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we develop algorithms to carry out efficient posterior simulation in cointegration models. In particular, we
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1 Introduction

Early Bayesian work on cointegration used Vector Autoregressive (VAR) representations (e.g. DeJong (1992),

Dorfman (1994), Koop (1994)), for which simple and standard methods of posterior simulation were available.

This early work was criticized by subsequent authors for ignoring the reduced rank structure implied by the

cointegrating restrictions. Accordingly, the Vector Error Correction Model (VECM), was increasingly adopted

for Bayesian work (see, e.g., Bauwens and Lubrano (1996) and Geweke (1996)). For an n−vector of unit root

variables, wt, we write the VECM for t = 1, .., T as:

∆wt = Πwt−1 +
l∑

h=1

Ψh∆wt−h + Φdt + εt (1)

where εt is i.i.d. N (0,Σ) , the n × n matrix Π is defined as Π = αβ′, α and β are n × r full rank matrices

and dt denotes deterministic terms (see, e.g., Johansen (1995) pages 81-84 for a commonly-used set of choices).

The value of r determines the number of cointegrating relationships. Since crucial issues of identification, prior

elicitation and posterior simulation discussed in this paper all relate solely to Π, we will focus on the restricted

version of (1):

yt = αβ′xt + εt, (2)

where yt = ∆wt, xt = wt−1. Although this paper discusses a cointegrated model, (2) makes clear that the ideas

are of relevance for any model with such a reduced rank structure.

Relative to the VAR, Bayesian inference in the VECM is complicated by the fact that Π = αβ′ involves

a product of parameters. This precludes direct use of analytical or Monte Carlo integration results for the

multivariate linear model. However, once we condition on the cointegrating vectors, β, the otherwise nonlinear

VECM becomes a linear one. This means that, under suitable informative priors (e.g. Normal priors of the

form used in Geweke (1996)), standard Bayesian analysis of the multivariate linear model applies (conditional

on β). This suggests posterior simulation can be done in a straightforward fashion if, as in Geweke (1996), the

posterior distribution of β (either a marginal distribution or a distribution conditional on α or on α,Ψ, Φ and

Σ where Ψ = (Ψ1, ..,Ψl)) can be drawn from.

However, the VECM suffers from both a global and local identification problem. A global identification issue

can be seen by noting that Π = αβ′ and Π = αCC−1β′ are identical for any nonsingular C. This indeterminacy

is commonly surmounted by imposing the so-called linear normalization where β =
(

Ir

β0

)
. Even if global

identification is imposed, a local identification issue occurs at the point α = 0 (i.e. at this point β does not

enter the model). A large literature (e.g. Kleibergen and van Dijk (1994, 1998), Kleibergen and Paap (2002))
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discusses problems arising from local non-identification (e.g. lack of existence of posterior moments and lack

of convergence of Gibbs samplers using common noninformative priors) and develops other approaches to prior

elicitation which surmount these problems. However, the posterior simulation methods used in these papers

become more complicated. Furthermore, they all impose global identification through restrictions analogous to

the linear normalization.

A literature has recently emerged which argues that it is only the cointegrating space which is identified (see

Strachan (2003), Strachan and Inder (2004), Strachan and van Dijk (2004) and Villani (2005, 2006)) and this

should be the focus of interest (rather than a particular identified parameter such as β0). For instance, Strachan

and Inder (2004) show how the use of linear identifying restrictions places a restriction on the estimable region

of the cointegrating space. Strachan and van Dijk (2004) show that a flat and apparently “noninformative” prior

on β0 in the linear normalization favors regions of the cointegration space near where the linear normalization

is invalid. Hence, the linear normalization is used under the assumption that it is valid while at the same time

the prior puts weight near the region where the normalization is likely to be invalid.

This recent literature has begun to develop ways of eliciting priors over spaces1 (as opposed to parameters)

and deriving corresponding posterior simulation methods. However, this literature is in its infancy and a good

understanding of prior elicitation and efficient posterior simulation have been elusive. A recent survey paper,

Koop, Strachan, van Dijk and Villani (2005) describes the development of the Bayesian cointegration literature

in detail. The main purpose of our paper is to develop new methods for posterior computation, although we

also shed further insight on prior elicitation in the case of the cointegrated model subject to over-identification

restrictions. We develop efficient posterior simulation algorithms using a collapsed Gibbs sampler, which adapts

the algorithm of Liu (1994) to the present context, and a parameter-augmented Gibbs sampler. The latter is

designed for use with the over-identified cointegration model but will also work with the just-identified model.

An illustration with simulated data demonstrates the large computational gains achieved by these algorithms.

2 Normalization and Priors in the Just Identified Model

Let p = sp (β) denote the cointegration space which is an r-dimensional hyperplane in a n-dimensional space.

We wish to carry out Bayesian inference relating to this space without imposing identification in such a way as

to restrict this space. Furthermore, we wish to develop sensible informative and noninformative priors on this

space. To illustrate a key basic idea in a simple case, suppose n = 2 and a single cointegrating vector exists.

We can parameterize the latter in polar coordinates β = (cos θ sin θ)′ ,where θ ∈ [−π/2, π/2). It is only θ

1In this paper, a prior over spaces is a prior defined in the Grassmann manifold (Chikuse, (2003), p. 9).
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which determines the cointegration space and, thus, we can restrict the length of β to be unity for identification

without restricting the cointegration space. A candidate for a noninformative distribution on p is the Uniform

distribution on θ and this indeed has sensible properties. These points (and many more) are made in Strachan

and Inder (2004) and extended to the case where n and r are of higher dimensions. In this general case, the

cointegrating space is an element of the Grassmann manifold and, thus, a Uniform prior for the cointegration

space is given by the Uniform distribution on the Grassmann manifold. An identification restriction which does

not restrict the possible cointegration space is:

β′β = Ir (3)

Formally, this restricts the matrix of cointegrating vectors to the Stiefel manifold. These spaces are compact

and, hence, a Uniform distribution over them is proper (the integrating constant which ensures propriety is given

in Strachan and Inder (2004)). Thus, a noninformative prior for β which does not restrict the cointegrating

space is simply equal to an integrating constant with (3) imposed.

