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ABSTRACT

This paper investigates the evolution of monetary policy in the U.S. us-
ing a standard set of macroeconomic variables. Many recent papers have
addressed the issue of whether the monetary transmission mechanism has
changed (e.g. due to the Fed taking a more aggressive stance against in�a-
tion) or whether apparent changes are simply due to changes in the volatility
of exogenous shocks. A subsidiary question is whether any such changes have
been gradual or abrupt. In this paper, we shed light on these issues using
a mixture innovation model which extends the class of time varying Vector
Autoregressive models with stochastic volatility which have been used in the
past. The advantage of our extension is that it allows us to estimate whether,
where, when and how parameter change is occurring (as opposed to assum-
ing a particular form of parameter change). Our empirical results strongly
indicate that the transmission mechanism, the volatility of exogenous shocks
and the correlations between exogenous shocks are all changing (albeit at dif-
ferent times and to di¤erent extents) Furthermore, evolution of parameters
is gradual.
Keywords: structural VAR, monetary policy, Bayesian, mixture inno-

vation model, time varying parameter model
JEL Classi�cation: C11, C32, E52

2



1 Introduction

Questions of interest to policymakers typically involve the inter-relationships
between several macroeconomic variables. To investigate such questions, it
is common to build a macroeconomic model (e.g. based on a Vector Autore-
gressive, VAR, model) where exogenous shocks impact on the variables under
study. The manner in which the exogenous variables a¤ect the variables of
interest is referred to as the transmission mechanism. Traditionally, estima-
tion of the transmission mechanism (or features such as impulse responses
which shed light on it) was considered a major goal of many macroeconomic
papers. However, empirical researchers have realized two important things.
First, the transmission mechanism may not be constant over time. Second,
the way the exogenous shocks are generated (and, in particular, their vari-
ance) can change over time.
Consider, for instance, U.S. monetary policy and the question of whether

the macroeconomic events of the 1970s were due to bad policy or bad luck.
Some authors (e.g. Boivin and Giannoni, 2006, Cogley and Sargent, 2001
and Lubik and Schorfheide, 2004) have argued that the way the Fed reacted
to in�ation has changed over time (e.g. under the Volcker and Greenspan
chairmanship, the Fed was more aggressive in �ghting in�ation pressures than
under Burns). This is the �bad policy�story and is an example of a change
in the transmission mechanism. Others (e.g. Sims and Zha, 2006) have
emphasized that the variance of the exogenous shocks has changed over time
and that this alone may explain many apparent changes in monetary policy.
This is the �bad luck� story. Yet others (e.g. Primiceri, 2005) have found
that both the transmission mechanism and the variance of the exogenous
shocks has changed over time.
This brief (and very incomplete) discussion of the literature is intended

to motivate the basic point that an understanding of monetary policy should
be based on multivariate models where the transmission mechanism and the
variances of the exogenous shocks can both potentially change over time.
Another important issue is whether any such change is gradual or abrupt.
Many models have been used to investigate such issues in the literature.
However, most of them (including some of the DSGE-based models), use ex-
tended versions of VARs as building blocks. There is a large literature (e.g.
George, Sun and Ni, 2006) which points out that even standard VARs can be
over-parameterized and tries to �nd various ways of minimizing this problem.
When one turns to extensions of VARs with time-varying parameters such
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over-parameterization worries become even more serious. Such considera-
tions motivate the present paper. In it, we re-examine some of the existing
empirical literature on U.S. monetary policy using a class of models which
is �exible enough to nest many of the existing speci�cations, but is more
tightly parameterized in key dimensions. Most importantly, it allows us to
estimate the form and nature of how parameters (and, thus, the transmission
mechanism) evolve over time.
Our model is based on a time-varying VAR similar to that used in Prim-

iceri (2005) or Cogley and Sargent (2001, 2005), but extends this type of
model in important ways. Like Primiceri (2005) and Cogley and Sargent
(2005), we have a multivariate model where both the transmission mecha-
nism and the error covariance matrix can change over time. However, unlike
Primiceri (2005) and the related time-varying parameter VAR (TVP-VAR)
literature (e.g. Cogley and Sargent, 2001, 2005 and Cogley, Morozov and
Sargent, 2005), we do not impose as many restrictions on the time variation
of the parameters. Instead, to model the change in parameters over time,
we draw on the mixture innovation approach of Gerlach, Carter and Kohn
(2000) and Giordani and Kohn (2006) as a way of letting the data speak
about how parameters evolve as well as keeping the model more tightly pa-
rameterized in key dimensions. Exact details will be provided in the next
section. But, to motivate the basic ideas, note that there are two main ap-
proaches to modelling changes in parameters over time: one can estimate a
model with a small number of structural breaks (usually one or two). Alter-
natively, one can estimate a time varying parameter (TVP) model where the
parameters are allowed to change with each new observation, usually accord-
ing to a random walk. A TVP model can be interpreted as imposing T � 1
breaks in a sample of size T . Thus, we have two extremes: models with very
few (but usually large) breaks or those with many (usually small) breaks.
The approach adopted in this paper allows for the estimation of the number
of breaks. Thus, we nest the two extreme cases and can let the data tell us if
there are few (or no) changes in the parameters or whether change is constant
and gradual. Another advantage of our approach relative to the TVP-VAR
literature is that, by estimating the parameters to be constant over peri-
ods, we can obtain a more parsimonious model, mitigating concerns about
over-parameterization. Our model also allows for the three di¤erent blocks
of parameters we work with (the VAR coe¢ cients, a block which relates to
the error variances and another relating to error covariances) to evolve in
completely di¤erent ways (or even for some or all blocks not to change at
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all). Thus, we can estimate whether and how change occurs in a very �exible
manner, as opposed to assuming a speci�c model with parameter change of
a particular sort.
After developing our model and appropriate Bayesian econometric meth-

ods, we present empirical results. We work with a standard system involving
in�ation, unemployment and interest rates. We present results relating to
the transmission mechanism and the volatility of exogenous shocks. We �nd
evidence of gradual change in all of our parameters and reinforce the �nd-
ings of Primiceri (2005). Relative to the existing literature, a crude summary
of our results might run as follows. The model of Primiceri (2005) is best,
but the model of Cogley and Sargent (2005) is not too bad (although there
are some restrictions in this model which are rejected, these have only mi-
nor macroeconomic implications). Models which only have time variation in
the error covariance matrix (i.e. with constant VAR coe¢ cients) are a bit
worse. They accurately recover patterns in the exogenous shocks, but can
be misleading about the transmission mechanism. However, models with a
constant error covariance matrix such as Cogley and Sargent (2001) or a tra-
ditional VAR are strongly rejected and can yield seriously misleading policy
inferences.

2 The Models

The models used in this paper all begin with a state space model involving
a measurement equation:

yt = Zt�t + "t (1)

and a state equation

�t+1 = �t +Rt�t; (2)

where yt is an p � 1 vector of observations on the dependent variables, �t
an m � 1 vector of states (in our case, these are the VAR coe¢ cients), "t
are independent N (0; Ht) random vectors and �t are independent N (0; Qt)
random vectors for t = 1; ::; T . The errors in the two equations, "t and �s, are
independent of one another for all t and s.1 Zt is the appropriate p�mmatrix
of data on explanatory variables. In our case, we are working with extensions

1This is the standard assumption, but it can easily be relaxed if desired.
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of VARs and, hence, each row of Zt contains lags of all dependent variables
and an intercept and other deterministic terms. For future reference, note
that we will use Rt to control the structural breaks in our model.
This model, which is a familiar one in the state space literature, nests a

wide range of commonly-used models. A VAR is obtained if we set Rt = 0m
for all t and, thus, the VAR coe¢ cients are constant over time. TVP-VARs
of the sort used, e.g., in Cogley and Sargent (2001) are obtained by setting
Rt = Im for all t. Technical details on how Bayesian econometric methods
can be used to carry out inference in this model are provided in the appendix.
Su¢ ce it to note here that a great advantage of staying in the framework
of the state space model given by (1) and (2) is that standard methods of
posterior simulation are available. In particular, Markov chain Monte Carlo
(MCMC) algorithms can be used to draw the states, � = (�01; ::; �

0
T )
0. In our

empirical work, we use the method of Durbin and Koopman (2002).
As discussed in the introduction, there is strong empirical evidence that

volatility issues are important in many macroeconomic problems. Thus, the
error covariance matrix in the measurement equation, Ht, should be allowed
to vary over time. To motivate the particular speci�cation we choose, note
that the Great Moderation of the business cycle implies that it is important
that the variances of macroeconomic variables should be allowed to change
over time. However, many key aspects of the transmission mechanism relate
to the covariances between the errors. For instance, in many models, the
immediate e¤ect of changes in monetary policy on in�ation is dependent upon
the correlation between the errors in the interest rate and in�ation equations.
Thus, it is potentially important to allow for both the error variances and
covariances to change over time.
Following Primiceri (2005), we use a triangular reduction of the measure-

ment error covariance, Ht, such that:

AtHtA
0
t = �t�

0
t

or

Ht = A
�1
t �t�

0
t

�
A�1t

�0
; (3)

where �t is a diagonal matrix with diagonal elements �j;t for j = 1; ::; p and
At is the lower triangular matrix:
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At =

266664
1 0 ::: : 0
a21;t 1 ::: : :
: : ::: : :
: : ::: 1 0
ap1;t : ::: ap(p�1);t 1

377775 :
To model evolution in �t and At we must specify additional state equa-

tions. For �t a stochastic volatility framework can be used. In particular, if
�t = (�1;t; ::; �p;t)

0, hi;t = ln (�i;t), ht = (h1;t; ::; hp;t)
0 then Primiceri uses:

ht+1 = ht + ut; (4)

where ut is N (0;W ) and is independent over t and of "t and �t. Technical
details for drawing h in an MCMC algorithm are given in the appendix. Here
we stress only that standard algorithms are required. In our empirical work,
we use the algorithm of Kim, Shephard and Chib (1998).
To describe the manner in which At evolves, we �rst stack the unrestricted

elements by rows into a p(p�1)
2

vector as at =
�
a21;t; a31;t; a32;t; ::; ap(p�1);t

�0
.

These are allowed to evolve according to the state equation:

at+1 = at + �t, (5)

where �t is N (0; C) and is independent over t and of ut, "t and �t. With
regards to our MCMC algorithm, we can transform the original measurement
equation so that the Durbin and Koopman (2002) algorithm can be used to
draw the states.
Primiceri (2005) uses the model given by (1) through (5), which we will

refer to as a TVP-VAR with stochastic volatility, in a study of the evolution
of monetary policy. Cogley and Sargent (2005) use a similar speci�cation but
one which has parameters comparable to At being constant over time. Cogley
and Sargent (2001) uses an even more restricted variant of this speci�cation
which does not have multivariate stochastic volatility (i.e. it is a TVP-VAR,
butHt is constant over time). This (very incomplete) discussion of the related
literature is meant to motivate that this class of models is receiving a great
deal of attention by macroeconomists. These are very �exible models which
are well-suited for estimating transmission mechanisms and their evolution
over time. However, they contain very many parameters and, thus, there is
the risk that they will over-�t the data. A common symptom of over-�tting
is if a model yields good in-sample performance, but poor out�of-sample
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forecast performance. It is perhaps signi�cant that most papers using this
sort of models present only in-sample results. These considerations motivate
the development of models which are �exible, but allow for a more tight
parameterization to lessen the risks of over-�tting. It is to such an extension
which we now turn.
Time varying parameter models imply that coe¢ cients change every time

period, although the magnitude of the change in coe¢ cients can be restricted
by the state equation. That is, typically the error covariance matrix in the
state equation is estimated to be small and, thus, �t+1 is close to �t. Thus,
TVP models work well when the evolution of coe¢ cients is constant but
gradual. Loosely speaking, TVP models can be thought of as �many small
breaks�models. In contrast to TVP models, there is a large literature which
assumes that fewer changes in coe¢ cients occur, but when a structural break
occurs, the magnitude of the change in coe¢ cients is unrestricted. Loosely
speaking these can be thought of as �few large breaks�models. Examples in-
clude Chib (1998), Maheu and Gordon (2007), Pastor and Stambaugh (2001)
and Pesaran, Pettenuzzo and Timmerman (2007). See the discussion in Koop
and Potter (2007a) for attempts to reconcile these di¤erent approaches.
An increasingly popular class of models which are increasingly used to

model structural breaks are mixture innovation models. McCulloch and Tsay
(1993) is an early example of such an approach, Gerlach, Carter and Kohn
(2000) develops a very e¢ cient computational algorithm and Giordani and
Kohn (2006) applies mixture innovation models to change-point problems.
The mixture innovation aspect arises by allowing some or all of the

states and parameters in the previous models to be determined (up to a
set of unknown parameters) by a sequence of Markov random vectors K =
(K1; ::; KT )

0. As we shall see shortly, these vectors will control the structural
breaks in the model. In our model, we allow for breaks in the VAR coe¢ -
cients (�t) and the measurement error covariance matrix (Ht). Remember
that Ht = A�1t �t�

0
t

�
A�1t

�0
and, thus, the measurement error covariance ma-

trix is parameterized in terms of �t and At . Given that some authors (e.g.
Cogley and Sargent, 2005) assume a time-invariant At, there does seem to
be interest in models with breaks in the error variances, but not covariances.
Accordingly, we allow for an unknown number of breaks in �t, �t and At and
(of empirical importance and in contrast to much of the literature on struc-
tural breaks), we allow for breaks in these three sets of parameters to occur
at di¤erent times. Accordingly, we let Kt = (K1t; K2t; K3t)

0 for t = 1; ::; T ,
where K1t 2 f0; 1g controls breaks in the VAR coe¢ cients, K2t 2 f0; 1g
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controls breaks in �t and K3t 2 f0; 1g controls breaks in At.
We extend the TVP-VAR with stochastic volatility model as follows. In

(2), the state equation which controls the evolution of �t, we set Rt = K1t.
Note that this implies that there are time periods when the VAR coe¢ cients
remain constant (K1t = 0) and times when a break in the VAR coe¢ cients
can occur (K1t = 1).
(4) and (5) are the state equations which control the evolution in �t and

At. We generalize these to:

ht+1 = ht +K2tut (6)

and

at = at�1 +K3t�t. (7)

Thus, these vectors of parameters can either remain constant (K2t = 0 and/or
K3t = 0) or a break can occur (K2t = 1 and/or K3t = 1). All other assump-
tions given for the TVP-VAR with stochastic volatility model still hold.
Note that all of the models previously discussed are nested within this

mixture innovation extension of the TVP-VAR with stochastic volatility. If
K1t = K2t = K3t = 1 for t = 1; ::; T , then we obtain the TVP-VAR with sto-
chastic volatility of Primiceri (2005). If K1t = K2t = K3t = 0 for t = 1; ::; T ,
then we obtain the traditional VAR with constant parameters. IfK1t = 1 and
K2t = K3t = 0 then we obtain a homoskedastic TVP-VAR as in Cogley and
Sargent (2001). If K1t = K2t = 1 and K3t = 0 then we obtain the model of
Cogley and Sargent (2005). Di¤erent con�gurations allow for change-points
to occur at di¤erent times. It is also worth stressing that, unlike most other
approaches to structural break modelling, the mixture innovation framework
allows us to deal with the case where there is an unknown number of change-
points. As discussed in Koop and Potter (2007b) this is an advantageous
feature since imposing the restriction that a �xed number of breaks occur
leads to models with undesirable characteristics.
To complete the model, we must specify a hierarchical prior for K. The

posterior simulation algorithm for K discussed in the appendix will work
provided the hierarchical prior for Kt is Markov. In our empirical work, we
adopt a Bernoulli distribution:

p (Kjt = 1) = pj (8)
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for j = 1; 2; 3. Thus, pj is the probability that a break occurs at time t,
for j = 1; 2; 3 (i.e. corresponding to �t, �t or At). This is treated as an
unknown parameter and estimated from the data. In our empirical work,
we allow for breaks to occur independently in �t, �t or At (i.e. K1t; K2t

and K3t are independent of one another, contemporaneously and at all leads
and lags). But correlations between the breaks in the di¤erent blocks of
parameters could easily be allowed for with trivial changes in the MCMC
algorithm. This algorithm is described in detail in the Technical Appendix.
Here we note only that it takes the MCMC algorithm for the TVP-VAR
with stochastic volatility and adds extra steps taken from Giordani and Kohn
(2006) for the mixture innovation aspect of the model.

