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Planning rigid body motions using Elastic curves

James Biggs and William Holderbaum

Abstract— This paper tackles the problem of computing
smooth, optimal trajectories on the Euclidean group of motions
SE(3). The problem is formulated as an optimal control
problem where the cost function to be minimized is equal to
the integral of the classical curvature squared. This problem
is analogous to the elastic problem from differential geometry
and thus the resulting rigid body motions will trace elastic
curves. An application of the Maximum Principle to this
optimal control problem shifts the emphasis to the language
of symplectic geometry and to the associated Hamiltonian
formalism. This results in a system of first order differential
equations that yield coordinate free necessary conditions for
optimality for these curves. From these necessary conditions
we identify an integrable case and these particular set of
curves are solved analytically. These analytic solutions provide
interpolating curves between an initial given position and
orientation and a desired position and orientation that would
be useful in motion planning for systems such as robotic
manipulators and autonomous oriented vehicles.

I. INTRODUCTION

There are a number of applications in which the problem
of generating smooth 3−D trajectories for a rigid body is
encountered. For example in the path planning problem for
autonomous oriented vehicles such as Underwater Vehicles
[1], Unmanned Air Vehicles [2], for simulating objects in
computer graphics [3] and trajectory generation in robotics
and kinematics [4]. In each of these problems it is desirable
to plan a smooth motion between an initial position and
orientation and a desired final position and orientation in
R3. In addition to planning smooth motions it is desirable
that the trajectories be invariant with respect to the choice of
coordinate system used to describe the motion. In particular
screw motion forms the basis for motion planning schemes
in [5] and [6]. Although screw displacement is smooth
and invariant with respect to rigid body transformations, it
does not optimize a meaningful cost function. In this paper
we aim to plan smooth trajectories that can be expressed
independently of the coordinate frame and are also optimized
with respect to some meaningful cost function.
Various literature has tackled the optimal trajectory planning
problem using a variational approach and optimizing the
curve with respect to some practically motivated cost func-
tion. For example in [7], [8] the authors derive coordinate
free necessary conditions for generalized cubic splines. In
[9], [10] for systems defined on SE(3), a coordinate free
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formulation of the variational approach was used to generate
shortest paths, minimum acceleration and jerk trajectories.

In this paper we propose a method that generates smooth
3−D trajectories that minimize the integral of the square
of the curvature of the curve. This problem is analogous
to the elastic problem from differential geometry described
in [11]. Therefore, rigid body systems which trace these
smooth, optimal curves will trace elastic curves in Euclidean
space. Such a cost function is practically motivated as it
minimizes the amount of steering required to track such
a curve and therefore avoids using high accelerations and
forces. In addition this paper uses the Maximum Principle
of Optimal control rather than a direct variational approach
[7], [8] to solve these problems. This method results in
a Hamiltonian system which lends itself to conceptually
clear global investigations. The advantage of the Hamiltonian
setting is that we can directly apply the theory of integrable
Hamiltonian systems [12]. If the conditions of this theorem
are satisfied then analytic solutions exist and it is therefore
of significance to try and solve for them. In addition the
presence of several conserved quantities inherent in these
Hamiltonian systems aids in the explicit computation of the
rigid body motions.
The motion planning problem for rigid body systems is
formulated as an optimal control problem on the Lie group
SE(3), where the cost function to be minimized is the integral
of the curvature squared (analogous to the elastic energy in
[11]). The coordinate free Maximum Principle [12], [13] is
then applied to solve this problem. The emphasis of this
paper is placed on an integrable case where the necessary
conditions for optimality can be expressed analytically. In
addition the corresponding optimal motions are expressed
in a coordinate free manner, that is they are described
completely in terms of the geometrically invariant natural
curvatures. These optimal motions are shown to trace helical
paths which could be useful in motion interpolation schemes.
This problem formulation is both practical for the path plan-
ning application considered and illuminates how the general
theory of optimal control, framed curves and left-invariant
Hamiltonian systems applies to this particular setting.