To develop an informative prior for the cointegrating space, we introduce a semi-orthogonal matrix H for

the purposes of eliciting a prior and adopt the standard notation where H⊥ lies in the orthogonal complement

of the space of H. Prior information about the cointegration space can be expressed by eliciting a value for H

which spans the space felt, a priori, to be most plausible. To obtain H, the researcher will typically first specify

a matrix Hg containing desired coefficient values and then use the transformation2 H = Hg (Hg′Hg)−1/2
. The

matrix H constructed in this way will span the same space as Hg but is semi-orthogonal.

For instance, if wt contains three interest rates of different maturities, then theories of the term structure

suggest pairs of them should be cointegrated and, thus:

Hg =

 1 1
−1 0
0 −1


Hg is not semi-orthogonal but H = Hg (Hg′Hg)−1/2 will be (and will span the same space).

Following Strachan and Inder (2004), as a prior for β and, thus, p = sp (β) we use a matrix angular central

Gaussian distribution with parameter Pτ (i.e. MACG(Pτ ), Chikuse (1990)):

p(β) ∝ |Pτ |−r/2 ∣∣β′(Pτ )−1β
∣∣−n/2

(4)

2The matrix square root is defined, e.g., in Abadir and Magnus (2005), pages 220-221. This reference also describes a method
for its practical calculation.
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The n×n matrix Pτ determines the central location of p = sp (β) and also the dispersion around the central

location. In particular, if we define3 Pτ = HH ′ + τH⊥H ′
⊥, where τ is a scalar between 0 and 1, the central

location of p is pH = sp (H) and the dispersion is controlled by the scalar τ . Details are provided in Strachan

and Inder (2004), here we note that if τ = 1, then Pτ = In and we have a flat non-informative prior on β

(Chikuse, (1990), p. 270). Thus, τ = 0 implies a dogmatic belief that the cointegrating space is pH and τ = 1

implies a noninformative prior (i.e. the prior for p is Uniform in the Stiefel manifold when τ = 1). Should the

researcher not wish to subjectively elicit a value for τ , she could instead treat τ as an unknown parameter and

specify a prior density for it. In practice, such a prior density would typically allocate most weight to values of

τ near zero and be restricted to [0, 1].

As a prior for α, in line with previous literature (e.g. Geweke, (1996), Strachan and Inder (2004) and Villani

(2005)), we choose a shrinkage prior with zero prior mean:

α|β, τ,Σ, ν ∼ MN
(
0, ν

(
β′P1/τβ

)−1 ⊗G
)

, (5)

where MN denotes the matricvariate-Normal distribution (see, e.g., Bauwens, Lubrano and Richard (1999),

Appendix A), P1/τ = HH ′ + τ−1H⊥H ′
⊥, G is a n × n matrix4 and ν is a scalar which controls the degree of

shrinkage. The matrix G could be chosen to be equal to Σ, as in Strachan and Inder (2004) and Villani (2005).

However, any choice of G is possible should the researcher desire this added flexibility. The scalar ν can either

be selected by the researcher subjectively or (5) can be treated as a hierarchical prior with ν being an unknown

parameter. Finally, we will use the standard noninformative prior for Σ:

p (Σ) ∝ |Σ|−(n+1)/2 , (6)

although an inverted-Wishart prior can easily be accommodated.

Thus, we have established that the prior specified by (4) through (6) has many sensible properties. Strachan

and Inder (2004) provides further discussion and motivation of this prior for the case where G = Σ. As we shall

see in the next section, this prior also allows for simplified computation. Another advantage of this formulation

is that the standard noninformative prior for α is found by simply setting 1
ν = 0 and, thus, the posterior

simulator described in the next section also works with this prior.
3Note that this definition of Pτ shrinks the probability mass of sp(β) towards sp(H) uniformly in every direction. It does not,

for example, allow for tight beliefs about some cointegrating vectors, and vague beliefs about the others. A more general prior can
be obtained by defining P to be an unrestricted symmetric positive definite matrix. The modal location of the sp(β) is given by
the space spanned by the r eigenvectors of P associated with the r largest singular values. The concentration around the mode is
controlled by the singular values of P .

4Note that P1/τ = (Pτ )−1

4



3 Posterior Inference in the Just-Identified Model

A big advantage of the prior given in (4) and (5) is that it allows for efficient and simple posterior computation

through use of a collapsed Gibbs sampler (see Liu (1994) and Liu, Wong and Kong (1994)). Note that standard

results imply that MCMC draws for Σ can always be obtained from an inverted Wishart:

Σ|α, β, Data ∼ IW
(
[y −Xβα′]′ [y −Xβα′] , T

)
, (7)

if G is a fixed known matrix, or if G = Σ then the appropriate distribution is:

Σ|α, β, Data ∼ IW
(
[y −Xβα′]′ [y −Xβα′] + να

(
β′P1/τβ

)−1
α′, T + r

)
, (8)

where y and X are T×n matrices with tth row given by y′t and x′t, respectively. IW denotes the inverted-Wishart

distribution (see, e.g., Bauwens, Lubrano and Richard (1999), Appendix A). Alternatively, Σ can be integrated

out if G = Σ (with minor alterations to the algorithm described below). If τ or ν are treated as unknown

parameters (as opposed to having values selected for them), then a prior must be selected and an MCMC step

which draws τ and ν has to be added. For simplicity, we omit the conditioning arguments Σ, τ and ν in this

section and focus on the key issues relating to drawing α and β.

