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SOCIAL POTENTIAL MODEL TO SIMULATE EMERGENT BEHAVIOUR 
FOR SWARM ROBOTS 

MABROUK* M. H. and MCINNES** C.R 
 

Abstract: 

Swarm robotics has a wide range of applications in numerous fields from space and 
sub-sea exploration to the deployment of teams of interacting artificial agents in 
disposal systems. In this paper, we introduce a model to simulate the emergent 
behaviour of multi-agent robot systems, based on principles from physical mechanics. 
The model is based on mutual interactions among the swarm individuals. The main 
elements of these interactions are repulsion forces, attraction forces, alignment forces 
and dissipative forces generated by the swarm members. Using statistical tools, which 
are used to investigate simulated group behaviour, we discuss the importance of 
introducing some dissipation to the system as well as the effect of the interaction 
parameters on various components of the model.  
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Nomenclature 
Cai     Amplitude of attraction potential of the ith agent. 
Cg             Amplitude of goal constant potential. 
Co              Amplitude of alignment force term. 
C  Potential amplitude ratio. 
Cri              Amplitude of repulsive potential of the ith agent. 
Fcohesion(ri)      Cohesion force exerted on the ith agent. 
Falignment(ri)      Alignment force exerted on the ith agent. 
Fdissipation(ri)      Dissipation (friction) force exerted on the ith agent. 
Fgoal(ri)      Goal attractive force exerted on the ith agent. 
Ftotal(ri)      Total forces exerted on the ith agent. 
lai               Range of attractive potential for the ith agent. 
lg               Range of goal constant potential. 
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lo               Range of alignment force term. 
lri               Range of repulsive potential of the ith agent. 
l  Potential range ratio 
mi               Mass of the ith agent. 
mG Group angular momentum. 
N  Number of agents. 
rig                              Goal – ith agent position vector. 
rij              ith – jth agent position vector . 
ri                    ith agent position vector. 
ric                   ith agent – group center position vector. 
rc                   Group center position vector. 
Vcohesion (ri)          i

th – jth agent interaction potential. 
Vgoal(ri)               Goal potential field. 
vc                Group center velocity vector. 
vij              ith – jth agent velocity vector . 
vi              ith agent velocity vector. 
β               Friction self decelerating force coefficient. 
εG Group expanse   

φ System total energy. 

φG Group polarization. 
σ Group spherical variance. 

 

1. Introduction: 

Swarm robotics is a new and promising approach to the design and control of multi-
agent robotic systems. Specific features of aggregations are striking in natural systems 
whose members have high rates of information exchange such as animal herds, insect 
swarms, bird flocks, and fish schools [1]. This leads us to discuss one of the most 
important phenomena in natural systems, which is the emergent behaviour.  

1.1 Emergent behaviour in literature 

Natural examples of emergent behaviour in groups due to interactions between each of 
the group’s elements are numerous. Beehives, locust swarms, geese flocking, bacterial 
mutation are all examples of emergent phenomena where a collection of individuals 
interact without central control to produce results which are not explicitly "programmed". 
The advantages of emergence-based systems can be summarized in the following: (1) 
they are robust in a way that the system still works even if one of its unit fails (2) they 
can adapt to changing parameters environment, which is typical of the real world (3) 
they don’t need to have complete knowledge to achieve a goal (4) they find a 
reasonable solution quickly and then optimize it. Concerning the simulation of 
individuals’ motion in groups, most simulation studies assume that all individuals are 
identical. The author in [2] discussed that, among a school of fish, the inclusion of a 
single different fish may alter the group’s collective behaviour. Common swarming 
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patterns have been observed and reported in various species in nature [3]. The 
coherent flock and the single-mill states are among the most common patterns 
observed in biological swarms [4-5]. The double-mill pattern is also occasionally seen 
[6]. Models of natural or artificial individuals, which interact through pair-wise long-range 
attraction and short-range repulsion within a swarm, were introduced [7-12]. In [12], the 
authors were able to predict stability and emergent patterns of organization starting from 
the form of the two-body interaction through a model specially designed to simulate the 
motion of self-accelerated particles. On the other hand, propagating the motion of the 
swarm using artificial potential fields shows that swarms of interacting particles can 
relax into vortex-like states [13]. Such evolutionary behaviour may offer new 
approaches to many classes of information processing problems, which currently prove 
infeasible. In recent years, there has been much interest in decentralized, multi-robot 
systems due to their potential advantages in many applications over more traditional, 
monolithic architectures [14]. Another challenge is to design systems that can 
accomplish their tasks more reliably, faster and cheaper than could be achieved by a 
single more complex robot. An application is to develop controllers for the individual 
robots such that the group as a whole performs the desired higher-level task through 
the coordinated action of the individuals as presented in [15]. 
 Mathematical modeling of emergent behaviors in such systems provides a promising 
way for more robust designs of multiagent robotic systems. However, before going deep 
in modeling we need to mention some statistical tools, which are widely used in the field 
to investigate simulated group movements. These statistics will be used to have insights 
of our model.  