3 Macroeconomic Issues

3.1 The Data

To investigate issues relating to monetary policy, it is common (e.g. Cogley
and Sargent, 2001 and 2005, Primiceri, 2005, or Stock and Watson, 2001)
to use a short term interest rate as being under the control of the Fed (the
�policy block�) with the in�ation and unemployment rates representing the
�non-policy block�. Accordingly, we use data from 1953Q1 through 2006Q2
on the unemployment rate (seasonally adjusted civilian unemployment rate,
all workers over age 16), interest rate (yield on three month Treasury bill
rate) and in�ation rate (the annual percentage change in a chain-weighted
GDP price index).2

3.2 Features of Interest

The models described thus far are reduced form models. Identifying assump-
tions must be made to allow for structural interpretation. We go from our
time-varying reduced form VARs to time-varying structural form VARs in a
standard way (see, e.g., Primiceri, 2005) and begin by ordering our dependent
variables as in�ation, unemployment and interest rates in the vector yt. In
particular, in our reduced form models the errors in the measurement equa-
tion, "t, were N (0; Ht) where Ht is parameterized as in (3). The structural

2The data were obtained from the Federal Reserve Bank of St. Louis website,
http://research.stlouisfed.org/fred2/.
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form errors, ut are assumed to be N (0; I) and the structural form model has

yt = Zt�t +�tut (9)

where �t imposes the identifying restrictions. With regards to the policy
block, we assume that the shock to the interest rate equation (i.e. the
monetary policy shock) has no immediate e¤ect on in�ation and unemploy-
ment. This is a standard assumption used, among many others, by Bernanke
and Mihov (1998), Christiano, Eichanbaum and Evans (1999) and Primiceri
(2005). Identi�cation in the non-policy block is achieved by assuming that
the shock to the unemployment equation has no immediate e¤ect on in�a-
tion.3 These identifying assumptions imply that �t is lower triangular. The
relationship between the reduced form and structural form parameters thus
becomes:

�t = A
�1
t �t:

There are, of course, many macroeconomic features that can be presented
with a structural VAR model such as the one discussed. However, for our
policy question, the most important ones relate to monetary policy. With
regards to the exogenous shocks, we simply plot their standard deviations
(i.e. the diagonal elements of �t) with the standard deviation of the interest
rate equation being of greatest importance as re�ecting the monetary pol-
icy shock. With regards to the transmission mechanism, impulse response
functions are of interest. Given our interest in evolving monetary policy, we
focus on the impulse response of the variables in the non-policy block (i.e.
in�ation and interest rates) to policy (i.e. to the monetary shock).
With nonlinear time series models such as the TVP-VARs we are working

with, there are some issues which arise with impulse response analysis which
do not arise with linear (time-invariant) models (see Koop, 1996, and Koop,
Pesaran and Potter, 1996). These are discussed in the Technical Appendix.
Su¢ ce it to note here that, following other authors such as Primiceri (2005),
we calculate impulse responses for a shock at time � with response over any
time period from � to � + n, based on the parameters as they are at time � .

3This assumption is more controversial since we could have assumed the in�ation shock
had no immediate e¤ect on unemployment. But, as discussed in Primerci (2005), empirical
results are very similar for these two assumptions.
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4 Empirical Results

We divide our empirical results into two sub-section. The �rst of these dis-
cusses the evolution of parameters in the VAR model and, in particular,
whether there is evidence for parameter change and, if so, in which parame-
ters and of what sort. The second presents results on our macroeconomic
features of interest. Throughout, we present results with two lags in the VAR
and an intercept (but no additional deterministic terms).

4.1 Evidence on Parameter Evolution

Before presenting empirical results relating to macroeconomic features of in-
terest, we present some direct evidence on whether breaks have occurred in
our three blocks of parameters (i.e. the VAR coe¢ cients, the volatilities, �t,
and At which relates to the error covariances) and, if so, of what sort. A
convenient vehicle for discussing these issues is through our mixture inno-
vation variables which control the changes in the three sets of parameters,
K1,K2 and K3 (or their associated transition probabilities, p1; p2 and p3). As
discussed in section 2 of the paper, by setting particular values for K1,K2

and K3, we can obtain many di¤erent models of interest. The ones we con-
sider are listed in Table 1. We consider various restricted versions of our
model as noted in Table 1 including the models of Primiceri (2005) and of
Cogley and Sargent (2005) where the latter restricts At to be constant over
time. We also consider a homoskedastic TVP-VAR model as well as a model
with multivariate stochastic volatility, but constant VAR coe¢ cients. This
latter is motivated by papers such as Sims and Zha (2006), which have found
support for models with no changes in the VAR coe¢ cients (but substantive
changes in the error covariance matrix).
The prior used in the paper is described in the Technical Appendix. It is

a training sample prior of the sort used by Primiceri (2005) and Cogley and
Sargent (2001, 2005). Indeed, for the TVP-VAR with stochastic volatility it
is the same as Primiceri�s prior. The new parameters relate to the mixture
innovation extension. As discussed in the appendix, we use Beta priors for pj
and, thus, B

�
�
1j
; �

2j

�
for j = 1; 2; 3. The properties of the Beta distribution

are given, e.g., in Koop (2003, page 330) and, from these, it can be seen that
if �

11
= 1; �

2j
= 1 for all j, then E (pj) = 1

2
(with standard deviation 0.29).

This is our Benchmark prior, which says, a priori, that there is a 50% chance
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of a break occurring in any time period. The standard deviation is very large,
indicating a relatively noninformative prior.
Inspired by much of the structural break literature which works with

models with a small number of breaks (e.g., among many others, Pesaran,
Pettenuzzo and Timmerman, 2007), we might also be interested in working
with a model which only allows for, say, one or two breaks. However, one
of the advantages of the mixture innovation approach to structural break
modelling is that it does not impose, a priori, a �xed number of breakpoints
on the data. Instead it estimates the number of breakpoints in a data-
based fashion. So, we cannot simply choose a mixture innovation model
with, say, one or two breaks imposed. However, we can tighten the prior
on the transition probabilities towards such a model. This is what we do
in the model labelled �Few Breaks� in Table 1. In particular, for the prior
hyperparameter values listed in Table 1 for this model we have E (pj) = 0:001
(with standard deviation 0.010) for j = 1; 2; 3.