II. NATURAL FRAMES

In order to compute smooth trajectories in SE(3) we
assign a geometric frame to the rigid body system, that is,
a moving frame along a space curve. Each point on the
moving rigid body traces out a curve in space and hence
has a Serret-Frenet frame associated with it. An orthonormal
frame attached to the rigid body stays aligned with the Serret-
Frenet frame and the parameters of motion are given by



the curvature and torsion of the space curve along which
the object moves. The Serret-Frenet frame has been used
previously to study rigid body motions for robotic systems
in [14] and [15]. It is essential to note that framed curves
will in general not coincide with the rigid body fixed frame.
However, in the particular case that the rigid body motion is
constrained to travel in the direction of the unit tangent vector
to the curve the two frames can be related [12]. Moreover,
the rigid body is reduced to a particle and the Serret-Frenet
frame describes the kinematics of this particle as it moves
along a continuous, differentiable curve.
For existence and uniqueness of the Serret-Frenet frame the
curve must be of class Cn where n≥ 3 and the nondegeneracy
condition of nonvanishing classical curvature must hold.
At zero curvature the normal vector is not well-defined
(it is arbitrary), hence it is not possible to associate a
unique Serret-Frenet frame at such a point, nor uniquely
continue it beyond this point. Such conditions have caused
problems in formulating control laws in [2]. This problem
was overcome in [2] by using an alternative frame known as
the Natural frame [16]. The natural frame does not require
the nondegeneracy condition and only that the curve be of
class Cn with n≥ 2.
The Natural Frame [16], whose parameters of motion are
given by the natural curvatures of the space curve along
which the object moves, has previously been suggested in
the robotics literature [18] where these motions are referred
to as ‘rotation minimizing’. The Natural frame is useful
in these applications as it does not twist about the curve
as much as the Serret-Frenet frame. Additionally, rotation
minimizing frames such as Fermi-Walker frames have been
used extensively in the physics literature to model relativistic
kinematics, see for example [19].
Explicitly, the Natural frame is defined by an orthonormal
frame about the curve γ(t) described by the following
differential equations:

γ̇(t) = x

ẋ = k1y+ k2z

ẏ =−k1x

ż =−k2x

(1)

where γ(t) ∈ R3, the orthonormal frame R(t) = (x| y|z) ∈
SO(3) and k1,k2 are the natural curvatures which are related
to the classical curvature κ of the Serret-Frenet frame by
κ2 = k2

1 + k2
2 [16]. In this paper we wish to use this Natural

frame as well as the Maximum Principle of optimal control
for systems defined on a Lie group [12] to plan rigid body
motions. In order to formulate our problem statement in the
context of an optimal control problem on the Lie group
SE(3), it is necessary to lift the Natural frame (1) to a
differential system defined on SE(3). This lift is similar to
that for the Serret-Frenet frame explained in [12]. We define
an element g(t) ∈ SE(3) by:

g(t) =
(

1 0
γ(t) R(t)

)
(2)

and therefore is associated with (1) via the relations

[1 γ(t)]T = g(t)~e1, [0 x]T = g(t)~e2,

[0 y]T = g(t)~e3, [0 z]T = g(t)~e4

(3)

where ~e1,~e2,~e3,~e4 is the standard orthonormal frame in R4.
The Natural Frame (1) can then be expressed as a differential
system on SE(3):

Proposition 1: The left-invariant differential equation:

dg(t)
dt

= g(t)




0 0 0 0
1 0 −k1 −k2
0 k1 0 0
0 k2 0 0


 (4)

where g(t) ∈ SE(3) is equivalent to the Natural frame (1).
Proof.
it follows from differentiating (3) w.r.t t that

[0 γ̇(t)]T =
dg(t)

dt
~e1 = g(t)~e2 = [0 x]T

[0 ẋ]T =
dg(t)

dt
~e2 = g(t)(k1~e3 + k2~e4) = k1[0 y]T + k2[0 z]T

[0 ẏ]T =
dg(t)

dt
~e3 = g(t)(−k1~e2) =−k1[0 x]T

[0 ż]T =
dg(t)

dt
~e4 = g(t)(−k2~e2) =−k2[0 x]T

(5)
then equating the L.H.S to the R.H.S yields (1). ¤
The system (4) can be expressed conveniently in coordinate
form by defining the following basis for se(3)

A1 =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 ,A2 =




0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0




A3 =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


 ,B1 =




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0




B2 =




0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0


 ,B3 =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0




(6)

and it follows that (4) can be expressed as:

dg(t)
dt

= g(t)(B3 + k1A1 + k2A2) (7)

As explained in the introduction we will compute smooth
trajectories, that minimize the integral of the classical curva-
ture squared, which is equivalent to minimizing the elastic
energy of the curve [11]. For the Natural frame (7) this is
equivalent to minimizing the function:

J =
1
2

∫
κ2dt =

1
2

∫ (
k2

1 + k2
2
)
dt (8)



These natural curvatures are analogous to the gyroscopic
steering controls for an Unmanned Air Vehicle, see [2]. This
problem is formally stated as an optimal control problem:

Problem Statement 1: Compute the motions g(t) ∈ SE(3)
of the left-invariant differential system:

dg(t)
dt

= g(t)(B3 + k1A1 + k2A2) (9)

that minimizes the expression:

J =
1
2

∫ (
k2

1 + k2
2
)
dt (10)

subject to the given boundary conditions g(0) = g0 and
g(T ) = gT , where k1, k2 are the natural (steering) curvatures.
The Problem Statement 1 is geometrically analogous to the
elastic problem in [11]. It follows that the rigid body motions
that correspond to Problem Statement 1 will trace elastic
curves in Euclidean space. In the following section we apply
the Maximum Principle to Problem Statement 1.

III. HAMILTONIAN LIFT ON SE(3)
The application of the Maximum Principle [13], [12] to

Problem Statement 1 shifts the emphasis to the language
of symplectic geometry and to the associated Hamiltonian
formalism. The Maximum Principle states that the optimal
paths are the projections of the extremal curves onto the
base manifold, where the extremal curves are solutions of
certain Hamiltonian systems on the cotangent bundle. In
Problem Statement 1 the manifold in question is SE(3) and
the cotangent bundle is T ∗SE(3). We begin by defining the
appropriate pseudo-Hamiltonian on T ∗SE(3) for Problem
Statement 1 (see [24], [12] for details):

H(p,u,g) = p(g(t)B1)+ k1 p(g(t)A1)+ k2 p(g(t)A2)

−ρ0
1
2

(
k2

1 + k2
2
) (11)

where p(·) : T SE(3) 7→ R and ρ0 = 1 for regular extremals
and ρ0 = 0 for abnormal extremals. The abnormal extremals
arise as solutions of the optimal control problem defined by
the constraints alone and are the subject of extreme interest,
see [20], [21]. These situations are not of principle concern
in this paper and we consider only the regular extremals
(ρ0 = 1). As the configuration of the rigid body is the Lie
group SE(3), the cotangent bundle T ∗SE(3) can be realized
as the direct product SE(3)×se∗(3) where se∗(3) is the dual
of the Lie algebra se(3) of SE(3), see [12]. Therefore, the
original Hamiltonian defined on T ∗SE(3) can be expressed
as a reduced Hamiltonian on the dual of the Lie algebra
se∗(3). We define the linear functions Mi = p̂(Ai), pi = p̂(Bi)
for i = 1,2,3 where p̂(·) : se(3) 7→ R. Such functions are
the Hamiltonian lifts of left-invariant vector fields on SE(3),
because p(g(t)Ai) = p̂(Ai) for any p = (g(t), p̂) and any
Ai ∈ se(3). Moreover, if Mi, pi is a collection of linear
functions generated by the basis Ai,Bi in se(3) then the
vector (M1,M2,M3, p1, p2, p3) is the coordinate vector of p̂
relative to the dual basis A∗i ,B

∗
i . Therefore, the Hamiltonian

(11) can be expressed on se∗(3) as

H = p1 + k1M1 + k2M2− 1
2

(
k2

1 + k2
2
)

(12)

Then through the Maximum principle of optimal control
and the fact that the control Hamiltonian (12) is a concave
function of the control functions k1,k2, it follows from [12]
that calculating ∂H

∂k1
= ∂H

∂k2
= 0 yields the optimal controls:

k1 = M1,k2 = M2 (13)

substituting (13) into (12) gives the optimal Hamiltonian:

H = p1 +
1
2

(
M2

1 +M2
2
)

(14)

In addition substituting the expressions (13) into (4) the
optimal (with respect to the cost function (8)) motions are
the solutions g(t) ∈ SE(3) of the differential equation:

dg(t)
dt

= g(t)




0 0 0 0
1 0 −M1 −M2
0 M1 0 0
0 M2 0 0


 (15)

Therefore, the path planning problem amounts to solving the
extremal curves M1 and M2 and then integrating equation
(15) to obtain the optimal motions g(t) ∈ SE(3). In Section
IV we solve the extremal curves M1 and M2 explicitly for
a special case and then proceed in Section V to solve the
equation (15) for g(t) ∈ SE(3).