 
1.2 Descriptive statistics to aid model analysis  

We now consider a system composed of N identical individuals. At a particular time t, 

each individual has an associated position )(tir (a column vector of Cartesian 

coordinates), a velocity vector )(tiv ; a  mass im  (assuming the individuals’ mass is 

identical and equal to unity for simplicity), where i = 1, . . . , N  . The group center, which 
is analogous to the center of mass in a multi-particle physical system, is calculated as 
the mean of all the individuals’ position vectors at time t: 
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As defined in [16], the group polarization (φG) measures the degree of alignment 
amongst individuals within the group in a way that a more dispersed group has a lower 
polarization. The group angular momentum (mG) is a measure of the degree of rotation 
of the group around the group center: 
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where |. | is the norm of a vector, and ic

∧

r  is the unit relative position vector between the 
i-th individual and the group center. We can also define the spherical variance as an 
estimate of the dispersion of the group in the following way [17]: 
 

Gφσ −= 1            (4) 

 

We can then use two measures to compare the relative size of groups; the average 
nearest neighbor distance (Av. NND) and the group expanse. The nearest neighbor 
distance, which varies for each individual within the group, is the distance between a 
particular individual and its closest neighbor [11]. We calculate the average nearest 
neighbor distance for the group as: 
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The group expanse measures the size of the group. It is the average distance between 
individuals and the group center [11]. Therefore, expanse is calculated as: 
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An increasing average NND implies that the inter-agent distances are increasing and 
the group becomes more dispersed while as expanse increases, the physical size of the 
group increases. 
     

2. Social Potential Model for Swarm Robot Emergent Behaviour 

In [13] a discrete particle model is introduced where the author discussed the 
emergence of vortex-like behavior that could then be viewed as a constrained minimum 
energy configuration, which the swarm relaxes into. In [18], we model the collective 
group behaviour by using a sum of gradient potentials based on exponentially decayed 
social forces and a linear dissipation force term to prevent agents from abandoning the 
group due to excessive linear momentum and/or having identical initial positions which 
result in a violent repulsion of the individuals. This generates behaviour, which is close 
to that of real biological systems whose members feel a desire to stick together.  In this 
paper we develop the model of cohesive forces to include an alignment force term, 
which is introduced in [13] to allow individuals to orient their velocities with respect to 
one another. Considering the system defined at the beginning of section 1.2, the 
equations of motion will be: 
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tii ∂∂= /rv            (7) 

 

totalii tm Fv =∂∂ /.           (8) 

 

Where Ftotal is the total force that is exerted on the ith agent. It is constituted of cohesion 
forces among the agents, alignment forces and a dissipation (friction) force.  
 We now consider only pair-wise interactions among individuals, and we neglect 
higher order interactions because they are less likely to occur in comparison to the 
likelihood of pair-wise interactions. We define the attractive and repulsive forces as 
decaying exponential functions by using the generalized Morse potential, giving close to 
real simulation for the individuals’ pair-wise interaction as follows: 
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Where the potential is characterized by attractive and repulsive potential fields of 
strength Ca and Cr with ranges la and lr respectively while C is the potential amplitude 
ratio and l is the potential range ratio (Ca, Cr,  la, and lr  are positive constants; C =Cr / Ca 
and l =lr / la ). Now we can derive a physical definition for the social forces acting on the 
ith agent, due to the cohesion social potentials. Therefore, it can be seen that: 
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Where 
∧

ijr  is the unit vector in the direction of the vector ijr . 