Table 1: Models and Priors Used in the Empirical Work
Model Prior or Modelling Assumptions Relating to:

VAR coe¢ cients �t At
Benchmark �

11
= 1; �

21
= 1 �

11
= 1; �

22
= 1 �

13
= 1; �

23
= 1

Benchmark
At constant

�
11
= 1; �

21
= 1 �

11
= 1; �

21
= 1 K3t = 0 for all t

Benchmark
At;�t constant

�
11
= 1; �

21
= 1 K2t = 0 for all t K3t = 0 for all t

Benchmark
�t constant

K1t = 0 for all t �
11
= 1; �

21
= 1 �

13
= 1; �

23
= 1

Primiceri K1t = 1 for all t K2t = 1 for all t K3t = 1 for all t
VAR K1t = 0 for all t K2t = 0 for all t K3t = 0 for all t
Few breaks �

11
= :01; �

2j
= 10 �

1j
= :01; �

2j
= 10 �

1j
= :01; �

2j
= 10

Table 2 presents empirical results relating to the question of which type
of model receives support from the data. An advantage of our mixture in-
novation approach is that evidence for or against any particular restricted
version of our model (such as those listed in Table 1) can be revealed by
looking at posterior of parameters such as p1; p2 and p3. The usual method
of Bayesian model comparison is through marginal likelihoods and (although
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we do present marginal likelihoods) these can be more sensitive to prior
information than posteriors (especially with models such as ours with high-
dimensional parameter spaces). Thus, much of our discussion of how mone-
tary policy evolves relates to p1; p2 and p3.
In addition to the marginal likelihood, we also present the expected value

of the log-likelihood function. The Technical Appendix discusses how these
measures of model performance are calculated and how the expected value
of the log-likelihood can be interpreted as the empirical Bayesian metric
described in Carlin and Louis (2000, section 6.5.1) and are closely related to
conventional information criteria. In Table 2, the column labelled �E [logL]�
presents this measure of model performance.
Regardless of whether we look at the posteriors for p1; p2 and p3, the

marginal likelihoods or the expected log likelihoods, the story that comes
through is a strong one. We are �nding that all three of our sets of para-
meters (�t; At and �t) do change over time and in a way that is closer to
being the gradual evolution of the TVP-VAR than the abrupt breaks of con-
ventional structural break models. Consistent with the Great Moderation of
the business cycle, we are �nding most evidence for evolution of the error
variances. We elaborate on these points in the next paragraph.
Our mixture innovation TVP-VAR with stochastic volatility estimates all

three of our transition probabilities to be above 0.8 indicating that, in any
time period, there is a very high probability that parameters will change.
We are thus �nding support for a model that is close to Primiceri�s model
(although, of course, we did not impose this on the data). It is worth noting
that our model has a slightly higher marginal likelihood and expected log-
likelihood than Primiceri�s model. Among the other restricted versions of
our model, the one which imposes At as being constant does the best. This
is the model of Cogley and Sargent (2005). The remaining models clearly are
receiving little support. The standard VAR with time-invariant parameters
does the worst. The TVP-VAR with constant error covariance (used in Cog-
ley and Sargent, 2001) also does very poorly. Finally, it is worth noting that
there does seem to be time variation in the VAR coe¢ cients as the model
which restricts �t to be constant receives little support.
All of the results discussed so far use the Benchmark Prior (or suitable

restricted variants of it). We have carried out a prior sensitivity analysis and
results are similar, even when we make substantive changes in the prior hyper-
parameter values. As one example, consider the Few Breaks prior which ex-
presses extremely strong views that the transition probabilities are near zero
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(i.e. E (pj) = 0:001 with standard deviation 0.010). Using this prior, the pos-
teriors for the transition probabilities are E (p1jData) = 0:18; E (p2jData) =
0:87 and E (p3jData) = 0:27 (with posterior standard deviations of 0.04, 0,04
and 0.07, respectively). Thus, even though we have used prior information
that the transition probabilities are near zero, data information is so strong
that the posteriors are pulled strongly in directions which suggest gradual
change in all parameters. Note that, in the case of �t and At, we are �nd-
ing that the prior does have some e¤ect (e.g. E (p3jData) = 0:82 with the
Benchmark Prior and E (p3jData) = 0:27 with the Few Breaks prior), but
the point estimates still indicate gradual evolution of coe¢ cients (i.e. even
a transition probability of 0.27 indicates we would expect a break to occur
about once a year). As before, the evidence of parameter change is greatest
for �t, but is still appreciable for �t and At.
In summary, thus far we have made a strong case in favor of our mixture

innovation extension of a TVP-VARwith stochastic volatility. In terms of the
controversies in the macroeconomics literature, we are �nding (like Primiceri,
2005) that parameter change in the error covariance matrix is of predominant
importance, but that evolution in the VAR coe¢ cients is appreciable enough
that it should not be neglected. However, so far our argument has been
purely statistical, using reduced form models. The question of what kind of
implications this parameter evolution has for our understanding of monetary
policy has to now be addressed.
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Table 2: Results using Benchmark Prior for Mixture Innovation TVP-VAR
with Multivariate Stochastic Volatility and Restricted Versions of this Model

Model Marginal Likelihood E (logL) E (p1jY ) E (p2jY ) E (p3jY )

Benchmark 18.51 3.91
0.95
(0.05)

0.96
(0.03)

0.82
(0.15)

Benchmark
At constant

4.34 2.66
0.96
(0.03)

0.96
(0.03)

0.00
(0.00)

Benchmark
At;�t const.

5�10�5 0.15
0.94
(0.06)

0.00
(0.00)

0.00
(0.00)

Benchmark
�t constant

3�10�6 -0.45
0.00
(0.00)

0.94
(0.04)

0.79
(0.16)

Primiceri 15.92 3.59
1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

VAR 1�10�13 -5.94
0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

4.2 Evidence on the Evolution of Monetary Policy

4.2.1 The Volatility of Exogenous Shocks

The results of the previous section clearly indicate that the parameters of the
reduced form models have changed over time. There is particularly strong
evidence that the error covariance matrix has changed. Accordingly, in this
section we present only a brief discussion of models (such as the standard
VAR) which have a constant error covariance matrix. However, as we have
discussed, there are controversies in this literature over whether the mone-
tary transmission mechanism has changed over time or whether it is merely
the properties of the exogenous shocks which have changed. The results in
our previous section suggest that both have changed, but evidence for the
transmission mechanism changing is weaker. Given these general considera-
tions, in this section, in addition to our mixture innovation TVP-VAR with
stochastic volatility, we also consider the TVP-VAR with stochastic volatil-
ity of Primiceri (2005) as well as a restricted version of our model which
has stochastic volatility, but the VAR coe¢ cients are time-invariant (i.e. our
Benchmark model with the restriction that �t is constant over time). These
are labelled, �Benchmark�, �Primiceri�and �Hetero VAR�, respectively, in
the �gures.
Before discussing impulse responses, we begin with some evidence directly
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relating to the parameters of these models. Figure 1 through 3 plot the point
estimates of the standard deviations of the errors in the measurement equa-
tion (i.e. the posterior mean of the square roots of the diagonal elements
of Ht). These �gures do indicate substantial variation in volatility.4 The
general patterns in these graphs are similar to those noted by others in the
literature. For instance, our Figures 1 through 3 look very similar to Figures
1 a) through c) in Primiceri (2005). There is the same increase in in�ation
volatility until 1975 and, subsequently, a tendency (with many exceptions,
particularly in the early 1980s) for it to decline. The volatility in unem-
ployment equation error spikes around 1975. The volatility of the monetary
policy shock from the interest rate equation shows a big increase in the early
1980s before becoming much lower afterwards (with the interesting exception
of a substantial increase in 2001).
With regards to comparing the three di¤erent models listed above, they all

do capture the same broad patterns of volatility for all variables. However,
some interesting di¤erences do exist. This is most noticeable in Figure 1
where the heteroskedastic VAR yields a much smoother pattern of volatility
for the in�ation equation. There are also noticeable divergences between our
model and that of Primiceri (2005), particularly in the crucial mid-1970s
through early 1980s time period where most of the change in the parameters
appears to happen. For the other two equations (see Figures 2 and 3), fewer
di¤erences exist. Our mixture innovation model and the TVP-VAR with
stochastic volatility are yielding quite similar patterns of volatility, but the
heteroskedastic VAR diverges from this pattern a few times, particularly in
the unemployment equation. However, with respect to the monetary shock
(Figure 3), these three models are yielding very similar results.

