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Abstract

We show in the context of a bilateral oligopoly where all agents are al-
lowed to behave strategically the unexpected result that when the number
of buyers becomes large the outcomes in a strategic market game do not
converge to those at the Cournot equilibrium. However, convergence to
Cournot outcomes is restored if the game is sequential: sellers move simul-
taneously as do buyers, but the former always move before the latter. This
suggests that the ability to commit to supply decisions is an essential feature
of Cournot equilibrium.
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1 Introduction

Cournot competition has become a widely used model of imperfect competition
in modern economic theory. Its premise is that whilst firms behave strategically,
buyers act as price takers. Just as in Walrasian models, this price-taking assump-
tion requires a strategic foundation in order to be judged valid. A strategic market
game with strategies as quantities is an appropriate framework within which to
provide this foundation. We would want to show that when the number of buyers
increases outcomes in the market game tend to those at the Cournot equilibrium.
When the sellers move at the same time as the buyers in the market game this
convergence does not generally occur. Conversely, in a sequential two-stage game
in which sellers move simultaneously as do buyers, but the former move before the
latter, convergence to Cournot outcomes is restored. This suggests that in order
to provide the Cournot equilibrium concept with a strategic foundation, the sellers
must have an opportunity to commit before the buyers make their choices, imply-
ing an essential feature of Cournot equilibrium is the ability of firms to commit to
supply decisions.

The framework we use is that of bilateral oligopoly in which there are two
commodities, the second thought of as money. Those agents endowed with the first
commodity are called sellers, whilst those endowed with the second commodity are
called buyers. In a strategic market game signals are quantity-based: each agent
decides on a proportion of her endowment to send to the market to be exchanged
for the other commodity. For sellers we call this an offer, whilst buyers make
bids. In a traditional strategic market game of the type developed by Shapley
and Shubik [5] the signals of all agents are placed simultaneously and the rate of
exchange of the second commodity for the first (the price) is determined by the
ratio of the aggregate bid to offer. In a Cournot market the buyers treat the price
as uninfluenced by their actions and the sellers play a quantity-setting game with
knowledge of the buyers’ choices.

The price-taking hypothesis embedded in the Cournot model should be an
accurate representation of behaviour for the buyers when their number is many,
for then each should have a negligible influence on the price. As such, we would
expect that as the number of buyers increases, the equilibrium outcomes in the
strategic market game would converge to those at the Cournot equilibrium. In
fact this is not generally the case, and we characterise when convergence does and
does not occur. This extends the work of Codognato [2] who was the first to notice
this phenomenon in the context of an example.

Busetto, Codognato and Ghosal [1] also analysed this issue, noting that it is
the two-stage nature of Cournot competition that likely gives rise to the problems.
Working in a continuum economy (with some atoms) they show equivalence be-
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tween the (suitably refined) equilibria in a two-stage market game in which the
atoms move first and the Cournot equilibria. Our analysis extends this work to the
case of a finite economy where we not only gain intuition regarding the perverse
results that emerge, we can also demonstrate asymptotic properties as the number
of agents increase, not just the limiting results.

In market games where there are two distinct trading stages and all agents of
the same type move at the same time, we are able to construct strategic versions
of supply and demand and, using these, compare equilibrium outcomes with those
at the Cournot equilibrium. We show that as the number of buyers increases
without bound the equilibrium outcomes in the game in which the sellers are
leaders converge to that at the Cournot equilibrium, whilst when the buyers are
leaders outcomes remain distinct even in the limit.

Thus, in order to provide a strategic foundation for Cournot competition we
require those agents that are permitted to behave strategically in the Cournot
market to move first whilst those that are assumed to be price takers move second.
If play is simultaneous or the timing order is reversed, the limit remains distinct
from the Cournot equilibrium. This suggests that the essence of a strategically-
behaving agent in Cournot competition is their ability to commit to their choices
before those agents that behave as price takers. In any market regime where
they are not able to make such a commitment, the Cournot equilibrium does not
transpire as the natural limit.

The rest of the paper continues as follows. We briefly analyse a strategic market
game where moves are simultaneous using the methodology from Dickson and
Hartley [3] that exploits the aggregative properties of the game played. This allows
us to construct strategic versions of supply and demand, and show that equilibria
correspond to their intersection, a technique that is repeated in all the games we
analyse. We then characterise the Cournot equilibrium and compare this with
the market game equilibrium when the number of buyers increases, showing that
generally the limit remains distinct. Next we turn to analyse two-stage strategic
market games in which all the sellers move first and all the buyers move second, and
the reverse timing structure. This analysis allows us to show that when the sellers
are leaders convergence to the Cournot equilibrium always occurs, whilst if the
buyers are leaders the equilibrium remains distinct from the Cournot equilibrium
even in the many-buyer limit.

2 The Economic Framework

Throughout we consider the pure exchange economy m,nE = {(eh, uh, R2
+) : h ∈

m,nH}. There are two commodities. The first is a standard consumption com-
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modity, the second a commodity money. We partition the set of agents m,nH into
mHS ∪ nHB, HS ∩HB = ∅. Our ultimate intention is to have a fixed set of sellers
and a variable set of buyers whose number may be increased through replication,
in which case we fix m and increase n. Those in HS are endowed only with the
consumption commodity and so are termed sellers, those in HB are endowed only
with the commodity money and so we call them buyers.

In this bilateral oligopoly model we essentially have a partial equilibrium en-
vironment where the second commodity can be thought of as representing money
used to acquire all other goods in the economy. As the consumption commodity
in such circumstances is likely to have a low share in overall expenditure, the most
natural assumption is that there are negligible income effects. Indeed, Marshall
comments: “When a person buys anything for his own consumption, he generally
spends on it a small part of his total resources;...[In such a] case there is no appre-
ciable change in his willingness to part with money” (Marshall [4], pp 335). Zero
income effects may be captured by assuming agents have preferences quasi-linear
in the first commodity and we make the assumption that buyers are endowed with
such preferences: uh(x1, x2) = vh(x1) + x2 ∀h ∈ HB. In addition, if the sellers
are endowed with these preferences they may be thought of as profit-maximising
firms in the standard sense, a natural interpretation in our environment, so we
also make this assumption1.

Assumption (Quasi-linearity). For all h ∈ HS∪HB preferences are representable
by the quasi-linear utility function vh(x1) + x2 where v′h(·) ≥ 0 and v′′h(·) < 0.