The basic motivation underlying our MCMC algorithm is that computational inefficiencies arise from trying

to impose the semi-orthogonality restriction on β. Note that even though α can be easily generated from its

Gaussian conditional posterior, the semi-orthogonality restriction implies that the conditional posterior of β is

non-standard. To overcome this problem, we introduce the following transformation:

βα′ = (βκ)
(
ακ−1

)′
=

[
β (α′α)

1
2

] [
α (α′α)−

1
2

]′
≡ BA′, (9)

where κ is a positive definite matrix and A = ακ−1 is semi-orthogonal.

For future reference, we write various relations between the parameters in (9):

κ = (α′α)
1
2

β = B (B′B)−
1
2

B′B = α′α. (10)

Crucially, in the first of these parameterizations (i.e. involving α and β), β is semi-orthogonal while α

is unrestricted, whereas in the second (i.e. involving A and B) it is B which is unrestricted whereas A is

5



semi-orthogonal. Our collapsed Gibbs sampler proceeds by switching between these two parameterizations and,

hence, it proves useful to express the prior in terms of both. The following proposition, whose proof is in the

appendix, states the prior in terms of (A,B).

Proposition 1 The prior for (α, β) expressed in (4) and (5) implies that the prior for (A,B) is given by:

B|A ∼ MN
(
0,

(
A′G−1A

)−1 ⊗ νPτ

)
, (11)

p(A) ∝ |G|−r/2 ∣∣A′G−1A
∣∣−n/2

(12)

Hence, it can be seen that combining priors (11) and (12) with the likelihood yields a conditional posterior

of B that is Normal. After choosing an initial value, β(0), our MCMC algorithm repeats the following steps for

s = 1, .., S:

1. Draw α(∗) from p (α|β, Data) and transform this to obtain a draw A(∗) = α(∗) (
α(∗)′α(∗))− 1

2 .

2. Draw B(s) from p
(
B|A(∗), Data

)
and then transform this to obtain β(s) = B(s)

(
B(s)′B(s)

)− 1
2 and α(s) =

A(∗) (
B(s)′B(s)

) 1
2 .

To see why these conditionals define a collapsed Gibbs sampler, note that (A, κ) is the unique polar decom-

position of α (e.g. Cadet (1996)), and therefore the draw of α(∗) in step (1) is a draw of (A(∗), κ(∗)) from the joint

density5 p (A, κ|β, Data). Similarly, the draw of B(s) in step (2) is a draw of
(
β(s), κ(s)

)
from p

(
β, κ|A(∗), Data

)
.

Therefore, A(∗) in step (1) is a draw from p (A|β, Data) (i.e. obtained marginally on κ), and β(s) in the second

step is a draw from p
(
β|A(∗), Data

)
(i.e. obtained again marginally on κ). Therefore, our sampling strategy is

equivalent to the collapsed Gibbs sampler proposed by Liu (1994) and Liu, Wong and Kong (1994, scheme 1),

who show that this algorithm is more efficient than a standard Gibbs sampling algorithm (i.e. one which simply

draws sequentially from the conditional posteriors p (α|β, Data) and p (β|α, Data)). We stress that, because of

the semi-orthogonality restriction on β, the latter algorithm does not exist, so our algorithm is likely to be much

faster than the existing choices which involve Metropolis-Hastings steps (e.g. Strachan and van Dijk (2004)).

An advantage of this algorithm is that it only involves drawing from the Normal distribution. In particular,

in Step 1 vec (α∗) is drawn from the Normal with mean α and variance Ωα where

Ωα =
(

[β′X ′Xβ]⊗ Σ−1 +
1
ν

[
β′P−1

τ β
]
⊗G−1

)−1

and
5The polar decomposition decomposes the multivariate variable α into two multivariate variables of smaller dimension each. For

example, this is analogous to decomposing a 4× 1 random vector in R4 into 2 random vectors of dimension 2× 1 each.
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α = Ωαvec
(
Σ−1y′Xβ

)
In Step 2 vec

(
B(s)

)
is drawn from the Normal with mean B and variance ΩB where

ΩB =
([

A′Σ−1A
]
⊗ [X ′X] +

[
A′G−1A

]
⊗ 1

ν
P−1

τ

)−1

and

B = ΩBvec
(
X ′yΣ−1A

)
.

Should the researcher wish to treat τ and ν as unknown parameters, then sensible priors for them would

be inverted Gamma-2 IG2(sτ , nτ ) (see, e.g., Bauwens, Lubrano and Richard (1999), Appendix A) for τ and

IG2 (sν , nν) for ν. These priors result in simple posterior conditionals: IG2(tr[ν−1A′G−1AB′H⊥H ′
⊥B]+sτ , (n−

r)r + nτ ) for τ and IG2

(
sν + tr

[
A′ (G)−1

AB′P1/τB
]
, nν + nr

)
for ν. For τ , it will typically make sense to

elicit sτ and nτ such that virtually all of the prior probability is allocated between 0 and 1.

4 Prior Specification and Posterior Inference in the Over-identified
model

It is often the case that there is interest in imposing an over-identifying restriction on the cointegrating space.