IV. SOLVING THE EXTREMAL CURVES

In order to solve equation (15) it is necessary to solve the
extremals curves M1 and M2. In order to do this we need
to look at all the available information. Firstly, we compute
the corresponding Hamiltonian vector fields from the left-
invariant Hamiltonian (14). To do this it is convenient to
state the Lie bracket table with the Lie bracket defined by
[X ,Y ] = XY −Y X , then for the basis (6):

[, ] A1 A2 A3 B1 B2 B3
A1 0 A3 -A2 0 −B3 B2
A2 -A3 0 A1 B3 0 −B1
A3 A2 -A1 0 −B2 B1 0
B1 0 −B3 B2 0 0 0
B2 B3 0 -B1 0 0 0
B3 -B2 B1 0 0 0 0

the Poisson bracket is given by the equation:

{ p̂(·), p̂(·)}=−p̂([·, ·]) (16)

and it follows that the time derivative of M1 along the
Hamiltonian flow is then:

Ṁ1 = {M1,H}
= {M1, p1}+M1{M1,M1}+M2{M1,M2}
= 0+0−M2M3

(17)

the remaining Hamiltonian vector fields are:

Ṁ1 =−M2M3

Ṁ2 =−p3 +M1M3

Ṁ3 = p2

ṗ1 = M2 p3

ṗ2 = p1M3

ṗ3 =−p1M1

(18)



The integral curves of the Hamiltonian vector fields (18)
are necessary conditions for optimality and can be used to
solve for our critical variables M1 and M2. In addition to this
there are constants of motions inherent in all left-invariant
Hamiltonian systems defined on SE(3), see [12] for details.
In particular the Casimir functions

I2 = p2
1 + p2

2 + p2
3 (19)

and
I3 = M1 p1 +M2 p2 +M3 p3 (20)

are constant along the Hamiltonian flow. This is easily veri-
fied as they are in involution with any other constant function
Ci on se∗(3) i.e. {I2,H} = 0,{I3,H} = 0 and {I2, I3} = 0,
see [12] for details. Using the Hamiltonian vector fields and
the constants of motion H, I2, I3 we can attempt to solve
for M1 and M2. Solving the Hamiltonian vector fields (18)
with respect to the constants of motion can be achieved
numerically using such methods as those described in [22].
However, the advantage of studying Hamiltonian systems is
that in many cases analytic solutions can be computed, even
for high dimensional cases such as our system defined on the
12-D cotangent bundle T ∗SE(3)∼= SE(3)×se∗(3). Moreover,
Hamiltonian systems that can be solved analytically are
called Integrable Hamiltonian systems, explicitly from [23]:
A Hamiltonian function on a symplectic manifold N of
dimension 2n is said to be integrable if there exist constant
functions ϕ2, ...,ϕn on N that together with the Hamiltonian
H = ϕ1 satisfy the following two properties:
• ϕ1, ...,ϕn are functionally independent i.e the differen-

tials dϕ1, ...,dϕn are linearly independent for an open
subset of N.

• The functions ϕ1, ...,ϕn Poisson commute with each
other.

Thus, in identifying the (n−1) functions ϕi the Hamiltonian
function is completely integrable and analytic solutions of
the Hamiltonian vector fields can be found. For left-invariant
Hamiltonian systems defined on SE(3) we can be more
specific about integrability, following the arguments posed
in [23] we state the following theorem:

Theorem 1: For any left (respectively right) invariant
Hamiltonian system defined on SE(3), there exist five con-
stants of motion ϕ1 = H,ϕ2 = I2,ϕ3 = I3,ϕ4,ϕ5, where
the constants of motion ϕ4,ϕ5 correspond to right-invariant
vector fields.
Proof. see [23]. It follows from Theorem 1 that for the
left-invariant Hamiltonian (14) and the corresponding vector
fields (18) to be integrable, an additional constant of motion
needs to be identified. This is because the Hamiltonian is
defined on the 12-D cotangent bundle T ∗SE(3) ∼= SE(3)×
se∗(3) and therefore six constants of motion are required for
integrability. In the classic example of Hamiltonian systems
defined on SE(3) such as the spinning top [12], the additional
constant of motion required for integrability arises through
the assumption that the top is axially symmetric. However,
an analogous symmetry argument can not be used for the
Hamiltonian vector fields (18). Therefore, to solve (18)