In a strategic market game there is a trading post to which each seller may
take a proportion of her endowment of the consumption commodity q ∈ [0, eh],
which we call an offer, to be exchanged for money. Likewise, each buyer may take
along a proportion of her endowment of the commodity money b ∈ [0, eh], called
a bid, to be exchanged for the consumption commodity. The trading post then
aggregates the offers and bids of each replica to Q and B, so the aggregate offer
is Q = mQ and aggregate bid is B = nB. Sellers are awarded their proportional
share of the aggregate bid: q

QB, whilst the number of units of the consumption
commodity buyers are awarded equals their proportional share of the aggregate
offer: b

BQ. If either Q = 0 or B = 0 no trade takes place. Payoffs take the form

vh(eh − q) +
q

Q
B ∀h ∈ HS and

vh

(
b

B
Q

)
+ eh − b ∀h ∈ HB.

1Whilst we assume quasi-linearity of preferences throughout, many of our results hold for
more general utility functions.
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If play is simultaneous all agents approach the trading post at the same time
and the equilibrium concept we use is (type-symmetric) Nash equilibrium in pure
strategies. In a two-stage game those that move second observe the choices of
those that move in the first stage. In this case we consider subgame-perfect Nash
equilibria.

We could alternatively define the rate of exchange of the commodity money
for the consumption commodity (i.e. the price of the consumption commodity) in
the strategic market game as the ratio of aggregate bid to aggregate offer: p = B

Q ,
and state that allocations take the form

vh(eh − q) + qp ∀h ∈ HS and

vh

(
b

p

)
+ eh − b ∀h ∈ HB.

In a Cournot (oligopoly) market the buyers are assumed to behave as price-
takers whilst the sellers are permitted to behave strategically in the knowledge of
the buyers’ behaviour. Each buyer can be thought of as choosing a level of b given
that her allocation will be (xh1, xh2) = (b/p, eh−b) and the fact that she treats the
price as a parameter. This corresponds to a standard competitive maximisation
problem resulting from which will be a competitive demand schedule. Then the
sellers know that if their aggregate supply is Q the price will be such that this
supply is matched with demand. We denote this price p̃(Q). Then the payoff to
seller h ∈ HS from the ensuing non-cooperatively played quantity-setting game is

vh(eh − q) + qp̃(q +Q−h).

Again we consider (type-symmetric) pure strategy Nash equilibria.

3 The Strategic Market Game

In this section we undertake an analysis of the simultaneous-move strategic mar-
ket game. Recently Dickson and Hartley [3] have performed such an analysis that
exploits the aggregative structure of the game in order to characterise behaviour
at the aggregate level consistent with Nash equilibrium, and to provide a charac-
terisation of equilibrium. We refer the reader to the original paper for the details
of this process.

By considering the ‘partial game’ played by each side of the market when the
strategies of the other side remain fixed, we can characterise the behaviour of each
replica of sellers using what we call strategic supply, denoted mX S

1 (p), and the
behaviour of a replica of buyers by strategic demand, denoted nXB

1 (p). For a given
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price strategic supply gives the sum of the offers of a replica of sellers consistent
with a Nash equilibrium at that price. Likewise, strategic demand gives the level
of demand (equal to the ratio of aggregate bid to price) consistent with a Nash
equilibrium at a given price. Aggregate supply and demand are simply mmX S

1 (p)
and nnXB

1 (p) respectively.
Strategic supply and demand have several desirable properties, summarised in

the following two lemmata.

Lemma 1. Strategic supply mX S
1 (p) is defined for all prices exceeding some lower

cutoff mP S where it is a function that is positive, continuous and non-decreasing
in p. mP S is the price below which no agent would make a positive offer with this
price, and is such that

m
∑
HS

max

{
0, 1− v′h(eh)

mP S

}
= 1.

Lemma 2. Strategic demand nXB
1 (p) is defined for all 0 < p < nPB where it is a

function that is positive, continuous and strictly decreasing in p. nPB is the price
above which all buyers have zero demand in an equilibrium with this price, and is
such that

n
∑
HB

max

{
0, 1−

nPB

v′h(0)

}
= 1.

The purpose of constructing these functions is the following fundamental in-
sight: non-autarkic Nash equilibria in the strategic market game are in one-to-one
correspondence with intersections of strategic supply and demand.

Proposition 1. There is a non-autarkic Nash equilibrium in the economy m,nE in
which the price is p if and only if

mmX S
1 (p) = nnXB

1 (p).

This equivalence then gives us a handle on when a non-autarkic Nash equilib-
rium will exist, and whether it will be unique2.

Theorem 1. In any economy m,nE, if mP S ≥ nPB there is no non-autarkic Nash
equilibrium. Conversely, if mP S < nPB there is a single non-autarkic Nash equi-
librium in which the price is m,np̂ such that mmX S

1 (m,np̂) = nnXB
1 (m,np̂).

2In addition, there is always an autarkic Nash equilibrium in the simultaneously-played
strategic market game. To see this, consider whether the strategies (0,0) are an equilibrium.
When everyone makes a zero offer/bid payoffs are vh(eh)∀h ∈ HS and eh ∀h ∈ HB. If any seller
considers a unilateral deviation to q > 0 then her payoff will be vh(eh − q) as there is no bid in
the market. Clearly this is worse for her. Likewise, if any buyer considers a unilateral deviation
to b > 0 her payoff will be eh − b < eh.
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4 Cournot Oligopoly

In this section we intend to provide a characterisation of equilibrium in Cournot
oligopoly. In such a market the buyers are assumed to be price takers and, knowing
this (and so the resulting demand at any given price) the sellers play a game
amongst themselves where their strategic variables are the quantities they supply.

Formally, each buyer wishes to maximise her utility from consumption at each
price taking the price as given and uninfluenced by her choice of action. In this
bilateral oligopoly setting she may be seen as choosing the amount of money she
is willing to forego at each price in exchange for b/p units of the consumption
commodity. As such, competitive demand for each replica of buyers will take the
form

X̃B
1 (p) =

∑
HB

b̃h(p)

p
.

where b̃h(p) is the solution in b to maxb∈[0,eh] vh(b/p) + eh − b. Aggregate demand

is simply nX̃B
1 (p).

It transpires that competitive demand has several desirable properties.

Lemma 3. Competitive demand X̃B
1 (p) is zero for all p ≥ maxHB{v′h(0)} whilst

for 0 < p < maxHB{v′h(0)} it is a function that is positive, continuous and strictly
decreasing in the price.

In equilibrium supply must equate to demand at the aggregate level. If the
supply from the sellers as a result of their quantity-setting game is Q then this
requires the price to be such that the level of demand at that price is the same as
this supply. Thus, the price will be of the form np̃(Q) which is defined such that

np̃(Q) = {p : Q = nX̃B
1 (p)}.