In this section we consider the restriction p ⊆ pH (Johansen 1995, p. 73) and the appendix outlines how to

consider other restrictions. This restriction can be imposed by writing β = Fϕ, where F is a known n × s

semi-orthogonal matrix and ϕ is an unknown s × r full rank semi-orthogonal matrix, with r ≤ s ≤ n. The

model with this restriction can be written as:

yt = αϕ′x̃t + εt

where x̃t = F ′xt. Because α and ϕ have different dimensions, the algorithm in Section 3 is not applicable. To

overcome this problem, let us rewrite the matrix of long-run multipliers as:

ϕα′ = ϕDD−1α′ ≡ ϕ̃α̃′

where D is a r × r symmetric positive definite matrix. We stress that unlike κ, which was defined as one

of the components of the polar decomposition of α (Golub and van Loan, 1996, p. 149), the matrix D is not

identified. However, the introduction of D facilitates posterior computations because neither ϕ̃ nor α̃ are subject

to restrictions.
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A convenient prior density results from assuming that ϕ̃| (ν, τ) follows a priori a MN(0, s−1Ir ⊗ Pτ ), and

that vec(α̃)| (ν, τ) is a N (0, νIr ⊗G). The following proposition summarizes the properties of the prior for the

identified parameters (α, ϕ) and for the non-identified D.

Proposition 2 The assumptions ϕ̃|α̃, ν, τ ∼ MN(0, s−1Ir ⊗ Pτ ) and vec(α̃|ν, τ) ∼ N (0, νIr ⊗G) imply that

ϕ| (ν, τ) follows a MACG(Pτ ) and that D2| (ϕ, ν, τ) is a Wishart Wr(s,
(
sϕ′P−1

τ ϕ
)−1). In addition, the condi-

tional prior mean and variance of α given (ϕ, ν, τ) are:

E(vec(α)| (ϕ, ν, τ)) = 0

var(vec(α)| (ϕ, ν, τ)) =
(
ν

(
ϕ′P−1

τ ϕ
)−1 ⊗G

)
Note that the prior mean and variance of α|ϕ is the same as in the prior in Section 2. However, the

prior density of α given (ϕ, ν, τ) is no longer a Normal. In fact, for r = 1 this distribution is the multivariate

Variance-Gamma analyzed by Madan and Seneta (1990). They show that compared to the Normal, the Variance-

Gamma distribution puts higher probability near the origin and at the tails, at the expense of probability in

the intermediate range.

Note also that if we write Pτ = HH ′ + τH⊥H
′

⊥, with H being a known s × r semi-orthogonal matrix and

0 < τ < 1, then the prior for sp(ϕ) is centered on sp(H) and the dispersion is controlled by τ (Strachan and

Inder, 2004). The following proposition shows that the posterior density of (α̃, ϕ̃) is proper if the prior for (ϕ̃, α̃)

is proper.

Proposition 3 Let X̃ be a T × s matrix containing x̃t. Suppose the prior for Σ is given by (6), the prior for

(ϕ̃, α̃) given G is proper and
(
X̃ ′X̃

)
has full rank. Suppose that G is either a fixed known matrix or is equal to

Σ. Then the marginal posterior of (ϕ̃, α̃) is proper and has at least as many moments as the conditional prior

for (ϕ̃, α̃) given G.

However, it can be shown that fixing 1/ν = 0 results in an improper posterior for the non-identified parameter

D. Hence, this framework does not allow for the prior π(α) ∝ 1 in the over-identified case.

The vector vec(α̃) is drawn conditional on ϕ̃ from the Normal with mean α̃ and variance Ωα̃ where

Ωα̃ =
([

ϕ̃′X̃ ′X̃ϕ̃
]
⊗ Σ−1 +

1
ν

Ir ⊗G−1

)−1

and

α̃ = Ωα̃vec
(
Σ−1y′X̃ϕ̃

)
8



Similarly, vec (ϕ̃) is drawn from the Normal with mean Φ and variance ΩΦ where

ΩΦ =
([

α̃′Σ−1α̃
]
⊗

[
X̃ ′X̃

]
+ Ir ⊗ nP−1

τ

)−1

and

Φ = ΩΦvec
(
X̃ ′yΣ−1α̃

)
A sample from the posterior of (α, ϕ) can be obtained using the following transformations:

D = (ϕ̃′ϕ̃)1/2
ϕ = ϕ̃D−1 α = α̃D

Note that although this Gibbs algorithm could also be used for the just-identified case, the ‘κ−algorithm’

of Section 3 would be more efficient for two reasons. Firstly, the κ−algorithm (implicitly) integrates out the

parameter D, and it thereby achieves a comparative advantage (Liu, 1994). Secondly, the κ−algorithm draws

β and A marginally of κ, which is likely to result in smaller autocorrelations in the Markov Chain. We give

evidence of the relative performance of these two strategies in the next section.

Note also that the method described in this section is designed to handle over-identifying restrictions on the

cointegration space. However, with the obvious alterations, it can also be used to carry out posterior simulation

in the VECM subject to linear restrictions on α such as weak exogeneity restrictions.

5 Empirical Evidence on Computational Efficiency

In order to simulate data from model (1) we decompose wt into two components wt =
(
w′1,t w′2,t

)′ with w1,t : r×1,

w2,t : (n− r)× 1 and use the cointegrating system w1,t = β′0w2,t + z1,t, ∆w2,t = z2,t, with the errors generated

according to zj,t = ρjzj,t−1 +εj,t, j = 1, 2 where εj,t v iidN
(
0, (1.5)2

)
, ρ1 = ρIr, ρ2 = 0 and β0 is a (n− r)× r

matrix of ones. This specification corresponds to (1) with α =
[
(ρ− 1) Ir 0r×(n−r)

]′, β =
[

Ir −β′0
]′, Φ = 0

and εt =
(
ε′1,t + ε′2,tβ0, ε′2,t

)′.
We first compare the collapsed Gibbs sampler of Section 3 with a Metropolis-Hasting algorithm used in

previous literature (Strachan and van Dijk (2004)). We then compare the collapsed Gibbs sampler of Section 3

with the (parameter augmented) Gibbs sampler of Section 4.

