") and each of p("ijwi; ; �"; �2") can be drawn

from using rejection methods analogous to those used for the previous models. We use

p("i) truncated to ensure that r < wi+ "i < h as the source density to generate draws. An

acceptance probability can be obtained by noting that p("ijwi; ; �"; �2") is increasing in "i
and has a �nite value at "i = h� wi:
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The marginal likelihood is calculated as in the previous model with heterogeneity in

productivity.

8.3 Nonparametric Extensions of the Equilibrium Search Model

8.3.1 Heterogeneity in Productivity

The setup for this model is as the parametric case except for the treatment of �. Thus, the

MCMC algorithm and priors for ; ��; �
2
� conditional on � are exactly as described above.

Similarly the marginal likelihood calculation is (apart from the changes due to the use of a

di�erent prior for �) identical to that outlined in the previous sub-section. Hence, we need

only describe how to draw from p(�jW; ; ��; �2�) in order to fully specify our computational
methods. We do not do so in any detail since, once methods for calculating (4.4), (4.5) and

(4.6) are speci�ed, the remainder of the algorithm is identical to that given in West, Muller

and Escobar (1994) pages 367-369 (or Campolieti, 1997) and the reader is referred there

for precise details. Equations (4.4) and (4.6) can be calculated directly. However, it is not

possible to evaluate the integral in (4.5) analytically. Hence, it is evaluated using Monte

Carlo integration, In particular, we take 1,000 draws from g0(�i) (i.e. fN(��; �
2
�) evaluated

at the MCMC draws of ��; �
2
�), and average the f(wij�i)s evaluated at each draw.

The nonparametric model has the additional parameter, �, for which we use the prior

p(�) = fG(��; ��): By setting �� = N we allocate roughly half the weight to the parametric

part of the model (see equation 4.2), by setting �� = 3 we are making the prior relatively

noninformative. Note that West, Muller and Escobar (1994) also describes how to draw

from the conditional posterior of �.

8.3.2 Measurement Error

The setup for this model is as the parametric model with measurement error except for the

treatment of ". Thus, the MCMC algorithm and priors for ; �; �"; �
2
" conditional on " are
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exactly as described above. The prior for � is the same as for the previous nonparametric

model. To draw from p("jW;�; ; �"; �2"); we use the same method as for the nonparametric
model with the material relating to heterogeneity in productivity altered in the obvious

way. That is, (4.4)-(4.6) are calculated using densities from the model with measurement

error (rather than the model with heterogeneity in productivity).
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