This price functional has several desirable properties, easily discerned from the
preceding lemma.

Lemma 4. np̃(Q) is a function that is strictly decreasing in Q with the property
that limQ→0

np̃(Q) = maxHB{v′h(0)}.

Now, as the sellers are assumed to know the buyers’ behaviour before they play
their quantity-setting game, they know that if the aggregate offer is Q then the
price will be np̃(Q). As such if seller h ∈ HS uses the offer q whilst other sellers’
offers total Q−h her payoff takes the form

vh(eh − q) + qnp̃(q +Q−h).
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In order that this program is concave we require that 2np̃′(Q) + Qnp̃′′(Q) ≤ 0,
a restriction that requires total revenue to be concave, which is standard in the
literature on the uniqueness of Cournot equilibrium.

Again we can characterise the behaviour of each replica of sellers by construct-
ing strategic supply, in this case denoted m,nX̃ S

1 (p) which, for each price, gives
the supply consistent with a Nash equilibrium in which the price is p (given the
behaviour of the buyers). We summarise the properties of strategic supply in the
following lemma.

Lemma 5. Suppose the price functional is such that np̃′(Q)+Qnp̃′′(Q) ≤ 0. Then
strategic supply m,nX̃ S

1 (p) is defined for all p > minHS{v′h(eh)} where it is a function
that is positive, continuous and non-decreasing in p.

The condition np̃′(Q) + Qnp̃′′(Q) ≤ 0 is slightly stronger than 2np̃′(Q) +
Qnp̃′′(Q) ≤ 0 (as np̃′(Q) < 0), but again is a standard condition seen in the
literature on Cournot competition.

Having characterised the (competitive) behaviour of the buyers and the strate-
gic behaviour of the sellers at the aggregate level, we are now in a position to
discuss the identification of Nash equilibria in the Cournot game. It transpires
that there will be a non-autarkic Nash equilibrium if and only if the aggregate
strategic supply of the sellers intersects with the aggregate competitive demand of
the buyers.

Proposition 2. Suppose the price functional is such that np̃′(Q) +Qnp̃′′(Q) ≤ 0.
Then there is a non-autarkic Nash equilibrium in the economy m,nE with price p if
and only if

mm,nX̃ S
1 (p) = nX̃B

1 (p).

This equivalence between intersections of strategic supply in the Cournot mar-
ket and competitive demand and non-autarkic Nash equilibria then allows us to de-
termine exactly when a non-autarkic Nash equilibrium will exist, and if so whether
it is unique.

Theorem 2. Suppose the price functional is such that np̃′(Q)+Qnp̃′′(Q) ≤ 0. Then
in any economy m,nE, if minHS{v′h(eh)} ≥ maxHB{v′h(0)} there is no non-autarkic
Nash equilibrium; the only equilibrium is autarky. Conversely, if minHS{v′h(eh)} <
maxHB{v′h(0)} there is a single non-autarkic Nash equilibrium (and no autarkic
equilibrium) in which the price is m,np̂C such that mm,nX̃ S

1 (m,np̂C) = nX̃B
1 (m,np̂C).

5 Non-Convergence

The aim of this paper is to provide a strategic foundation for Cournot competition.
In a Cournot oligopoly the buyers are assumed to behave as price takers, and
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we expect this model to be valid when the number of buyers is many and each
has no market power with which she can manipulate the market price. Such
an equilibrium concept uses price-taking assumptions and implicit in the market
clearing requirement is the notion of a Walrasian Auctioneer. In order to provide
the equilibrium concept with a strategic foundation we would like to show that the
price-taking assumption is justified; that is, price-taking behaviour is the natural
limit of strategic behaviour in the market game as the number of buyers increases
without bound.

Thus, our next task resides in checking whether the outcomes in the market
game converge to those at the Cournot equilibrium in the many-buyer limit. In
order to achieve this we fix the set of sellers (setting m = 1 and dropping the m

notation, and denoting by Q (rather than Q) the aggregate offer) and consider a
sequence of economies {nE}∞n=1. Our task is made easier by the results we have
gained so far. In particular, in any economy both the Cournot equilibrium and
the strategic market game equilibrium are unique so the sequences of these will be
single-valued. As such, in order to show convergence to the Cournot equilibrium,
and that any limit Cournot equilibrium can be supported as the limit of the
sequence of strategic market game equilibria, it will suffice to demonstrate the first
result3. We focus on the case in which the Cournot equilibrium is non-autarkic,
i.e. minHS{v′h(eh)} < maxHB{v′h(0)}.

The allocation structure in both the strategic market game and the Cournot
market take the same form; namely

(xh1, xh2) =

{
(eh − q, qp) if h ∈ HS or(

b
p
, eh − b

)
if h ∈ HB.

Then to demonstrate convergence in equilibrium outcomes it will suffice to demon-
strate convergence in the equilibrium price and in individual bids and offers, for
then convergence in allocations will follow.

We first show that as the number of buyers increases their strategic demand in
the strategic market game converges to their competitive demand for all prices.

Lemma 6. Strategic demand in the simultaneously-played strategic market game
converges to competitive demand as the number of buyers increases without bound,
i.e.

nXB
1 (p) →n→∞ X̃B

1 (p)∀0 < p < max
HB

{v′h(0)}.

Thus, at any given price the behaviour of the buyers in the market game
converges to that were they to behave as price takers as their number increases.

3Our analysis is, however, limited to pure strategy equilibria; we do not consider mixed
strategies.
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The equilibrium in the strategic market game is identified by the intersection
of strategic supply X S

1 (p) and strategic demand nnXB
1 (p). According to the above

lemma, in the many-buyer limit this intersection corresponds to the intersection of
strategic supply and competitive demand. The Cournot equilibrium on the other
hand is identified by the intersection of strategic supply in the Cournot market
nX̃ S

1 (p) and competitive demand nX̃B
1 (p).

As such, the intersection point (and therefore the equilibrium price and quan-
tity of the consumption commodity traded) in the strategic market game will
converge to that at the Cournot equilibrium if and only if the strategic supply in
the strategic market game is the same as that in the Cournot market in the limit,
at least in a neighborhood of the Cournot equilibrium. If it is larger then the limit
equilibrium price will be lower and quantity traded higher. If it is smaller then
the limit equilibrium price will be higher and quantity traded smaller.

Thus, the key to our convergence (indeed non-convergence) argument lies in
determining exactly when the two strategic supplies (in the strategic market game
and in the Cournot oligopoly) are equal, and the following lemma addresses this
point.