5.1 Collapsed Gibbs versus Metropolis-Hasting

For the sake of comparison, consider the following algorithm:

1. Generate β(s) from p (β|Data) using a Metropolis-Hasting (MH) algorithm.
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2. Draw α(s) from p (α|β, Data).

3. Draw Σs from p (Σ|α, β, Data).

Following Strachan and van Dijk (2004), we specify a random walk proposal density to generate candidates

for β. In particular, they suggest a MACG(Pz2) (see Chikuse (1990)) proposal density with parameter Pz2 =

β(s−1)β(s−1)′ + z2β
(s−1)
⊥ β

(s−1)′
⊥ , where β(s−1) is the value of β obtained in the previous iteration. This proposal

density is therefore of the same type as the prior discussed above. For values of z smaller than 1 this density

gives more weight to the space spanned by β(s−1), and this weight is greater the closer z is to zero (Strachan

and Inder (2004)). The variable z is specified to follow a N(0, σ2) and we adjust σ2 to obtain acceptance rates

between 20% and 50% (Chib and Greenberg (1995)). Steps 2 and 3 imply drawing from standard distributions

(multivariate Student and inverted Wishart, respectively). For this comparison, we use the noninformative

version of the prior.

We compare the efficiency of these algorithms using the effective sample size (e.g. Brooks (1999)) and the

average update distance between iterations (Holmes and Held (2005)). The effective sample size measures the

number of independent draws from the posterior that is equivalent to n∗ draws from an MCMC algorithm. For

n∗ = 1 the effective sample size is defined by:

ESS =
1

1 + 2
∑∞

t=1 a(t)

where a(t) is the autocorrelation function at lag t. A value near to one means that the algorithm is as efficient

as independent sampling, whereas a value near to zero implies that the algorithm is very inefficient (compared

to independent sampling). Since the estimated autocorrelations become imprecise as t gets large, we truncate

the sum in the denominator using the initial monotone sequence estimator proposed by Geyer (1992). ESS is

calculated for d(β, β∗), where β∗ spans the true cointegrating space (specified above) and d(β, β∗) is the distance

measure between cointegrating spaces proposed by Larsson and Villani (2001). We also report ESS for the

(1, 1) element of β0 (labelled ESSLin in the tables), where β0 is the unknown (n− r)× r matrix when the linear

normalization is imposed.

We also calculate the average distance between subspaces sampled in consecutive iterations, defined as:

AD =
1

N − 1

N−1∑
s=1

d(βs, βs−1)

where N is the number of iterations after the burn-in. Our choice for the burn-in is 300 iterations and we fix

N at 15000.
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We measure the relative efficiency of our algorithm with respect to the MH algorithm with the ratio of

their corresponding ESS and AD values. In particular, we define this ratio as RESS = ESSG/ESSMH ,

where ESSG is the ESS value for our algorithm. Similarly, we define the relative gains in update distance

as RAD = ADG/ADMH . We compare the algorithms for a range of values of n and r. For each pair (n, r)

we generate 100 fictitious samples and run both algorithms for each of these samples. The average values of

RESS, RAD,ESSG, ESSMH , ESSLin
G , ESSLin

MH and their standard deviations together with other summaries

are reported in Table 1 for ρ = 0.3 and in Table 2 for ρ = 0.98. From Table 1, when n = 2 and r = 1, our

algorithm is almost as efficient as independent sampling (ESS = 0.95), whereas the MH algorithm is about 8.4

times less efficient (in terms of ESS). Moreover, the relative gains increase as n gets larger. For n = 6 and

r = 3 our algorithm is on average 666 times more efficient, and for n = 9 and r = 5 it is about 1270 times more

efficient. A similar pattern is observed when efficiency measures are calculated for the parameters of the linear

normalization (ESSLin
G and ESSLin

MH) and substantial improvements are also observed in terms of the average

update distance. Furthermore, our algorithm computes 15000 iterations slightly more quickly than the MH

algorithm (RT ), suggesting that the gains adjusted for computation time are even higher. Table 2 shows that

when ρ = 0.98, which implies that α is close to zero and thus β is weakly identified, the results are similar.

Thus, weak identification does not seem to have a significant impact on the speed of convergence. Recall that

β is restricted to be semi-orthogonal, and note that the space of semi-orthogonal matrices has a finite measure.

Thus, the posterior for β conditional on α = 0 is proper, and thus no problems of local non-identification arise.

From the computational side, a draw of α(∗) (or B(s)) close to zero could potentially cause numerical problems

at the time of calculating the inverse of (α′α) (or the inverse of (B′B)). We did not find this problem in our

calculations, but note that A and β can be calculated without using inverses. In particular, if U : n×r, S : r×r,

and V : n × r form the singular value decomposition of α = USV ′, then A can be calculated as6 A = UV ′.

Similarly, if U, S, V form instead the singular value decomposition of B, then β can be calculated as β = UV ′.

5.2 Collapsed Gibbs versus parameter augmented Gibbs

We use the same prior for Σ, but use the proper prior for (α, β) described in Sections 3 and 4, with τ = 1, G = In

and nν = 2, sν = 1. This prior allows for a large prior variance for α, since a priori Pr(ν > 49.75) = 0.01. Table

3 shows efficiency measures for these two algorithms when ρ = 0.8. The collapsed Gibbs is slightly more efficient

for some values of (n,r) according to some indicators, but overall it seems that the parameter augmented Gibbs

is almost as efficient in practice as the collapsed Gibbs sampler. In our implementation, however, the collapsed
6Note that because U and V are semi-orthogonal, α = (UV ′)(V SV ′), where UV ′ is semi-orthogonal and (V SV ′) is a symmetric

positive definite matrix. From the uniqueness of the polar decomposition (e.g. Cadet (1996)), it follows that A = UV ′ and
κ = V SV ′.
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Gibbs sampler needed slightly less computing time to do the same number of iterations.