4To keep the �gures clear, we have not put measures of uncertainty (e.g. 10th/90th
percentile bands) in these �gures. These do indicate some degree of imprecision, but the
change in volatility is still large relative to this imprecision.
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4.2.2 The Parameters

Given the time-varying nature of the parameters, there are too many to eas-
ily present. However, in the Empirical Appendix, we present coe¢ cient esti-
mates for �t (which imposes the structural identi�cation assumptions) and
the VAR coe¢ cients (�t) for four time periods: 1975Q1, 1981Q3, 1996Q1 and
2006Q3. The �rst three of these are those used in Primiceri (2005) as repre-
senting a wide range of di¤erent time periods and economic conditions. The
fourth date is the last in our data set. The interested reader is left to peruse
Table A.1 and A2 in the Empirical Appendix in detail. A general pattern is
that the coe¢ cients are often imprecisely estimated. This is not surprising in
a model such as this one with many parameters. However, keeping in mind
this imprecision, it does seem that there is much greater change in �t than
the VAR coe¢ cients. Note, in particular, the large drop in the standard de-
viation of the error in the unemployment equation (consistent with the Great
Moderation of the business cycle). Also some of the parameters which deter-
mine the correlations between the errors have changed greatly. �1996Q1 and
�2006Q3 look quite similar to one another. And, for many elements, �1981Q3
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also looks the same. However, there are exceptions where some elements
of �1981Q3 are quite di¤erent from other years. For �1975Q1, some elements
are very di¤erent from later years (but others are quite similar). All in all,
the general pattern is of di¤erent elements of �t changing at di¤erent times
(but some elements not changing much at all) with most (but not all) of the
change occurring prior to 1996.
With the VAR coe¢ cients (Table A.1) there is less evidence of parameter

change (relative to the level of imprecision in the posteriors). However, there
does seem to be some moderate movement in some coe¢ cients and our evi-
dence from the previous section indicate change is occurring. Interestingly,
more of the parameter change seems to occur near the end of the sample (not
in the 1970s and 1980s as with the error covariance matrix). A key question
is whether this change has important macroeconomic implications and this
is a question best investigated through impulse response functions.
Finally, we note brie�y that Tables A1. and A.2 present results for a

standard homoskedastic VAR. These are often quite di¤erent from TVP-
VAR results. In particular, it is worth noting that the homoskedasticity
assumption causes the VAR coe¢ cients to be far o¤ in some cases. This
suggests that, even if interest only centers on VAR coe¢ cients, it is not safe
to ignore heteroskedasticity.

4.2.3 Impulse Response Functions: Comparing Di¤erent Time Pe-
riods

Given our interest in the evolution of monetary policy, we focus on impulse
responses to a monetary shock. To be precise, we calculate the e¤ect of a
shock of size one to the structural errors (i.e. using equation 9, we set the
third element of ut to one and trace out its e¤ect on all the variables). Figures
4, 5 and 6 present point estimates (posterior medians) of the impulse response
to in�ation, unemployment and the interest rate for our four representative
time periods: 1975Q1, 1981Q3, 1996Q1 and 2006Q3.
The response of the interest rate to the monetary shock (see Figure 6) is

very nearly the same in every time period, but the responses of in�ation and
the unemployment rate exhibit more interesting patterns. The point estimate
of the response of in�ation to the monetary shock (Figure 4) in 1975Q1 is very
di¤erent from all the other years. At short and medium horizons, the pattern
is that monetary shocks are having less of an e¤ect as time goes by. In 1975Q1
there is a large (positive) hump-shaped response of in�ation to a monetary
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shock. But in later years this sort of response has vanished. The point
estimate of the response of the unemployment rate to the monetary shock also
shows a similar pattern, but the vanishing hump occurs later. That is, there
is a large (positive) hump-shaped response of unemployment to a monetary
shock (at short and medium horizons) for both 1975Q1 and 1981Q3, but this,
to all intents and purposes, vanishes for 1996Q1 and 2006Q3.
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The preceding statements about the evolution of the e¤ects of monetary
shocks were based on point estimates of impulse responses. To keep the
�gures readable, we did not put measures of uncertainty associated with
the point estimates. These tend to be quite large. In Figure 4, the point
estimate of the impulse response in 1975Q1 is quite di¤erent from 1981Q3.
Figure 7 relates to the di¤erence in these impulse responses between these two
years. It plots the point estimate of this di¤erence along with the 10th and
90th percentiles of the posterior. Other years and other di¤erences between
impulse responses function exhibit a similar pattern. The basic pattern is
that a horizontal line at zero always lies between the 10th and 90th percentiles
(i.e. lies within our 80% credible interval). These credible intervals are
calculated pointwise. Thus, the fact that each credible interval contains zero
individually does not necessarily imply that jointly there are no interesting
di¤erences in impulse responses over time. However, our previous discussion
about the systematic patterns in the evolution of impulse responses must be
quali�ed due to the inaccuracy of point estimates.
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4.2.4 Impulse Responses: Comparing Di¤erent Models

For the reasons discussed on the section of the �Volatility of Exogenous
Shocks�, it is of most interest to compare the models we have been calling
Benchmark, Primiceri and heteroskedastic VAR. For the sake of brevity, we
do not plot all of the impulse responses, but rather choose the response of
unemployment to the monetary shock. The other impulse responses show
qualitatively similar patterns. The impulses response functions for the Het-
eroskedastic VAR are not plotted since even the posterior median exhibits
explosive behavior. Remember that we are not ruling out explosive behav-
ior for our VARs. For our Benchmark model and the TVP-VAR, there is
little posterior probability associated with such behavior. But with the Het-
eroskedastic VAR and a standard VAR, there is much more evidence of non-
stationarity.
Figures 8 through 11 compare results for our Benchmark model and the

model of Primiceri (2005) for our four di¤erent representative time periods.
It can be seen that, in all of our time periods, the two models are giving
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basically the same story. However, the fact that we are unable to even plot
the heteroskedastic VAR results on a �gure with the same scaling implies
that the story of our model is quite di¤erent from the heteroskedastic VAR.
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5 Conclusion

There has been much interest in the recent macroeconomic literature on the
transmission of monetary policy shocks and the volatility of such shocks. In
particular, questions arise over whether they have changed over time and,
if so, of what form the change takes (e.g. has the change been gradual
or abrupt). In this paper, we develop a model which allows us to directly
address such issues. Instead of estimating a model which assumes a particular
form of parameter change (i.e. TVP models assume gradual evolution of
parameters whereas conventional structural break models assume a small
number of abrupt breaks), our model allows us to estimate the type of change
which is occurring.
We use our model in an empirical context involving three standard vari-

ables: in�ation, unemployment and interest rates and make standard iden-
tifying assumptions. Our results are clear. Relative to a traditional (ho-
moskedastic) VAR, there is overwhelming evidence of parameter change. The
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strongest change relates to the error variances, but there also seems to be
appreciable change in VAR coe¢ cients and error covariances. Furthermore,
this change is gradual as opposed to being abrupt.
Relative to the existing literature, our model is yielding results which

are quite close to those of Primiceri (2005). Our model is also yielding
results which are close (but not quite so close) to those obtained from the
model of Cogley and Sargent (2005). The restrictions on the error covariance
matrix in the latter paper do not receive statistical support, but freeing
up the restrictions has only small economic implications. Using a di¤erent
modeling strategy, Sims and Zha (2006) �nd evidence in support of a model
where error variances and covariances change, but VAR coe¢ cients do not.
In the framework of our model, restricting VAR coe¢ cients to be constant
has only minor implications for the volatility of exogenous shocks, but has a
substantive impact on impulse response functions.
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Technical Appendix: Posterior Computation,
Prior and Impulse Response Analysis
The models used in this paper all begin with the TVP-VAR given in (1)

and (2) in the body of the text. A key step in any of our MCMC algorithms
will be to draw the states, � = (�01; ::; �

0
T )
0. For known values of Ht; Qt

and Rt, this can be done using any of the standard algorithms for state space
models. We use the algorithm of Durbin and Koopman (2002) which (for the
reasons given in that paper) is more e¢ cient than other popular alternatives.
State space algorithms such as this require a treatment of the initial condition
�1. We do this by writing (1) as:

yt = Zt�0 + Zt�t + "t

and then initializing the algorithm for drawing states by setting �1 = 0.
Note that �0 can be interpreted as benchmark VAR coe¢ cients and the
state equation as capturing deviations from this benchmark. The case where
Rt = 0 for t = 1; ::; T then produces the standard VAR with time-invariant
parameters.
Our MCMC algorithm involves drawing from the posterior of �0 condi-

tional on the states and other model parameters. This is straightforward
since we can re-arrange the previous equation as:

yt � Zt�t = Zt�0 + "t
and standard results for the multivariate Normal regression model (see, e.g.,
Koop, 2005, pages 140-141) can be used with yt � Zt�t as the dependent
variable. In our models with stochastic volatility, we also use the Durbin and
Koopman (2002) algorithm for the elements relating to the measurement
error covariance matrix. In these cases, we treat initial conditions in the
same manner.
Our MCMC algorithms involve cycling through the full posterior con-

ditional distributions. For simplicity, we do not list all the conditioning
arguments. But we stress that all of the posteriors noted below (which are
labelled as being conditional on "Data") are the full conditionals required to
set up a valid MCMC algorithm.
Model 1: A Time Varying VAR with Constant Error Covariance
A simple benchmark model is the time-varying VAR with constant error

covariance matrix. This is obtained by using (1) and (2) withHt = H;Qt = Q
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and Rt = Im. We follow the common practice of using Wishart priors for the
error precision matrices in the measurement and state equations:

H�1 � W
�
�H ; H

�1� (A.1)

and
Q�1 � W

�
�Q; Q

�1� (A.2)

The posterior for H�1 (conditional on the states) is Wishart:

H�1jData � W
�
�H ; H

�1
�

(A.3)

where

�H = T + �H

and

H
�1
=

"
H +

TX
t=1

(yt � Zt�t) (yt � Zt�t)0
#�1

:

The posterior for Q�1 (conditional on the states) is Wishart:

Q�1jData � W
�
�Q; Q

�1
�

(A.4)

where

�Q = T + �Q

and

Q
�1
=

"
Q+

TX
t=1

(�t+1 � �t) (�t+1 � �t)0
#�1

:

A posterior simulator for this model involves drawing the states using
the algorithm of Durbin and Koopman (2002) and drawing the other model
parameters from (A.3) and (A.4).
Model 2: A Time Varying VAR with Stochastic Volatility
Following the argument in the body of the paper, it is probably unrea-

sonable to assume the error covariances are constant over time. We use a
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triangular reduction of the measurement error covariance, Ht, given in (3)
with evolution of the parameters given by (4) and (5).
To carry out posterior simulation of h = (h01; ::; h

0
T )
0 (conditional on �

and the parameters of the model) we can, following Primiceri (2005), adapt
an algorithm of Kim, Shephard and Chib (1998) as follows. Using (3) we can
transform (1) as:

y�t = At (yt � Zt�t) ;
where var (y�t ) = �t�

0
t which is a diagonal matrix. Let y

�
j;t for j = 1; ::; p

denote the jth element of y�t , y
��
j;t = ln

h�
y�j;t
�2
+ c
i
and y��t =

�
y��1;t; ::; y

��
p;t

�0
.

Note that c is referred to as an o¤set constant which has no e¤ect on the
following theoretical derivations. Following standard practice we set c =
0:001.
We can now write our speci�cation for �t as a state space model with

measurement equation given by

y��t = 2ht + et (A.5)

and state equation (4).5 The only problem with using standard state space
algorithms is that et is not Normally distributed. Note, however, that since
y�j;t and y

�
i;t are independent of one another (for i 6= j), this independence

property will carry over to et = (e1t; ::; ept)
0. Thus, we can draw on the uni-

variate results of Kim, Shephard and Chib (1998) as relating to ejt. Although
ejt is not Normal, Kim, Shephard and Chib (1998) show how its distribution
can be approximated to an extremely high degree of accuracy by a mix-
ture of seven Normals with means and variances given in their Table 4. If
Sjt 2 f1; 2; 3; ::; 7g denotes which of the seven Normals ejt is drawn from, we
can construct Sj = (Sj1; ::; SjT )

0 and S =
�
S 01; ::; S

0
p

�0
as component indica-

tors for all elements of et. Conditional on S (and � and other parameters),
(A.5) and (4) is a Normal linear state space model and, hence, we can use
the algorithm of Durbin and Koopman (2002) to draw ht.
The strategy above requires that we draw from the posterior of S condi-

tional on the model parameters and states. Kim, Shephard and Chib (1998)
derive the appropriate posterior conditional. Let qi;mi and v2i for i = 1; ::; 7

5We treat the initial conditions as in Primiceri (2005) by drawing from the training
sample prior.
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be the component probability, mean and variance of each of the components
in the Normal mixture (obtained from their Table 4). Then

Pr (Sit = jjData; hi;t) / qjfN
�
y��i;t j2hi;t +mj � 1:2704; v2j

�
(A.6)

for j = 1; ::; 7, i = 1; ::; p and t = 1; ::; T .
To complete the description of the MCMC algorithm relating to �t, we

need to work out the conditional posterior for W (where W is de�ned after
equation 4). We use a Wishart prior for W�1:

W�1 � W
�
�W ;W

�1� : (A.7)

The posterior for W�1 (conditional on the states) is then Wishart:

W�1jData � W
�
�W ;W

�1
�

(A.8)

where

�W = T + �W

and d

W
�1
=

"
W +

TX
t=1

(ht+1 � ht) (ht+1 � ht)0
#�1

:

Thus, to handle stochastic volatility in �t, we add to the MCMC algo-
rithm for Model 1 steps which draw h using the state space model (A.5) and
(4), S using (A.6) and W using (A.8).
Next we describe an algorithm for drawing from At, the unrestricted ele-

ments of which we stack by rows into a p(p�1)
2

vector as at =
�
a21;t; a31;t; a32;t; ::; ap(p�1);t

�0
.

These are allowed to evolve according to the state equation (5). We can trans-
form the original measurement equation so that the Durbin and Koopman
(2002) algorithm can be used to draw the states. This can be done as follows.
De�ne

byt = yt � Zt�t
and:

Atbyt = �t
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where �t is independent N (0;�t�t) (and independent of �t) . We can use
the structure of At to isolate byt on the left hand side and write:

byt = Ctat + �t: (A.9)

Primiceri (2005), page 845 gives a general de�nition of Ct. For our empirical
work we have p = 3 and, for this case,

Ct =

24 0 0 0
�by1;t 0 0
0 �by1;t �by2;t

35 ;
where byi;t is the ith element of byt. (A.9) and (5) is now in form of the state
space model given in (1) and (2) and the algorithm of Durbin and Koopman
(2002) can be used to draw at for t = 1; ::; T .
Recall that the error �t in the state equation (5) has distributionN (0; C) :

To complete the description of the MCMC algorithm relating to At, we need
to work out the conditional posterior for C. We use a Wishart prior for C�1:

C�1 � W
�
�C ; C

�1� : (A.10)

The posterior for C�1 (conditional on the states) is then Wishart:

C�1jData � W
�
�C ; C

�1
�

(A.11)

where

�C = T + �C

and

C
�1
=

"
C +

TX
t=1

(at+1 � at) (at+1 � at)0
#�1

:

To summarize, to handle the variation in At, we add to the MCMC algo-
rithm, steps which draw at (for t = 1; ::; T ) using the state space model (A.9)
and (5), and C using (A.11). To obtain draws of get the structural VAR (see
equation 9), we can use the transformation �t = A�1t �t:
Model 3: A Mixture Innovation Time-varying VAR with Sto-

chastic Volatility
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Our mixture innovation extension of the TVP-VARwith stochastic volatil-
ity is given in (6) through (8). (8) de�nes a hierarchical prior which depends
on the parameters pj for j = 1; 2; 3. We use a (conditionally) conjugate Beta

prior for pj for j = 1; 2; 3: B
�
�
1j
; �

2j

�
. With this choice, the conditional

posterior for the breakpoint probabilities used in our MCMC algorithm is:

B
�
�1j; �2j

�
; (A.12)

where

�1j = �1j +

TX
t=1

Kjt

and

�2j = �2j + T �
TX
t=1

Kjt:

The MCMC algorithm for the time-varying parameter model (set out
previously in this appendix) still, with one minor alteration, works (except
now that the formulae set out above are additionally conditional on K). The
alteration is that the degrees of freedom parameters, �Q, �W and �C all have
T in their formulae which should be changed to

PT
t=1K1t,

PT
t=1K2t andPT

t=1K3t, respectively.
To complete our MCMC algorithm, we must specify a way of drawing

K. The posterior for K conditional on the states takes a simple form. This
motivated some early authors (e.g. McCulloch and Tsay, 1993) to draw from
K conditional on the states. However, Gerlach, Carter and Kohn (2000)
point out some limitations of such a strategy. Most importantly it can be
extremely ine¢ cient since the states and K can be very highly correlated
with one another. They develop an algorithm which integrates out the states
analytically and draws from p

�
KtjData;K(�t)

�
where K(�t) denotes all the

elements of K except for Kt. For state space models, Gerlach, Carter and
Kohn (2000) use notation xs;t for all observations from s to t on any variable,
x, and show that:

p
�
KtjData;K(�t)

�
/ p

�
yt+1;T jy1;t; K

�
p
�
ytjy1;t�1; K1;t

�
p
�
KtjK(�t)

�
:

(A.13)
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The term p
�
KtjK(�t)

�
is simply the hierarchical prior and, thus, easy to

draw from. Gerlach, Carter and Kohn (2000, pages 820-822) set out an
e¢ cient algorithm for drawing from the other terms p

�
yt+1;T jy1;t; K

�
and

p (ytjy1;t�1; K1;t).
As discussed in Giordani and Kohn (2006), we can draw K1t,K2t and

K3t separately from one another in the context of the three state space al-
gorithms which make up the blocks of the MCMC algorithm for time vary-
ing parameter model with stochastic volatility. Formally, this amounts to
drawing from p

�
K1tjData;K(�t); K2t; K3t

�
, p
�
K2tjData;K(�t); K1t; K3t

�
and

p
�
K1tjData;K(�t); K1t; K2t

�
. That is, drawing �t in the time varying para-

meter model involves use of the algorithm of Durbin and Koopman (2002)
conditional on all the model parameters including Ht (see our discussion of
Model 1). K2t and K3t are used in the de�nition of Ht in Model 3. Thus,
the algorithm of Gerlach, Carter and Kohn (2000) can be combined with
Durbin and Koopman (2002) to draw from K1t and the VAR coe¢ cients
(conditional on all other model parameters including K2t and K3t). Simi-
larly, the algorithm of Gerlach, Carter and Kohn (2000) can be combined
with Durbin and Koopman (2002) to draw from K3t and At (conditional on
all other model parameters including K1t and K2t). Finally, the algorithm
of Gerlach, Carter and Kohn (2000) can be combined with our extension of
Kim, Shephard and Chib (1998) to draw from K2t and �t (conditional on all
other model parameters including K1t and K3t).
For the TVP-VAR the prior we use is the same as that used in Primiceri

(2005). That is, we use a training sample prior with the �rst ten years of data
to choose many of the key prior hyperparameters. To be precise, we use the
training sample and a time-invariant VAR to produce OLS estimates of the
VAR coe¢ cients, b�0, and the error covariance matrix, b
 and decompose the
latter as in (3) to produce ba0 and bh0 (where these are both vectors stacking
the free elements as we did with At and �t). We also obtain OLS estimates
of the variance-covariance matrices of b�0 and ba0 which we label bV� and bVa.
Using these, we construct the priors for the initial conditions in each of our
state equations as:

�0 � N
�b�0; 4bV�� ;

a0 � N
�ba0; 4bVa�

and
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log (h0) � N
�
log
�bh0� ; I3� :

Next we describe the priors for the error variances in the state equations.
Note that we are choosing small degrees of freedom parameters (relative
to sample size) and, thus, these prior contain a relatively small amount of
information (relative to the data). For (A.2) we set �Q = 40 and Q =

0:0001bV� For (A.7) we set �W = 4 and W = 0:0001I3. For (A.10), we set
�C = 3 and C = 0:01bVa.
For the TVP-VAR this completes the speci�cation of the prior. For re-

stricted versions of this model (e.g. the homoskedastic TVP-VAR or the stan-
dard time-invariant VAR) we use the same prior for the parameters which
are left unrestricted.
The preceding prior choices were the same as Primiceri (2005) and were

calibrated with the TVP-VAR with stochastic volatility in mind. With our
mixture innovation extension of the TVP-VAR, we have to additionally elicit
the prior hyperparameters �

1j
and �

2j
. These are discussed in the empirical

section. With regards to the remaining parameters, we make one alteration
on Primiceri�s prior. The latter was a prior calculated for a TVP-VAR with
stochastic volatility which assumed a structural break occurred in every time
period (a �many small breaks�model). We want our prior for the mixture
innovation extension to allow for this, but also to allow for fewer breaks,
potentially of a larger magnitude. Accordingly, we allow the mean of the
error covariance matrices for the state equation to depend on our prior about
the number of breaks which occur. Note that, the Beta prior in (A.12) implies
that

E (pj) =
�
1j

�
1j
+ �

2j

:

If we let T0j = E (pj)T , we modify our previous prior hyperparameters as
Q = 0:0001bV� T

T01
, W = 0:0001I3

T
T02

and C = 0:01bVa T
T03
. Thus, if we set

E (pj) = 1 we get Primiceri�s prior, but if we use a prior for pj which implies
fewer breaks, then our prior for the state equation error variances allows for
large shifts in the parameters to occur.
The Gerlach, Carter and Kohn (2000) algorithm allows us to calculate

the marginal likelihood and the expected value of the likelihood in a straight-
forward manner. Let Y stack all the data on the dependent variables and
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� denote all the parameters in the model except for K1; K2 and K3. Equa-
tion (3) and Lemmas 3 and 4 of Gerlach, Carter and Kohn (2000) describe
how we can calculate p (Y jK1) for the model studied in that paper. Our
algorithm uses the Gerlach, Carter and Kohn (2000) three times (i.e. for
K1; K2 and K3). But we can use the Gerlach, Carter and Kohn (2005) result
as holding for p (Y jK1; K2; K3; �). By averaging over MCMC draws of all
of these parameters (i.e. K1; K2; K3; �), we can obtain the expected value
of the log-likelihood function. To calculate the marginal likelihood, we use
these draws of the likelihood function in the approach to marginal likelihood
calculation of Gelfand and Dey (1994). Note that this approach involves
integrating out the states before calculating p (Y jK) (and, hence, is much
more computationally e¢ cient than using the Kalman �lter to evaluate the
likelihood function). Finally, note that some of the models set elements of
K to particular values and, for these, we simply condition on these values.
For instance, for the Benchmark model with �t being constant, we calculate
p (Y jK11 = K12 = :: = K1T = 0).
The use of the expected log-likelihood can be motivated as in Section 6.5.1

of Carlin and Louis (2000). Note that Carlin and Louis�s penalized likelihood
criteria are closely related to conventional information criteria such as the
Schwarz criteria, but (instead of evaluating them at the maximum likelihood
estimate) use the posterior and are based on the expected value of the log
of the likelihood function. Like information criteria, such features do not
involve the prior (except insofar as the prior enters the posterior and, thus,
the MCMC algorithm) and, thus, will be less sensitive to prior choice (and
can be considered as approximations to the log of the marginal likelihood).
Finally, we turn to the calculation of impulse responses. In linear (time-

invariant) VARs, impulse responses can be taken directly from the Vector
Moving Average (VMA) representation implied by the VAR. However, with
a TVP-VAR the implied VMA is changing over time. Suppose the VMA
representation of a standard VAR is given by:

yt =

1X
i=0

�iut�i;

then the usual result is that an impulse response h periods in the future is
the appropriate element of �h. With a TVP-VAR the implied VMA will, of
course, have time varying coe¢ cients:
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yt =