Lemma 7. Suppose the price functional is such that np̃′(Q)+Qnp̃′′(Q) ≤ 0. Then
for any n

X S
1 (p) R nX̃ S

1 (p) ⇔ nη(nX̃ S
1 (p), p) Q 1

where nη(Q, p) =
∣∣∣ p
Q

1
np̃′(Q)

∣∣∣ is the elasticity of competitive demand.

Thus, in any economy nE , even the limit economy, strategic supply in the
strategic market game will exceed that in the Cournot market at a given price if
competitive demand evaluated at the Cournot supply is inelastic at that price. If
it is elastic the strategic market game strategic supply will be less than that in
the Cournot market. Only when the elasticity of demand is unity will the two be
equal. In particular, at the Cournot equilibrium in which the price is np̂C we have
that

X S
1 (np̂C) R X̃ S

1 (np̂C) ⇔ nη(nX̃ S
1 (np̂C), np̂C) Q 1.

In a neighborhood of the intersection between strategic supply in the Cournot
oligopoly and competitive demand, the strategic supply in the strategic market
game will be equal to the Cournot strategic supply if and only if the elasticity of
competitive demand at the Cournot equilibrium is unity.

As such, the price and aggregate quantity of the consumption commodity
traded at the limit strategic market game equilibrium will coincide with those at
the limit Cournot equilibrium if and only if the elasticity of competitive demand
at the Cournot equilibrium is unity.
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Proposition 3. Suppose the price functional is such that np̃′(Q) + Qnp̃′′(Q) ≤ 0.
Then the price and aggregate amount of the consumption commodity traded in the
strategic market game equilibrium converge to those at the Cournot equilibrium as
the number of buyers increases without bound if and only if the elasticity of demand
at the limit Cournot equilibrium is unity.

If competitive demand is inelastic, the price in the strategic market game in
the limit will be lower and the quantity traded higher than those at the Cournot
equilibrium. Conversely, if it is elastic, the price in the limit strategic market game
will be higher and the quantity traded lower.

It only remains to show that in the limit the individual bids and offers are
the same in the strategic market game as in the Cournot market if we achieve
convergence in the equilibrium price and quantity of the consumption commodity
traded (i.e. if the elasticity is one). For the sellers this follows immediately from
the realisation that the elasticity must be one if we achieve convergence, which
implies shares and, therefore, offers must be the same in the limit (see the proof
of Lemma 7). For the buyers, we revealed in the proof of Lemma 6 that for each
buyer h ∈ HB we have that nBSh(nB, p) →n→∞ b̃h(p)∀B > 0, ∀p, so convergence
in the price implies convergence in individual bids.

Thus, when the demand elasticity is unity we find that the sequence of equilib-
rium outcomes in the strategic market game converge to the Cournot equilibrium
outcome as the number of buyers increases without bound. Conversely, when
competitive demand is not unit elastic at the Cournot oligopoly equilibrium con-
vergence will not (generically at least) occur.

Notice that even though the Cournot equilibrium is non-autarkic (by presump-
tion) it may be the case that the only strategic market game equilibrium is autarky
even in the limit. Indeed, since4 P S > minHS{v′h(eh)}, even if minHS{v′h(eh)} <
maxHB{v′h(0)} it is not ruled out that P S ≥ maxHB{v′h(0)} (so the only limit strate-
gic market game equilibrium is autarky). Moreover, there is also always an autarkic
equilibrium in the strategic market game even if a non-autarkic equilibrium exists.
Of course, this autarkic equilibrium never converges to the (non-autarkic) Cournot
equilibrium.

Our results here generalise and extend the work of Codognato [2], who showed
that convergence occurs in the case of Cobb-Douglas preferences (in which case
demand is everywhere unit elastic) whereas when the buyers have preferences
quasi-linear in the second commodity the equilibrium remains distinct even in the
limit.

4To see this, note that 1 =
∑

HS max
{

0, 1− v′h(eh)
PS

}
≤ |HS|

(
1− minHS{v′h(eh)}

PS

)
and this

implies P S ≥ |HS|
|HS|−1 minHS{v′h(eh)} > minHS{v′h(eh)}.
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6 Two-Stage Strategic Market Games

The result we have presented seems rather paradoxical: one would expect that as
the market power of one side of the market diminishes the equilibrium would tend
to that which assumes they are price takers. But this only occurs in the special case
where the elasticity of competitive demand at the Cournot equilibrium is unity.
In any other case the sequence of equilibria remains distinct from the Cournot
equilibrium even in the limit. This suggests that the simultaneous-move strategic
market game is not an appropriate framework in which to provide a strategic
foundation for Cournot equilibrium.

The case in which the competitive demand is unit elastic and convergence is
achieved is intriguing. This singular case of convergence presents itself for the
following reason: the elasticity of ‘demand’ in the strategic market game is always
unity as well. To see this note that the price is p = B/Q, so that dp/dQ = −B/Q2

and then we find that the elasticity is∣∣∣∣∣ p

Q
1
dp
dQ

∣∣∣∣∣ =
B
Q2

Q2

B
= 1.

Analytically, non-convergence emerges because in the Cournot market the sell-
ers have information about the buyers’ choices before they make their quantity
decisions whereas in the strategic market game no such ex ante inference is pos-
sible: sellers make conjectures about demand but these are made simultaneous
to their quantity decisions. This is a fundamental difference in the information
that the sellers have. In this case, even as the number of buyers increases without
bound the sellers’ behaviour remains inherently different to that were they to in-
fer demand prior to making their decisions, even though the buyers are behaving
as if they are price takers in the strategic market game. But in the case where
the elasticity of competitive demand is unity the detail about the buyers’ demand
available to the sellers in the Cournot market gives no more information than is
available (by inference) in the strategic market game (as the demand has the same
‘structure’).

This suggests that in order to align the strategic market game with the Cournot
equilibrium in the limit, we need for the sellers to infer, before they play their
quantity setting game, the decisions of the buyers. Another way of putting this is
that we need the sellers to commit to their quantity choices before the buyers make
their choices. One way of doing this is via a market game that has two distinct
trading stages in which all the sellers move at the first stage whilst all the buyers
move at the second stage.

We now turn to an analysis of two-stage strategic market games in which the
order of moves is exogenously specified, and we focus on the cases where all agents
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of the same ‘type’ move at the same time. We begin with the game in which
the sellers move first and the buyers move second, followed by an analysis of the
reverse timing structure.