When ρ is close to one, there is little information about the cointegrating space in the data. Thus, the

algorithms will explore large regions of the parameter space. In order to illustrate this, we simulate 500 artificial

datasets as described above for (n = 2,r = 1) and several values of ρ. In each of them we calculate the maximum

distance (MD) between the draws and the posterior mean of p = sp(β), where the posterior mean of the space

is defined as in Villani (2006). Note that in the case (n = 2,r = 1) the distance measure is bounded between 0

and 1 (Larsson and Villani (2001)). Table 4 shows that when ρ = 0.3 MD is small on average, but when ρ = 1

MD is always equal to one, which implies that the algorithm visits all regions of the parameter space.

As an aside, which is unrelated to computational properties, Table 4 also calculates the frequentist coverage

of 95% and 99% credible intervals. That is, it calculates the proportion of times that a 95% (or 99%) credible

interval contains the true value of the cointegrating space. Note that Bayesian credible intervals are designed

to have correct Bayesian coverage (e.g. Raftery and Zheng (2003)), but they often also have correct frequentist

coverage (Bernardo and Smith (1994, p. 359)). We construct credible intervals as the set of spaces whose

distance to the mean is smaller than a given distance x. For a 95% credible interval, the distance x is the

95% percentile of the distances between the draws and the posterior mean of p. Table 4 suggests that Bayesian

credible intervals have correct frequentist coverage when ρ = 0.3 and ρ = 0.9. However, when ρ = 1 the

frequentist coverage of a 95% (or 99%) credible interval is smaller than 95% (or 99%).

6 Conclusions

We have developed efficient and simple algorithms for cointegration models in a framework that allows putting

a prior, possibly Uniform, directly on the cointegrating space. This approach avoids the problem that arises

when putting a commonly used and tractable prior on the linearly normalized cointegrating vectors (Strachan

and van Dijk (2004)), which implies an awkward prior for the cointegrating space. In addition, the approach

avoids the problem of non-convergence in the Gibbs sampler caused by local non-identification (Kleibergen and

van Dijk (1998)).
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RESS RAD RT ESSG ESSMH AR σ ESSLin
G ESSLin

MH

n = 2, r = 1 8.4 3.7 0.96 0.943 0.115 0.501 0.025 0.93 0.113
(1.09) (0.290) (0.0313) (0.0523) (0.0158) (0.110) (0.0703) (0.0163)

n = 3,r = 2 19.4 6.36 0.97 0.94 0.0504 0.39 0.020 0.923 0.0565
(3.99) (1.13) (0.035) (0.069) (0.0109) (0.12) (0.0846) ( 0.012)

n = 3,r = 1 31.1 8.59 0.977 0.865 0.0341 0.341 0.025 0.821 0.0427
(16.4) (3.39) (0.038) (0.0942) (0.015) (0.072) (0.116) (0.0244)

n = 4,r = 3 35.7 9.54 0.996 0.938 0.028 0.308 0.020 0.935 0.033
(8.94) (2.45) (0.014) (0.062) (0.006) (0.102) (0.080) (0.00881)

n = 4,r = 2 139 22.9 0.99 0.84 0.009 0.251 0.02 0.802 0.0151
(91.1) (13.4) (0.013) (0.11) (0.006) (0.068) (0.114) (0.0114)

n = 4,r = 1 72 14.8 0.996 0.728 0.0129 0.296 0.020 0.677 0.0166
(36.2) (5.32) (0.077) (0.119) (0.0068) (0.058) (0.152) (0.0137)

n = 5,r = 3 343 41.1 0.994 0.81 0.0040 0.213 0.016 0.806 0.00973
(270) (25.2) (0.0136) (0.134) (0.0030) (0.0658) (0.133) (0.00757)

n = 5,r = 2 353 41.3 0.991 0.692 0.00315 0.235 0.015 0.66 0.0072
(253) (25.2) (0.0076) (0.149) (0.0025) (0.0642) (0.159) (0.00712)

n = 6,r = 4 507 60.4 1.00 0.818 0.0027 0.217 0.012 0.803 0.00648
(402) (52.0) (0.0176) (0.123) (0.0018) (0.075) (0.113) (0.00502)

n = 6,r = 3 688 65.1 0.995 0.669 0.00140 0.235 0.010 0.703 0.00471
(490) (33.7) (0.0158) (0.131) (0.00083) (0.0625) (0.141) (0.0045)

n = 9,r = 5 1220 191 1.01 0.465 0.000521 0.184 0.007 0.799 0.00138
(918) (124) (0.0244) (0.150) (0.00027) (0.0582) (0.180) (0.000875)

Table 1: Performance measures of our algorithm and the MH algorithm, averaged over 100 fictitious samples
for each value of (n, r) (ρ = 0.3). The columns RESS,RAD,ESSG, ESSMH , ESSLin

G , ESSLin
MH are defined in

the text and standard deviations are in parentheses. RT is the computation time needed for our algorithm to
perform 15000 iterations divided by the time needed by the MH algorithm. AR is the acceptance rate in the
MH algorithm, which is controlled by σ.
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RESS RAD RT ESSG ESSMH AR σ ESSLin
G ESSLin