numerical methods such as those described in [22] can be
used to solve the extremal curves. However, using numerical
methods does not provide a global solution to this system
as these methods are inherently local. Computing analytic
solutions are highly desirable in motion planning as they
lend themselves to conceptually clear global investigations.
In the remainder of this paper a trivial integrable case
will be stated followed by a non-trivial integrable case of
the Hamiltonian vector fields (18). For the non-trivial case
analytic expressions are derived for the optimal motions.
A trivial example of an integrable case of vector fields
(18) occurs when p1 = p2 = p3 = M1 = M2 = M3 = 0.
Moreover, for these values p1 = p2 = p3 = M1 = M2 = M3 are
constant ∀t and therefore the system is integrable (providing
6 constants necessary for integrability). Substituting these
values into (9) yields

dg(t)
dt

= g(t)B3 (21)

this is easily integrated to yield γ(t) = [t,0,0]T with R equal
to a 3×3 matrix with zero entries. Therefore, a straight line
motion with zero rotation about this line is an optimal rigid
body motion. In addition there exists a non-trivial integrable
case of the Hamiltonian vector fields (18). This case is
considered non-trivial as it gives rise to time-dependent
extremal curves. It is observed that p1 = p2 = p3 = 0 is
an invariant surface for the Hamiltonian vector fields (18).
Explicitly, for p1 = p2 = p3 = 0 the equations (18) degenerate
to:

Ṁ1 =−M2M3

Ṁ2 = M1M3

Ṁ3 = 0
ṗ1 = 0
ṗ2 = 0
ṗ3 = 0

(22)

this implies that M3 (if not identically zero), which is func-
tionally independent of H, I2, I3 is constant. For convenience
the constant M3 will be denoted by c. In addition p1 = p2 =
p3 = 0 ∀t. It follows that the Hamiltonian vector fields (22)
are completely integrable. These particular curves will be
the focus of the remainder of this paper. For these particular
curves the Hamiltonian (14) reduces to

H = M2
1 +M2

2 (23)

and we assume that H > 0. It follows parameterizing the
Hamiltonian (23) using polar coordinates in such a way that
the differential equations (22) are satisfied that the extremal
curves are:

M1 = r cosct

M2 = r sinct

M3 = c
(24)

It follows that as se∗(3) ∼= R6, the extremal curves can
be geometrically interpreted as a circle embedded in R6.
Substituting M1 = M2 = 0 into (15), it is easily shown that
the corresponding optimal motions are along a straight line



with zero rotation about this line. However, to compute the
optimal motions corresponding to the extremal curves (24)
is not trivial as the elements of the Lie algebra are time-
dependent. Integrating (15), where M1 and M2 are defined
by (24) is the subject of the next section.

V. OPTIMAL MOTIONS FOR THE RIGID BODY

Having solved for the extremal curves M1 and M2 we
now wish to solve for the corresponding optimal motions in
SE(3). This is done by integrating the equation (15), which
describes optimal motions with respect to the cost function
(8). For the purpose of integration it is convenient to split the
natural frame (15) into its translational and rotational part:

dγ(t)
dt

= R~e1 (25)

and

dR
dt

= R




0 −M1 −M2
M1 0 0
M2 0 0


 (26)

where R−1 = RT . This section exploits the conservation laws
inherent in all left-invariant Hamiltonian systems on SE(3)
to integrate (25) and (26). For convenience we define a basis
for the Lie algebra so(3)

E1 =




0 −1 0
1 0 0
0 0 0


 ,E2 =




0 0 −1
0 0 0
1 0 0




E3 =




0 0 0
0 0 −1
0 1 0




(27)

then the following quantities are conserved for all left-
invariant Hamiltonian systems on SE(3)

RPR−1 = constant (28)

and

RMR−1 +[X ,RPR−1] = constant (29)

where
M = M1E1 +M2E2 +M3E3

P = p1E1 + p2E2 + p3E3

X = x1E1 + x2E2 + x3E3

(30)

where x1,x2,x3 are the position coordinates of the vector
γ(t) = [x1,x2,x3]T . For a proof that the quantities (28) and
(29) are constant for all left-invariant Hamiltonian systems on
SE(3) see [12]. Using these constants of motion we are able
to integrate (26) which is stated in the following theorem:

Theorem 2: R = (x| y|z) ∈ SO(3) is the rotation matrix
which relates the natural frame to a fixed inertial frame

where:

x =




c
K

− r
K sinKt

r
K cosKt




y =




r
K sinct

cosKt cosct + c
K sinKt sinct

sinKt cosct− c
K cosKt sinct




z =




− r
K cosct

− c
K cosct sinKt + sinct cosKt

c
K cosKt cosct + sinct sinKt




(31)

where K =
√

r2 + c2 and r,c are the constant parameters of
the curvatures(24)
Proof.
For these particular curves p1 = p2 = p3 = 0 the conservation
laws (28) and (29) reduce to:

RMR−1 = constant (32)

this constant matrix RMR−1 is then conjugated for a partic-
ular solution R such that:

RMR−1 =
√

M2
1 +M2

2 +M2
3 E3 (33)

substituting (24) into (33) gives:

RMR−1 =
√

r2 + c2E3 (34)

for convenience we will define the constant K2 = r2 + c2

therefore we can write

M = KR−1E3R (35)

expressing R in a convenient coordinate form [12]:

R = exp(φ1E3)exp(φ2E2)exp(φ3E3) (36)

and substituting (36) into (35) yields:

M = K exp(−φ3E3)exp(−φ2E2)E3 exp(φ2E2)exp(φ3E3)
(37)

explicitly

M = K




0 cosφ3 sinφ2 −sinφ2 sinφ3
−cosφ3 sinφ2 0 −cosφ2

sinφ2 sinφ3 cosφ2 0




(38)
equating M in (30) to (38) gives:

M1 =−K cosφ3 sinφ2

M2 = K sinφ2 sinφ3

M3 = K cosφ2

(39)

therefore it is easily shown that:

cosφ2 =
M3

K

sinφ2 =±
√

1− M2
3

K2

(40)

and substituting (24) into (40) and simplifying gives:

cosφ2 =
c
K

sinφ2 =± r
K

(41)



in addition from (39) we have:

tanφ3 =−M2

M1
(42)

therefore:
sinφ3 =∓ M2√

M2
1 +M2

2

cosφ3 =± M1√
M2

1 +M2
2

(43)

and substituting (24) into (43) and simplifying yields:

sinφ3 =∓sinct

cosφ3 =±cosct
(44)

in order to obtain an expression for φ1 we substitute (36)
into (26) and simplify to yield:

φ̇1




0 cosφ3 sinφ2 −sinφ2 sinφ3
−cosφ3 sinφ2 0 −cosφ2

sinφ2 sinφ3 cosφ2 0




+φ̇2




0 −sinφ3 −cosφ3
sinφ3 0 0
cosφ3 0 0




+φ̇3




0 0 0
0 0 −1
0 1 0


 =




0 −M1 −M2
M1 0 0
M2 0 0




(45)

which leads to

φ̇1 sinφ2 sinφ3 + φ̇2 cosφ3 = M2 (46)

and
φ̇1 cosφ3 sinφ2− φ̇2 sinφ3 =−M1 (47)

dividing equation (47) by sinφ3 and (46) by cosφ3 and
adding the two equations and simplifying yields:

φ̇1 =
M2 sinφ3−M1 cosφ3

sinφ2
(48)

substituting (24), (41) and (44) into (48) and integrating with
respect to t yields:

φ1 = Kt +β (49)

where β is a constant of integration. Assuming for simplicity
of exposition that β = 0 and substituting (41), (44), (49) into
(36) and choosing the natural frame to be positively oriented
yields (31) R = (x| y|z) ¤
Having solved for φ1,φ2,φ3, we can easily solve (25) for
γ(t) ∈ R3, which is stated as a Lemma:

Lemma 1: The optimal path γ(t) ∈ R3 defined by the
differential equation (25), with M1 = r cosct and M2 = r sinct
are helices described by:

γ(t) =
1

K2 [ct,r cosKt,r sinKt]T (50)
Proof.
Substituting (36) into (25) yields:

dγ(t)
dt

=




cosφ2
−sinφ1 sinφ2
cosφ1 sinφ2


 (51)

then substituting (49) and (41) into (51) and assuming a
positively oriented frame gives:

dγ(t)
dt

=
1
K




c
−r sinKt
r cosKt


 (52)