6.1 Sellers as Leaders

There are two trading stages. At the first stage the sellers approach the trading
post; each seller may offer a proportion of her endowment q ∈ [0, eh] to be ex-
changed for money. At the second stage, having observed the sellers’ actions, each
buyer then approaches the trading post and offers a proportion of her endowment
of money b ∈ [0, eh] to be exchanged for the consumption commodity. At the end
of the second stage the offers are aggregated to Q and the bids are aggregated to
B. The rate of exchange of the commodity money for the consumption commodity
is determined as p = B/Q and allocations are determined in the usual way so that
the payoff to each seller h ∈ HS is vh(eh−q)+qp whilst that to each buyer h ∈ HB

is vh(b/p) + eh − b. This dynamic game of complete but imperfect information is
well defined, as the set of players, their available strategies, their payoffs and the
order of moves are all specified.

The equilibrium concept we use is subgame-perfect Nash equilibrium (hence-
forth SPNE). To identify such an equilibrium we need to fix the set of offers in the
first stage (so we specify the subgame) and then compute the optimal actions of
the buyers when the offers take said values, and repeat for all possible offer com-
binations. We then use the optimal (re)actions of the buyers in the sellers’ payoff
functions (as they infer these actions) and determine a set of mutually consistent
best responses from the sellers given the reactions of the buyers.

Let us fix the offers from the sellers and consider the second-stage game played
by the buyers. If the offers of the sellers total Q then each buyer will seek to solve
the problem

max
b∈[0,eh]

vh

(
b

b + B−h

Q
)

+ eh − b.

This problem corresponds exactly to that in the simultaneous-move game. Our
analysis there suggested that in any ‘partial game’ in which the aggregate offer was
fixed there would be a unique set of strategies consistent with equilibrium (share
correspondences, and strategic supply correspondences, were functions). As this
is a fundamental result in this dynamic game we formalise it in the following
proposition.

Proposition 4. In any subgame in which the offers of the sellers are {qh}h∈HS

there is a unique Nash equilibrium among the buyers moving at the second stage.
Moreover, in any subgame in which the aggregate offer takes some specified value
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Q, the equilibrium among the buyers is the same (i.e. it is independent of the
microstructure of Q).

This fact allows us to focus on SPNE rather than considering Markov perfect
equilibria, as Busetto, Codognato and Ghosal [1] do. The reason is because in any
subgame we have a unique equilibrium and it is the same in subgames that have the
same aggregate offer. Thus, regardless of how that aggregate offer is constructed,
buyers will play the same strategies, so no payoff irrelevant considerations are
necessary.

Now, at the per-replica level, the buyers’ behaviour can be characterised by
their consistent bids in response to the aggregate offer, or, indeed, by their strategic
demand function nXB

1 (p).
The sellers, moving at the first stage infer that, if their collective actions result

in an aggregate offer of Q then the price will be such that this supply equates to
the demand forthcoming at such a price. Thus, the price will take the form nṗ(Q)
which is such that

nṗ(Q) = {p : Q = nnXB
1 (p)}.

From Lemma 2 we know that strategic demand is a function that is continuous
and strictly decreasing in the price. This implies that for any Q there will be a
single such price, i.e. nṗ(Q) will be a function. This, along with other properties,
are summarised in the following lemma. The proof parallels that of Lemma 4 and
so is omitted.

Lemma 8. nṗ(Q) is a function that is continuous and strictly decreasing in Q
with the property that nṗ(Q) →Q→0

nPB.

Sellers infer that this is the price they face and so the payoff to each seller
moving at the first stage is

vh(eh − q) + qnṗ(q +Q−h),

and each will choose her level of q to maximise this payoff given the offers of
the other sellers totalling Q−h. In order to ensure this program is concave we
require some conditions on the price functional. In particular, sufficient to ensure
concavity of the objective is to have 2nṗ′(Q) + Qnṗ′′(Q) ≤ 0. A more useful
condition, and one we use in the sequel, is nṗ′(Q) + Qnṗ′′(Q) ≤ 0 which, since
ṗ′(Q) < 0 implies 2nṗ′(Q) + Qnṗ′′(Q) ≤ 0. This condition places restrictions on
the buyers’ preferences in very much the same way that the analogous condition
used in a Cournot oligopoly does. For brevity we omit the derivation of these
conditions.

When nṗ′(Q)+Qnṗ′′(Q) ≤ 0 we can consider the best response of each agent as
the solution to the first order condition of the above problem. Simple calculations
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show that the best response takes the form

nḂR
S

h(Q−h) =

{
0 if nṗ(Q−h) ≤ v′h(eh) or

min{nḃr
S

h(Q−h), eh} if nṗ(Q−h) > v′h(eh)

where

nḃr
S

h(Q−h) = {q : v′h(eh − q) = nṗ(q +Q−h) + qnṗ′(q +Q−h)} .

We consider offers consistent with a SPNE in which the aggregate offer is Q
and the price is p. By replacing Q−h with Q − q and nṗ(q + Q−h) with p we
find the replacement correspondence, and by dividing elements in the replacement
correspondence by Q we find the share correspondence of each seller in this two-
stage market game. This takes the form

nṠS
h(Q, p) =

{
0 if p ≤ v′h(eh) or
min

{
nṡS

h(Q, p), eh

Q

}
if p > v′h(eh)

where
nṡS

h(Q, p) = {s : v′h(eh − sQ) = p + sQnṗ′(Q)} .

When multiplied by Q, elements in the share correspondence give the offers of
seller h ∈ HS consistent with a Nash equilibrium in which the aggregate offer is Q
and the price is p.

At any given price we then look for the consistent aggregate offers; those that
generate individual offers that sum to the aggregate offer, or where the aggregate
share function is equal to one. At a type-symmetric equilibrium these consistent
offers will be equal to mQ where Q is the consistent offer of one replica of sellers
which we call strategic supply, and denote by m,nẊ S

1 (p) the correspondence that
contains such offers:

m,nẊ S
1 (p) = {Q : m

∑
HS

nṠS
h(mQ, p) = 1}.

We summarise the properties of strategic supply in the following lemma.

Lemma 9. Suppose the price functional is such that nṗ′(Q)+Qnṗ′′(Q) ≤ 0. Then
strategic supply m,nẊ S

1 (p) is defined for all p > minHS{v′h(eh)} where it is a function
that is positive, continuous and non-decreasing in p.

We can then use strategic supply at the first stage, and strategic demand at
the second stage, to identify SPNE in this two-stage game in which the sellers are
leaders.
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Proposition 5. Suppose the price functional is such that nṗ′(Q) +Qnṗ′′(Q) ≤ 0.
Then there is a non-autarkic SPNE in the two-stage game where the sellers move
first and the buyers move second in which the price is p if and only if

mm,nẊ S
1 (p) = nnXB

1 (p).

This equivalence between strategic supply and demand then gives us a handle
on when a non-autarkic SPNE will exist, and whether it will be unique.