MH

n = 2, r = 1 7.63 3.70 0.95 0.838 0.122 0.475 0.5 0.996 0.725
(2.84) (1.08) (0.055) (0.127) (0.0367) (0.179) (0.0109) (0.290)

n = 3,r = 2 35.7 9.64 0.98 0.876 0.0316 0.288 0.4 0.999 0.45
(17.9) (4.29) (0.0293) (0.0894) (0.0176) (0.105) (0.0108) (0.235)

n = 3,r = 1 21.2 9.15 0.963 0.57 0.035 0.251 0.5 0.988 0.402
(11.9) (4.60) (0.0872) (0.162) (0.0228) (0.12) (0.0429) (0.257)

n = 4,r = 3 114 18 0.992 0.916 0.0117 0.231 0.3 0.999 0.350
(100) (8.58) (0.013) (0.06) (0.007) (0.0837) (0.0105) (0.232)

n = 4,r = 2 152 31.1 0.992 0.706 0.0083 0.196 0.22 0.999 0.229
(133) (23.7) (0.016) (0.13) (0.0062) (0.0810) (0.0226) (0.188)

n = 4,r = 1 53.4 16.8 0.971 0.471 0.0112 0.202 0.3 0.978 0.260
(33.3) (8.14) (0.0538) (0.152) (0.0060) (0.0752) (0.0726) (0.223)

n = 5,r = 3 345 43.7 0.994 0.746 0.00312 0.219 0.10 0.998 0.227
(222) (25.3) (0.0168) (0.102) (0.00207) (0.0744) (0.0269) (0.195)

n = 5,r = 2 267 41.2 0.987 0.576 0.0035 0.226 0.09 0.999 0.195
(240) (29.7) (0.0279) (0.118) (0.0023) (0.081) (0.0123) (0.154)

n = 6,r = 4 636 50.3 0.996 0.815 0.0021 0.300 0.04 0.999 0.316
(768) (28.2) (0.034) (0.086) (0.0014) (0.0847) (0.0079) (0.23)

n = 6,r = 3 512 56.9 0.998 0.652 0.0019 0.274 0.040 0.999 0.272
(414) (38.4) (0.015) (0.104) (0.0011) (0.0811) (0.0067) (0.221)

n = 9,r = 5 1300 150 1.00 0.659 0.00067 0.225 0.040 0.999 0.178
(784) (86.8) (0.0082) (0.0712) (0.00038) (0.0603) (0.0063) (0.172)

Table 2: Performance measures when ρ = 0.98. Labels defined in Table 1.

ESSG ESSPAG RT ESSLin
G ESSLin

PAG

n = 3,r = 2 0.752 0.424 0.638 0.989 0.993
(0.133) (0.072) (0.018) (0.036) (0.057)

n = 4,r = 2 0.477 0.316 0.624 0.991 1.008
(0.136) (0.088) (0.022) (0.038) (0.108)

n = 6, r = 4 0.573 0.538 0.606 0.999 0.999
(0.092) (0.091) (0.006) (0.005) (0.006)

n = 9, r = 5 0.575 0.595 0.648 0.996 0.999
(0.072) (0.068) (0.006) (0.037) (0.005)

Table 3: Performance measures averaged over 100 samples: collapsed Gibbs versus parameter augmented Gibbs
(ρ = 0.8). ESSG and ESSLin

G refer to the collapsed Gibbs of Section 3 and ESSPAG and ESSLin
PAG refer to

the parameter augmented Gibbs of Section 4. RT is the ratio of computation time of collapsed Gibbs over the
other Gibbs. Standard deviations are in parentheses.

MDG MDPAG COV 95
G COV 95

PAG COV 99
G COV 99

PAG

ρ = 0.3 0.124 0.141 0.94 0. 954 0.988 0.988
ρ = 0.9 0.987 0.998 0.932 0.962 0.986 0.994
ρ = 1 1.000 1.000 0.594 0.694 0.852 0.944

Table 4: Maximum distance and frequentist coverage. The subindex G refers to the algorithm of Section 3,
and PAG refers to the algorithm of Section 4. The columns labelled with MD give the average value of the
maximum distance. COV 95 gives the frequentist coverage for 95% credible intervals, and COV 99 corresponds
to 99% credible intervals.
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Appendix for Proofs:

Proof of Proposition 1. The prior for (α, β) is proportional to:

∣∣β′P1/τβ
∣∣−n/2 ∣∣β′P1/τβ

∣∣n/2
exp

[
−1

2
tr

(
ν−1β′P1/τβα′ (G)−1 α

)]
where

∣∣β′P1/τβ
∣∣−n/2 is part of the prior for β and

∣∣β′P1/τβ
∣∣n/2 is part of the conditional prior of α given β. Recall

that α = Aκ, where κ is a symmetric positive definite matrix, and let K = κ2. Using Lemma 2.1 in Chikuse

(1990), this prior for (α, β) implies that the prior for (A, K, β) is proportional to:

exp

[
−1

2
tr

(
ν−1β′P1/τβκA′ (G)−1 Aκ

)]
|K|

n−r−1
2

where |K|−
n−r−1

2 is the Jacobian of the transformation (Muirhead 2005, Theorem 2.1.14). Using the properties

of the trace of a matrix, and noting that B = βκ, this expression can be written as:

exp

[
−1

2
tr

(
ν−1A′ (G)−1 AB′P1/τB

)]
|K|

n−r−1
2

Therefore, taking into account that the Jacobian from (A, K, β) to (A, B) is |K|−
n−r−1

2 , the prior for (A, B) is

proportional to:

exp

[
−1

2
tr

(
ν−1A′ (G)−1 AB′P1/τB

)]
Since (Pτ )−1 = P1/τ , this shows that the prior of B given A is given by (11). If we integrate with respect to B,

we get the prior for A :

∣∣∣ν (
A′ (G)−1 A

)−1 ⊗ Pτ

∣∣∣1/2

= |Pτ |r/2
∣∣∣ν (

A′ (G)−1 A
)−1

∣∣∣n/2

∝
∣∣A′ (G)−1 A

∣∣−n/2

which is proportional to a MACG(G).