finally on integrating (52) yields

γ(t) =
1
K

∫ 


c
−r sinKt
r cosKt


dt =

1
K2 [ct,r cosKt,r sinKt]T

(53)
¤.
Therefore, this particular smooth rigid body motion traces
a helix and the natural frame rotates along with this helical
motion according to the rotation matrix R = (x| y|z)∈ SO(3)
in (31). These motions are also expressed completely in
terms of the parameters r,c of the geometrically invariant
natural curvatures k1 = r cosct and k2 = r sinct and therefore
independently of a coordinate frame. It is important to note
that although screw motions trace helical paths, we cannot
say that the particular solution (50) is a screw motion. A
general screw motion can be described by motion along
a straight line with rotation about the direction of motion.
However, because in general, framed curves do not coincide
with the rigid body fixed frame we cannot conclude that
the rigid body is rotating in a screw motion. Indeed, in the
particular case that the rigid body is constrained to travel in
the direction of the unit tangent vector to the curve, we can
say that the solution (50) is not a screw motion. In this case
the motion is along a helix (not a straight line) with rotation
about this helix.
Note that the optimal motion described by (50) and (31)
is only a particular optimal motion with initial γ(0) and
R0 = R(0) chosen to satisfy the equation (33). Moreover,
expressing these initial conditions as an element of SE(3) at
t = 0 the initial g(0) ∈ SE(3) is equal to:

g(0) =




1 0 0 0
0 c

K 0 − r
K

r
K2 0 1 0
0 r

K 0 c
K


 (54)

however, from the particular optimal motion (50) and (31) it
is easy to express a more general optimal motion given any
initial condition. Firstly, define arbitrary initial position and
orientation by gint ∈ SE(3) and the position and orientation
at time t given these initial conditions as ggen ∈ SE(3). It
follows that given a particular solution g(t) ∈ SE(3) where
g(0) ∈ SE(3) is g(t) ∈ SE(3) at t = 0, the general solution
ggen ∈ SE(3) can be expressed as:

ggen = gintg(0)−1g(t) (55)

g(0)−1 is the inverse of g(0) such that g(0)−1g(0) = I where
I is the identity matrix. Computing the general solution
explicitly from the particular optimal motion described by
(50) and (31) yields:

ggen = gint

(
1 0

γ(t) R(t)

)
(56)



where

γ(t) =




c2t+r2 sin(Kt)
K(c2+r2)

r(cos(Kt)−1)
c2+r2

cr(sin(Kt)−t)
K(c2+r2)


 (57)

and R(t) = (x |y |z ) is:

x =




c2+r2 cos(Kt)
c2+r2

−(r+Kr sin(Kt))
c2+r2

−2cr sin2(Kt/2)
c2+r2




y =




r((c−ccos(Kt))sin(ct)+K cos(ct)sin(Kt))
c2+r2

K2 cos(ct)cos(Kt)+cK sin(ct)sin(Kt)−r
c2+r2

−(r2+c2 cos(Kt))sin(ct)+cK cos(ct)sin(Kt))
c2+r2




z =




r(ccos(ct)(cos(Kt)−1)+K sin(ct)sin(Kt))
c2+r2

−(r+cK cos(ct)sin(Kt)−K2 sin(ct)sin(Kt))
c2+r2

cos(ct)(r2+c2 cos(Kt))+cK sin(ct)sin(Kt))
c2+r2




(58)

this optimal helical motion describes a curve through any
specified initial position and orientation of a rigid body and
can be used to plan motions adjusting the parameters r and
c as required.

VI. CONCLUSION

This paper derives smooth, optimal trajectories on the
Euclidean group of motions SE(3). These trajectories have
the advantage that they are expressed independently of a local
coordinate frame. In order to compute such trajectories we
assign a geometric frame to the rigid body, that is, a moving
frame along a space curve. A point in the rigid body follows
a curve and an orthonormal frame attached to the rigid body
stays aligned with this geometric frame. We use the Natural
Frame, where the parameters of the motion are given by the
natural curvatures of the space curve along which the object
moves. The problem of computing smooth trajectories was
then formulated as an optimal control problem where the
cost function to be minimized is the integral of the curvature
squared. This problem is analogous to the elastic problem
from differential geometry and therefore the resulting rigid
body motions will trace elastic curves. An application of
the Maximum Principle to this optimal control problem
results in a system of first order differential equations that
yield coordinate free necessary conditions for optimality.
We analysed a particular set of curves that satisfy these
necessary conditions and provide analytic solutions for the
corresponding optimal motions. Moreover, this paper derives
helical motions that are expressed completely in terms of
their natural curvatures and as such provide smooth, optimal
curves described in a coordinate free manner that can be used
to plan rigid body motions.
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