Theorem 3. Suppose the price functional is such that nṗ′(Q) + Qnṗ′′(Q) ≤ 0.
Then in the economy m,nE, if minHS{v′h(eh)} ≥ nPB there is no non-autarkic
SPNE; only autarky is an equilibrium. Conversely, if minHS{v′h(eh)} < nPB there
is a unique non-autarkic SPNE (and no autarkic equilibrium) in which the price
is m,np̂SB such that mm,nẊ S

1 (m,np̂SB) = nnXB
1 (m,np̂SB).

6.2 Buyers as Leaders

We now address the model with the reverse timing structure; where the buyers
move at the first stage and the sellers move second. The analysis is analogous to
that performed above, so details are kept brief and all proofs, which parallel those
of the previous analysis, are omitted.

At the first stage the buyers approach the trading post and make their bid
b ∈ [0, eh]. Having observed the buyers’ bids the sellers then move at the second
stage making their offers q ∈ [0, eh]. Bids are aggregated to B and offers to Q.
Allocations are then determined in the usual way. We then have a well-defined
game, and the equilibrium concept we use is again SPNE.

Let us fix the set of bids from the first stage and consider the second-stage
game played by the sellers. If the bids of the buyers total B then each seller will
solve the problem

max
q∈[0,eh]

vh(eh − q) +
q

q +Q−h

B.

As this is precisely the same as that in the simultaneous-move game, we know
that in any subgame there will be a unique equilibrium among the sellers and if
the aggregate bid in any two subgames is the same then the equilibrium in each of
these will be the same. The sellers’ optimal behaviour can be represented at the
per-replica level by their strategic supply mX S

1 (p). Thus, the buyers infer that if
the aggregate offer is B then in order to clear the market the price must be such
that B/p = mmX S

1 (p). We collect such prices in the correspondence mp̈(B), and
summarise its properties in the following lemma.

Lemma 10. mp̈(B) is a function that is continuous and strictly increasing in B
with the property that mp̈(B) →B→0

mP S.
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Then we can write the payoff to a typical buyer as

vh

(
b

mp̈(b + B−h)

)
+ eh − b

which she will maximise over her choice of bid. In order to ensure this pro-
gram is concave we require that the price functional is such that 2mp̈′(B)(mp̈(B)−
Bmp̈′(B)) + mp̈(B)Bmp̈′′(B) ≤ 0. Again we resist deriving sufficient conditions on
preferences that imply this condition. When the price functional has this property
we can write the best response as

mB̈R
B

h (B−h) =

{
0 if mp̈(B−h) ≥ v′h(0) or

min{mb̈r
B

h (B−h), eh} if mp̈(B−h) < v′h(0)

where

mb̈r
B

h (B−h) =

{
b : v′h

(
b

mp̈(b + B−h)

)
=

mp̈(b + B−h)
2

mp̈(b + B−h)− bmp̈′(b + B−h)

}
.

We construct the share correspondence of each buyer as

mS̈B
h (B, p) =

{
0 if p ≥ v′h(0) or
min

{
ms̈B

h (B, p), eh

B

}
if p < v′h(0)

where
ms̈B

h (B, p) =

{
s : v′h

(
sB
p

)
=

p2

p− sBmp̈′(B)

}
.

When multiplied by B this share correspondence gives the bids of buyer h ∈ HB

consistent with a SPNE in which the aggregate bid of all buyers is B and the price
is p. In order to find consistent per-replica bids we seek, for each price, those bids
which are such that the aggregate share correspondence evaluated at B = nB is
equal to one, and we divide the resulting per-replica bid by the price to determine
strategic demand which we denote by m,nẌB

1 (p).

Lemma 11. Suppose the price functional is such that mp̈′(B) − Bmp̈′′(B) ≤ 0.
Then strategic demand m,nẌB

1 (p) is defined for all 0 < p < maxHB{v′h(0)} where
it is a function that is positive, continuous and strictly decreasing in p.

[We actually need two conditions, the one stated and mp̈′(B) + Bmp̈′′(B) ≥ 0.
However, it can be checked that the one stated implies this second condition.]

It then transpires that there is a SPNE in the two-stage game in which the
buyers move first if and only if the strategic demand of the first-stage buyers is
equal to the strategic supply of the second-stage sellers at the aggregate level.
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Proposition 6. Suppose the price functional is such that mp̈′(B)−Bmp̈′′(B) ≤ 0.
Then there is a non-autarkic SPNE in the two-stage game in which the buyers
move first and the sellers move second in which the price is p if and only if

mmX S
1 (p) = nm,nẌB

1 (p).

Again we use this equivalence between intersections of the appropriate strategic
supply and demand functions and equilibria to determine exactly when a non-
autarkic SPNE will exist.

Theorem 4. Suppose the price functional is such that mp̈′(B) − Bmp̈′′(B) ≤ 0.
Then in the economy m,nE, if mP S ≥ maxHB{v′h(0)} there is no non-autarkic
SPNE; the only equilibrium is autarky. Conversely, if mP S < maxHB{v′h(0)} there
is a unique non-autarkic SPNE (and no autarkic equilibrium) in which the price
is m,np̂BS such that mmX S

1 (m,np̂BS) = nm,nẌB
1 (m,np̂BS).

7 Redressing Non-Convergence

Our previous analysis highlighted the fact that when we increased the number
of buyers without bound in the simultaneous-move strategic market game the
sequence of outcomes remained distinct from that at the Cournot equilibrium
even in the limit. Our intuition then suggested that it may be the informational
aspects of Cournot competition that prevent convergence, and this in turn suggests
that a two-stage strategic market game will be more suited to providing such a
foundation. In this section we show that when we increase the number of buyers in
the two-stage game in which the sellers move first and the buyers move second the
sequence of outcomes associated with the sequence of SPNE do indeed converge to
the outcome at the Cournot equilibrium in the limit. Conversely, when the timing
structure is reversed, so the buyers move first and the sellers move second, we
get a non-convergence result that parallels that of the simultaneous-move game.
Thus, in order to approach the Cournot equilibrium in the limit the trading regime
must give the sellers the opportunity to commit to their quantity choices before
the buyers reveal their strategies.

Let us first look at the two-stage game in which the sellers are leaders. We fix
the number of sellers (and drop the m notation and let Q = Q), and consider the
sequence of economies {nE}∞n=1 as the number of buyers increases without bound.
In the Cournot oligopoly the equilibrium is identified by the intersection of strate-
gic supply in the Cournot market nX̃ S

1 (p) and competitive demand nX̃B
1 (p). In the

two-stage strategic market game in which the sellers are leaders the equilibrium
is identified by the intersection of strategic supply derived for this game nẊ S

1 (p)
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and strategic demand nnXB
1 (p). Recall from Lemma 6 that as n → ∞ strategic

demand converges to competitive demand. Thus, to ensure that the equilibrium
price and quantity of the consumption commodity traded in the two-stage market
game with the sellers as leaders converge to those at the Cournot equilibrium we
need only make sure that strategic supply in the market game converges to that
in the Cournot oligopoly as the number of buyers increases without bound. This
fundamental result we demonstrate in the following lemma.