 We now consider a different perspective inspired from the model introduced in [13], 
by the addition of an alignment force to the cohesion model. This alignment force, which 
is designed to act directly on the agent velocities, allows individuals to orient their 
velocities with respect to one another. Therefore, the alignment force will be defined as: 
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 Now we use a simple dissipative force, similar to a simple frictional force that directly 
acts upon each individual. We define the dissipative force acting on the ith agent as: 
 

iindissipatio vrF β−=)(                   (12) 
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Where β is a positive nonzero integer, which governs the amount of dissipation 
(essentially the coefficient of friction). The total force, which acts upon the ith agent at a 
particular time t according to the model, is therefore defined as: 
 

)()()()( indissipatioialignmenticohesionitotal rFrFrFrF ++=                    (13) 

Substituting from Eq. (10-12) in Eq. (13), it can be seen that: 
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3. Stability Analysis of the Model 

We will discuss the stability of the model using the Lyapunov stability method. The 
Lyapunov function used here is the total energy of the system and we will show that the 
system is stable by proving that the system will slowly leak energy and relax to a 
minimum-energy state. Substituting from Eq. (14) in Eq. (2), and taking the physical 
definition of force into consideration, it can be concluded that: 
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The total energy of the system is therefore: 
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Then, the time derivative of the total energy is given by: 
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Substituting from Eq. (15) in Eq. (17) it can be seen that: 
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Then, substituting in Eq. (18) it can be seen that: 
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Knowing that 0>β , 0≥oC  then 0
.

<φ , therefore the system is Lyapunov stable, so that 

the group will slowly leak energy and relax to a minimum-energy state.  
 

4. Simulation Results and Discussion 
In this section we will show the importance of the dissipative force and study the effect 
of the interaction parameters on the group behaviour.  
 Concerning how the friction coefficient affects the model, we use the model from 
Eq. (7, 8, 14) with default parameters (Np = 30, Ca=1, Cr=1.2, Co=0.1, la =1, lr =0.2, lo 

=1.5) to simulate the individuals’ motion. We run our simulations starting from random 
initial conditions for 500 simulation steps (time enough to reach the minimum-energy 
state). Logically, the dissipation force only acts to make the individuals slow down and it 
has nothing to do with the individual’s inclination to align with its neighbours. However, 
the dissipative force has an effect on group polarization; as shown in Fig.1. Therefore, 
in general, higher dissipation will lead to a lower polarization that indicates a more 
dispersed group arrangement. Fig.1 also shows β = 0.1 as corresponding to the 
workable value of dissipation before a rapid leak of the system’s energy.  
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Fig.1. Effect of different dissipative coefficients on the polarization of the group. 

(Ca=1;Cr=1.2;Co=0.1;la=1;lr=0.2;lo=1.5;m=1) 
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The comparison between the simulation results in Fig.2, without a dissipation term, and 
Fig.3, with β = 0.1, shows the effect of adding a dissipation term to the system. Clearly, 
the individuals’ velocities are lower for higher dissipation (friction) force. 
 

 

 

(a)  (b)  

Fig.2. Simulation of the group motion according to the model with no dissipative 
forces. Ca=1, Cr=1.2, Co=0.1, la=1, lr=0.2, lo=1.5, m=1, N=20, (a) t=0 (b) t=14 

 

 

 

(a)  (b)  

Fig.3. Simulation of the group motion according to the model with dissipative 
forces. Ca=1, Cr=1.2, Co=0.1, la=1, lr=0.2, lo=1.5, m=1, β =0.1, N=20, (a) t=0 (b) 

t=14 
 

  
Also, it is apparent from the comparison between Fig.4 and Fig.5 that the dissipation 
has a considerable effect on the group angular momentum and the group spherical 
variance. As the dissipation coefficient increases the speeds of the individuals become 
lower which cause two effects; first the polarization decreases noticeably, therefore the 
value of spherical variance approaches unity very soon; secondly the group angular 
momentum decreases rapidly with time until reaching zero, giving an indication of a 
faster rate of leak in system energy for higher dissipation.  
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Fig.4. Group spherical variance and angular momentum versus time. 

(Ca=1;Cr=1.2;Co=0.1;la=1;lr=0.2;lo=1.5;m=1,β =0.01) 
 

 
Fig.5. Group spherical variance and angular momentum versus time. 

(Ca=1;Cr=1.2;Co=0.1;la=1;lr=0.2;lo=1.5;m=1,β =1.8) 

t 

t 

Index 

Index 
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There are two parameters that control the strength and range of the alignment force 
respectively, (Co) and (lo). Therefore, it is logical to expect that for higher values of Co 
the group individuals become more likely to emerge in the vortex pattern, which should 
be particularly affecting the group angular momentum. This is illustrated in Fig.6, where 
we have altered the alignment magnitude while fixing the values of the other 
parameters, so that as the value of Co increases the group angular momentum 
noticeably increases.  
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Fig.6. Group angular momentum as a function of Co. 
(lr =0.2, la =1, Cr=1.2, Ca=1, β = 0.1) 

 

 