Proof of Proposition 2. From Theorem 2.2 in Chikuse (1990), ϕ|(ν, τ) follows a MACG(Pτ ). To prove that

D2|(ϕ, ν, τ) follows a Wishart, note that the joint prior of (ϕ̃, α̃)|(ν, τ) is proportional to:

π(ϕ̃, α̃|ν, τ) ∝ exp

(
−1

2
tr

(
sϕ̃′P−1

τ ϕ̃
))

exp

(
−1

2
tr

(
ν−1α̃′G−1α̃

))
(13)

Note that ϕ̃ = ϕD and that tr
(
sϕ̃′P−1

τ ϕ̃
)

= tr
(
sϕ̃ϕ̃′P−1

τ

)
= tr

(
sD2ϕ′P−1

τ ϕ
)
. Recall also that the Jacobian from

(ϕ̃, α̃) to (ϕ, D2, α̃) is
∣∣D2

∣∣(s−r−1)/2 (Muirhead 2005, Theorem 2.1.14). Thus, (13) implies that π(ϕ, D2, α̃|ν, τ) is

proportional to:

π(ϕ, D2, α̃|ν, τ) ∝
∣∣D2

∣∣(s−r−1)/2
exp

(
−1

2
tr

(
sD2ϕ′P−1

τ ϕ
))

exp

(
−1

2
tr

(
ν−1α̃′G−1α̃

))
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which shows that D2|(ϕ, ν, τ) is a Wr(s,
(
sϕ′P−1

τ ϕ
)−1

). To calculate the first moments of α, note that α = α̃D,

and that E(α̃|D) = 0. Thus, E(α̃D|D) = E(α|D) = 0. By the law of iterated expectations, E(α) = 0. Next from

vec(α) = vec(α̃D) = (D′ ⊗ In)vec(α̃) and var(vec(α̃)|D, ϕ, τ, ν) = ν(Ir ⊗ G), it follows that var(vec(α)|D, ϕ, τ, ν) =

ν(D2⊗G). By the law of iterated expectations, and the properties of the Wishart distribution, var(vec(α)|ϕ, τ, ν) =

(ν(E(D2|ϕ, τ, ν)⊗G)) = ν(
(
ϕ′P−1

τ ϕ
)−1 ⊗G)

Proof of Proposition 3. The proof consists in showing that the integral of the posterior with respect to Σ is

never larger than a constant times the prior. Hence, a proper prior results in a proper posterior. Let us first

consider the case in which G is a known matrix. Let π(α̃, ϕ̃) be the prior of (α̃, ϕ̃). The integral of the posterior

with respect to Σ is:

π(α̃, ϕ̃|Data) ∝
∣∣∣[y − X̃ϕ̃α̃′

]′ [
y − X̃ϕ̃α̃′

]∣∣∣−T/2

π(α̃, ϕ̃)

which can be written as:

∣∣∣(ϕ̃α̃′ − Π̂
)′

Ω−1
(
ϕ̃α̃′ − Π̂

)
+ y′y − Π̂′Ω−1Π̂

∣∣∣−T/2

π(α̃, ϕ̃) (14)

where:

Ω = (X̃ ′X̃)−1

Π̂ = ΩX̃ ′y

Expression (14) is never greater than: ∣∣∣y′y − Π̂′Ω−1Π̂
∣∣∣−T/2

π(α̃, ϕ̃) (15)

Thus, if π(α̃, ϕ̃) is proper then the posterior is proper. When G = Σ the integral of the posterior with respect to

Σ is:

π(α̃, ϕ̃|Data) ∝
∣∣∣[y − X̃ϕ̃α̃′

]′ [
y − X̃ϕ̃α̃′

]
+ α̃′α̃

∣∣∣−(T+r)/2

π(ϕ̃)

which, using the same reasoning as before, is never greater than:

∣∣∣y′y − Π̂′Ω−1Π̂ + α̃α̃′
∣∣∣−(T+r)/2

π(ϕ̃) (16)

which is the product of a matricvariate Student Distribution (Bauwens et al. 1999, p. 307) with T degrees of

freedom times the prior of ϕ̃. Hence, the integral of (16) is finite, and thus the posterior is proper.

Appendix for other over-identifying restrictions

Consider the restriction (e.g. (Johansen 1995, p. 73)) β = ( F1ϕ1 F2ϕ2) , where F1 and F2 are known matrices.

We can partition α conformably as: α = ( α1 α2) , so that

βα′ = F1ϕ1α
′
1 + F2ϕ2α

′
2
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In a similar manner to Section 4, we introduce non-identified conformable squared matrices D1 and D2 as follows:

F1ϕ1α
′
1 + F2ϕ2α

′
2 = F1ϕ1D1D

−1
1 α′

1 + F2ϕ2D2D
−1
2 α′

2

= F1ϕ̃1α̃
′
1 + F2ϕ̃2α̃

′
2

If Normal priors are chosen for (α̃1, α̃2, ϕ̃1, ϕ̃2) then the Gibbs sampling algorithm consists in sampling alterna-

tively (α̃1, α̃2)|(ϕ̃1, ϕ̃2) and (ϕ̃1, ϕ̃2)|(α̃1, α̃2), with both conditionals being Normal.
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