Lemma 12. Suppose the price functional nṗ(Q) is such that nṗ′(Q) + Qnṗ′′(Q) ≤
0. Then strategic supply in the two-stage market game in which the sellers are
leaders converges to strategic supply in the Cournot market as the number of buyers
increases without bound, i.e.

lim
n→∞

nẊ S
1 (p) = lim

n→∞
nX̃ S

1 (p)∀p > min
HS
{v′h(eh)}.

Thus, not only does strategic demand converge to competitive demand, but
strategic supply in the two-stage game with the sellers as leaders is the same as
that in the Cournot oligopoly in the many-buyer limit. As such, we know the
intersection point of strategic supply and demand in the two-stage game with the
sellers as leaders will converge to that at the Cournot equilibrium. This implies
that the price and aggregate quantity of the consumption commodity traded at the
two-stage market game equilibrium with the sellers as leaders will converge to that
at the Cournot equilibrium as the number of buyers increases without bound, and,
as the following theorem demonstrates, this is sufficient to guarantee convergence
in equilibrium outcomes.

Theorem 5. Suppose the price functional is such that nṗ′(Q) + Qnṗ′′(Q) ≤ 0.
Then the allocations and price associated with the SPNE in the two-stage market
game in which the sellers are leaders converge to those at the Cournot equilibrium
as the number of buyers increases without bound.

This result implies that the two-stage strategic market game in which the sellers
move first is an appropriate fully strategic model in which to provide a foundation
for Cournot competition.

We next turn to consider the two-stage strategic market game with the reverse
timing structure; that in which the buyers move first and the sellers move second.
Recall that the SPNE in this case is identified by the intersection of strategic supply
of the second-stage sellers X S

1 (p) (which is the same as in the simultaneous-move
game) and the derived strategic demand nnẌB

1 (p). We recall that in the Cournot
oligopoly the equilibrium is identified by the intersection of strategic supply derived
in that game nX̃ S

1 (p) and competitive demand nX̃B
1 (p).
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We show in the following lemma that the strategic demand in the two-stage
game in which the buyers are leaders converges to the competitive demand as the
number of buyers increases without bound.

Lemma 13. Suppose the price functional is such that p̈′(B)− Bp̈′′(B) ≤ 0. Then
strategic demand in the two-stage strategic market game in which the buyers are
leaders converges to competitive demand as the number of buyers increases without
bound, i.e.

nẌB
1 (p) →n→∞ X̃B

1 (p)∀0 < p < max
HB

{v′h(0)}.

Given the way in which we identify equilibria, this implies that in the many-
buyer limit the equilibrium price and quantity of the consumption commodity
traded in the two-stage game with the buyers as leaders will converge to the
Cournot equilibrium if and only if the strategic supply of the sellers in that game
converges to their strategic supply in the Cournot oligopoly (at least in a neighbor-
hood of the Cournot equilibrium) in the many-buyer limit. But strategic supply is
the same as that in the simultaneous-move game, and we showed in Lemma 7 that
this will occur if and only if the elasticity of competitive demand at the Cournot
oligopoly equilibrium is unity. We state this formally in the following proposition.

Proposition 7. Suppose the price functional is such that p̈′(B) − Bp̈′′(B) ≤ 0.
Then the price and aggregate quantity of the consumption commodity traded at the
equilibrium in the two-stage game in which the buyers are leaders converge to those
at the Cournot equilibrium if and only if the elasticity of competitive demand at
the Cournot equilibrium is unity.

Thus, unless we are in the very specific circumstance in which the elasticity
of competitive demand is unity, the outcomes in the two-stage game in which the
buyers are leaders will remain distinct from those at the Cournot oligopoly equilib-
rium, implying this timing structure is not appropriate in providing a foundation
for Cournot oligopoly.

8 Conclusion

We have exploited the aggregative structure of the market game in both its static
and dynamic forms to derive strategic versions of supply and demand and showed
that equilibria correspond to intersections of these. Using this fact we have been
able to compare outcomes in the various strategic market games to those at the
Cournot equilibrium, in particular in the many-buyer limit.

In order to provide the Cournot equilibrium concept with a strategic foundation
we require those agents that are permitted to behave strategically in the Cournot
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market to move in the first stage whilst those that are assumed to be price takers
move in the second stage. This implies that an essential feature of a firm in a
Cournot oligopoly is their ability to commit to their supply decisions. Indeed, if
firms cannot commit before the buyers make their choices the Cournot equilibrium
is (in general) not supported in the many-buyer limit.

We recognise, however, that the timing order is exogenously specified. Working
in a finite economy, there is no justification to assume that, for example, the sellers
have a desire to move in the first stage and the buyers want to move in the second
stage. The next phase of our research project involves endogenising the order of
moves in an attempt to show that, at least as the number of buyers increases, each
seller finds it in her own best interests to commit and move at the first stage whilst
buyers find it in their own best interests to delay and move at the second stage.
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A Proofs

Proof of Lemma 1. Each seller h ∈ HS may be seen as solving the problem

max
q∈[0,eh]

vh(eh − q) +
q

q +Q−h
B.

The best response is

BRS
h(Q−h,B) =

{
0 if v′h(eh) ≥ B

Q−h
or Q−h = 0, or

min{brSh(Q−h,B), eh} otherwise

where

brSh(Q−h,B) =
{

q : v′h(eh − q) =
Q−h

(q +Q−h)2
B

}
.

We seek those offers consistent with a Nash equilibrium in which the aggregate offer of all sellers
is Q and the price is p. Such an offer will be a best response to Q minus itself and B = pQ, and
they are found by replacing Q−h with Q−q and B/Q with p in the best response correspondence.
This gives the replacement correspondence, and by dividing by Q we get shares of the aggregate
offer. This share correspondence takes the form

SS
h(Q, p) =

{
0 if p ≤ v′h(eh) or
min

{
sS

h(Q, p), eh

Q
}

if p > v′h(eh)

where
sS

h(Q, p) = {s : v′h(eh − sQ) = (1− s)p}.

When multiplied by Q the share correspondence gives the offers of seller h ∈ HS consistent with
a Nash equilibrium in which the aggregate offer is Q and the price is p.