Also, Fig.7 shows the effect of the alignment magnitude on polarization. As the value of 
Co increases, the group polarization decreases (as expected). Logically, the individuals 
tend to form a less compact cluster for increasing values of Co due to centrifugal action 
increasing, which has a low effect on the group size. This is shown in Fig.8, which 
demonstrates that the values of the group expanse and average NND slowly increases 
as the alignment magnitude increases. 
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Fig.7. Group polarization as a function of Co. 
(lr =0.2, la =1, Cr=1.2, Ca=1, β = 0.1) 
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Fig.8. Group expanse and average NND as a function of Co.  
(lr =0.2, la =1, Cr=1.2, Ca=1, β = 0.1) 

 
 
The main effect on the model due to the cohesion forces is caused by the potential 
ranges (lr and la) rather than the potential amplitudes, as these terms are involved in the 
exponential decay [9]. We expect that the effect of increasing the attraction and 



 12

repulsion ranges (la and lr) are to decrease and increase the size of the group, 
respectively. The results in Fig.9 show that as the range ratio l increases, which can be 
due to either lr increasing and/or la decreasing, the values of group expanse and 
average NND’s increase, indicating a more dispersed group emerges.  
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Fig.9. Group expanse and average NND as a function of the ratio l (lr/la).  
(Cr=1.2, Ca=1, β = 0.1) 
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Fig.10. Group expanse and average NND as a function of the ratio C (Cr/Ca).  
(lr=0.2, la=1, β = 0.1) 
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Also as the range ratio C increases, which can be due to either Cr increasing and/or Ca 
decreasing, a more dispersed group emerges. As shown in Fig.10, when the values of 
C increase so does the value of group expanse and average NND’s.  
 Until now, the dissipation force helps to control group behaviour and to make the 
model suitable for real applications. Now we introduce an additional attraction gradient 
force that acts on individuals at longer distances than the current repulsion and 
attraction forces. This attraction force should be an attraction to the group as a whole 
rather than to individuals. Assuming a potential sink at point G (the goal position for the 
swarm) where Cg is the potential attraction amplitude of the goal and lg is the potential 
attraction range, then the equation for the goal potential according to generalized Morse 
potential will be: 
 

( )ggi l

gigoal eCV
)(

)(
rr

r
−−

−=                     (21) 

 

Now the total force, Eq. (13), will be modified to include the goal force term:  
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Therefore, Eq. (14) will be: 
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This form of the model will help in using the model in the robot navigation simulation 
using the artificial potential fields based navigation technique. Fig.11 shows a swarm of 
agents in a vortex like shape pattern approaching a potential sink at point G.  Also, as a 
future work, we can see that the dissipation term will play a vital rule in controlling the 
agents during navigation in a way that generates swarm emergent behaviour in more 
efficient and robust navigation techniques. 
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a)  (b)  

(c)  (d)  

(e)  (f)  

 
Fig.11. Simulation of the group motion in a vortex like shape pattern approaching 

a potential sink at point G. Cg=15, Ca=1, Cr=1, Co=0.7, lg=5, la=1, lr=0.2, lo=1.5, 
m=1, β=1, N=31, (a) t=0 (b) t=28 (c) t = 86 (d) t=135 (e) t=204 (f) t=318 

 
 
5. Conclusions  
 
We introduce a model to simulate the emergent behaviour of multi-agent robot systems, 
based on individuals’ mutual interactions, which encounter repulsion forces, attraction 
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forces, alignment forces and dissipative forces among the system’s members. Adopting 
the approach of [9], we discuss the stability of the system by using the Lyapunov 
stability method to give clear information about the suitability of the model for robot 
applications. Also by adopting the analysis of some previous work [5] to similar models, 
the effects of the models’ various component parameters on the global behavior of the 
model are investigated. 
 The results show that that when the dissipation coefficient increases, the speeds of 
the individuals become lower which causes two effects; first the polarization decreases 
noticeably, therefore the value of spherical variance approaches its maximum value 
very rapidly; secondly the group angular momentum decreases rapidly with time, giving 
an indication of a faster rate of leak in system energy for higher dissipation, so that we 
concluded that β = 0.1 corresponds to the workable value of dissipation before a rapid 
leak of the system’s energy. The results also show that the alignment magnitude affects 
the group polarization, group angular momentum, and group size. As the value of Co 
increases, the group polarization decreases (as expected). Also when the value of Co 
increases the group angular momentum noticeably increases, and then due to 
centrifugal action, the group expanse and average NND slowly increase. Finally, the 
results show that that the effects of increasing the attraction and repulsion parameters 
are to decrease and increase the size of the group, respectively. 
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