1X
i=0

�t�i;iut�i:

This raises two issues when calculating impulse responses. The �rst is
that the impulse responses will be changing over time. Hence, we have to
either plot impulse responses for every time period or choose a few time
periods for detailed study. We adopt both these strategies in our empirical
work. A second and more subtle issue arises due to the treatment of shocks
other than the one being perturbed. To explain this issue, suppose we are
interested in the e¤ect of a shock of size one (to the structural errors in the
measurement equation) which occurs at time � on the variables at time �+h.
Strictly speaking, an impulse response is usually interpreted as a di¤erence
in conditional expectations such as:

E (y�+hjI� ; u� = 1)� E (y�+hjI� ) ;
where I� denotes information through time � . In any nonlinear time series
model, these expectations can be calculated using simulation methods (as
in Koop, 1996). However, this can be computationally demanding, so it is
much easier to simply take the structural VAR coe¢ cients at time � (i.e. ��
and �� ) and calculate a conventional impulse response function. In linear
models, these two strategies are identical, but with nonlinear models they
can be slightly di¤erent. Nevertheless, in this paper we adopt this second
simpler strategy. Formally, it can be interpreted as an impulse response
function calculated assuming all shocks to the model (including the shocks
to the state equations) between time � and � + h are simply set to their
expected values of zero.
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Empirical Appendix
The tables in this appendix give point estimates (posterior medians) and

measures of uncertainty (i.e. the 10th and 90th percentile of each posterior) of
the VAR coe¢ cients (�t) and the lower-triangular Choleski decomposition of
the error covariance matrix in the structural VAR (i.e. �t� = A�1t �t). With
regards to the former, note that we are working with two lags and, to keep the
tables as brief as possible, do not present results for the intercepts. Following
Primiceri (2005), we present results for 1975Q1, 1981Q4 and 1996Q1. Given
that we have extended the data set, we also present results for 2006Q3.
To aid in interpretation of the tables, note that any parameter will relate

to one of our three equations which we call the in�ation (dp), unemployment
rate (u) and interest rate (r) equations, respectively. It can also relate to
any variable. We use this equation/variable notation to identify parameters
in the tables. So, for instance, the (1; 3) element of �t is in the interest rate
equation and is the coe¢ cient on the error in the in�ation equation. This we
label as r/dp. For the VAR coe¢ cients, we will have, e.g., the coe¢ cient on
the second lag of the unemployment rate in the in�ation equation. This we
label as dpt/ut�2.
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Table A1: Posterior Median of VAR Coe¢ cients (10th/90th percentiles in parentheses)
Eq./Var. VAR 1975Q1 1981Q4 1996Q1 2006Q3

dpt/ut�1
-0.33
(-0.41,-0.24)

-0.20
(-0.34,-0.07)

-0.22
(-0.34,-0.08)

-0.24
(-0.37,-0.11)

-0.26
(-0.42,-0.11)

dpt/rt�1
-0.06
(-0.09,-0.03)

0.09
(0.00,0.18)

0.04
(-0.03,0.11)

0.00
(-0.08,0.08)

-0.07
(-0.19,0.06)

dpt/dpt�1
1.53
(1.47,1.59)

1.26
(1.10,1.41)

1.17
(0.99,1.32)

1.07
(0.89,1.22)

0.86
(0.67,1.04)

ut/ut�1
1.32
(1.14,1.48)

0.99
(0.82,1.16)

1.04
(0.87,1.21)

0.91
(0.73,1.10)

0.96
(0.96,1.21)

ut/rt�1
0.00
(-0.06,0.06)

-0.07
(-0.17,0.04)

0.06
(-0.02,0.13)

-0.12
(-0.23,0.01)

-0.13
(-0.31,0.05)

ut/dpt�1
0.03
(-0.09,0.16)

-0.02
(-0.16,0.13)

-0.11
(-0.29,0.06)

0.04
(-0.14,0.22)

0.06
(-0.15,0.27)

rt/dut�1
-1.02
(-1.26,-0.77)

-0.45
(-0.68,-0.22)

-0.44
(-0.69,-0.21)

-0.36
(-0.61,-0.12)

-0.50
(-0.79,-0.21)

rt/rt�1
0.71
(0.63,0.81)

0.80
(0.64,0.97)

0.85
(0.66,1.01)

1.08
(0.87,1.27)

0.96
(0.73,1.22)

rt/dpt�1
0.57
(0.38,0.75)

0.36
(0.10,0.61)

0.45
(0.19,0.71)

0.27
(0.04,0.51)

0.00
(-0.29,0.28)

dpt/ut�2
0.27
(0.19,0.35)

0.16
(0.04,0.29)

0.16
(0.03,0.27)

0.18
(0.05,0.30)

0.12
(-0.03,0.27)

dpt/rt�2
0.06
(0.03,0.09)

0.02
(-0.08,0.11)

-0.01
(-0.07,0.05)

-0.03
(-0.10,0.04)

-0.01
(-0.15,0.11)

dpt/dpt�2
-0.52
(-0.59,-0.46)

-0.34
(-0.51,-0.17)

-0.27
(-0.42,-0.10)

-0.18
(-0.31,-0.02)

0.02
(-0.16,0.20)

ut/ut�2
-0.39
(-0.54,-0.22)

-0.07
(-0.22,0.09)

-0.14
(-0.30,0.01)

0.00
(-0.17,0.16)

-0.06
(-0.27,0.17)

ut/rt�2
0.03
(-0.03,0.09)

0.14
(0.04,0.25)

0.01
(-0.06,0.08)

0.13
(0.01,0.24)

0.15
(-0.02,0.33)

ut/dpt�2
0.00
(-0.14,0.13)

0.02
(-0.12,0.15)

0.10
(-0.06,0.27)

0.00
(-0.17,0.18)

0.01
(-0.19,0.22)

rt/ut�2
1.01
(0.77,1.24)

0.33
(0.11,0.18)

0.37
(0.14,0.59)

0.24
(0.01,0.49)

0.24
(-0.05,0.54)

rt/rt�2
0.20
(0.10,0.28)

0.02
(-0.14,0.18)

0.05
(-0.10,0.22)

-0.16
(-0.34,0.03)

-0.10
(-0.35,0.13)

rt/dpt�2
-0.44
(-0.63,-0.25)

-0.22
(-0.46,0.04)

-0.25
(-0.49,0.00)

-0.11
(-0.33,0.12)

0.07
(-0.20,0.36)
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Table A2: Posterior Median of �t (10th/90th percentiles in parentheses)
Eq./Var. VAR 1975Q1 1981Q4 1996Q1 2006Q3

dp/dp
0.21
(0.11,0.39)

0.30
(0.07,0.96)

0.42
(0.08,0.97)

0.07
(0.03,0.17)

0.26
(0.11,0.67)

u/dp
-0.01
(-0.04,0.02)

0.01
(-0.06,0.14)

-0.10
(-0.34,0.03)

-0.01
(-0.06,0.01)

-0.02
(-0.12,0.05)

r/dp
0.05
(0.01,0.13)

-0.09
(-0.61.0.20)

0.88
(-0.05,2.22)

0.09
(-0.02,0.29)

-0.03
(-0.27,0.15)

u/u
0.42
(0.23,0.78)

1.02
(0.59,2.00)

0.11
(0.03,0.46)

0.12
(0.04,0.33)

0.09
(0.03,0.39)

r/u
-0.42
(-0.80,-0.21)

-1.03
(-2.24,-0.34)

0.02
(-0.34,0.44)

-0.03
(-0.23,0.09)

-0.05
(-0.34,0.04)

r/r
0.39
(0.21,0.78)

0.15
(0.03,1.37)

0.20
(0.04,1.88)

0.10
(0.03,0.46)

0.08
(0.02,0.52)

44