In order to find consistent aggregate offers we must find an aggregate offer that generates
individual offers that sum to it, i.e. find where the aggregate share correspondence is equal to
one:

∑
mHS SS

h(Q, p) = 1. the aggregate offer is composed of m times the per-replica offer, so a
per-replica offer Q is consistent if m

∑
HS SS

h(mQ, p) = 1. Thus,

mX S
1 (p) = {Q : m

∑
HS

SS
h(mQ, p) = 1}.

In determining the properties of strategic supply the properties of each SS
h(Q, p) will be of

crucial importance. We show next that this share correspondence is in fact a continuous function
that is strictly decreasing in Q and non-decreasing in p. Recall that sS

h(Q, p) is those value of s
such that v′h(eh − sQ) = (1 − s)p. When v′′h(·) < 0, v′h(eh − sQ) is increasing in s and so there
can be at most one s such that v′h(eh − sQ) = (1 − s)p: SS

h(Q, p) is a function. Continuity is
implied by continuity of v′h(·).

We will now show that SS
h(Q, p) is strictly decreasing in Q whenever it is positive. It will

suffice to show sS
h(Q, p) is strictly decreasing in Q. Suppose not, so for Q′ > Q we have s′ =

sS
h(Q′, p) ≥ sS

h(Q, p) = s. Then we would have eh − s′Q′ < eh − sQ and (1 − s′)p ≤ (1 − s)p.
But then concavity of vh(·) implies

(1− s′)p = v′h(eh − s′Q′) > v′h(eh − sQ) = (1− s)p,

a contradiction. Thus, SS
h(Q, p) is strictly decreasing in Q. Next we show that sS

h(Q, p) is
strictly increasing in p implying SS

h(Q, p) is non-decreasing in p. Suppose, contrarily, that for
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p′ > p we have s′ = sS
h(Q, p′) ≤ sS

h(Q, p) = s. Then we would have eh − s′Q ≥ eh − sQ and
(1− s′)p′ > (1− s)p, but then concavity of vh(·) implies

(1− s′)p′ = v′h(eh − s′Q) ≤ v′h(eh − sQ) = (1− s)p,

a contradiction. Moreover, it is easy to discern from the definition that as Q → 0, sS
h(Q, p) →

1− v′h(eh)
p and so limQ→0 SS

h(Q, p) = max
{

0, 1− v′h(0)
p

}
.

We now seek to aggregate the share functions and determine the property of the solution
in Q = Q/m to this function being equal to one. When m

∑
HS max

{
0, 1− v′h(eh)

p

}
≤ 1 we

know that as Q → 0 the aggregate share function approaches something less than one. Since the
aggregate share function is also strictly decreasing in Q this implies there is no Q > 0 such that
the aggregate share function is equal to one. Thus, for all p ≤ mP S there is no Q > 0 such that
m

∑
HS SS

h(mQ, p) = 1.
Conversely, when p > mP S the aggregate share function will exceed one when Q is small,

and, when Q =
∑

HS eh it will not exceed one as each SS
h(mQ, p) ≤ max

{
1, eh

mQ

}
implying

m
∑

HS SS
h(m

∑
HS eh, p) ≤ 1. Since the aggregate share function is also strictly decreasing in

Q this implies there is exactly one Q ∈ (0,
∑

HS eh] such that m
∑

HS SS
h(mQ, p) = 1. Thus,

strategic supply is a function.
Higher values of p mean each individual share function will be no lower than before, and

so the aggregate share function will be no lower than before. Since it is also strictly decreasing
in Q this implies that for higher values of p the value of Q consistent with the aggregate share
function being equal to one can be no lower. Thus, strategic supply is non-decreasing in the
price.

Proof of Lemma 2. We derive the share correspondence of each buyer by operations anal-
ogous to those performed for the sellers. Written as being dependent on B and p, this takes the
form

SB
h (B, p) =

{
0 if p ≥ v′h(0) or
min

{
sB

h (B, p), eh

B
}

if p < v′h(0)

where

sB
h (B, p) =

{
s : v′h

(
sB
p

)
=

1
1− s

p

}
.

It is more convenient, however, to write this in terms of the demand for the first commodity
V = B/p, and the price. In this way, we get the share correspondence as

S̆B
h (V, p) =

{
0 if p ≥ v′h(0) or
min

{
s̆B

h (V, p), eh

Vp

}
if p < v′h(0)

where

s̆B
h (V, p) =

{
s : v′h(sV) =

1
1− s

p

}
.

[Note that S̆B
h (V, p) is simply SB

h (Vp, p).] Strategic demand (consistent levels of V = V/n) is
the solution in V to n

∑
HB S̆B

h (nV, p) = 1, so it is the properties of such a share correspondence
that will be of crucial importance. In fact, as v′h(sV) is decreasing in s under our concavity
assumption whilst 1

1−sp is increasing in s this correspondence will be a function. Continuity is
implied by continuity of v′h(·).

We show next that the share function is strictly decreasing in both V and p wherever it is
positive. It is sufficient to show that s̆B

h (V, p) is strictly decreasing in both V and p. First for V:
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suppose, contrarily, that for V ′ > V we have s′ = s̆B
h (V ′, p) ≥ s̆B

h (V, p) = s. Then we would have
s′V ′ > sV and 1

1−s′ p ≥
1

1−sp. But then concavity of vh(·) implies

1
1− s′

p = v′h(s′V ′) < v′h(sV) =
1

1− s
p,

a contradiction. Now for p: suppose, again to the contrary, that for p′ > p we have s′ =
s̆B

h (V, p′) ≥ s̆B
h (V, p) = s. Then we would have s′V ≥ sV and 1

1−s′ p
′ > 1

1−sp. But then concavity
implies

1
1− s′

p = v′h(s′V) ≤ v′h(sV) =
1

1− s
p,

a contradiction.
Note, moreover, that when V → 0, s̆B

h (V, p) → 1 − p
v′h(0) and this implies that

limV→0 S̆B
h (V, p) = max

{
0, 1− p

v′h(0)

}
.

Now, strategic demand nXB
1 (p) is the solution in V to n

∑
HB S̆B

h (nV, p) = 1. When

n
∑

HB max
{

0, 1− p
v′h(0)

}
≤ 1 we know that when V → 0 the aggregate share function is no

greater than one. In addition, since individual share functions are strictly decreasing in V the
aggregate will inherit this property and so for all V > 0 the aggregate share function will be less
than one, and strategic demand is undefined in such a case. This occurs for all p ≥ nPB which
is defined such that n

∑
HB max

{
0, 1−

nPB

v′h(0)

}
= 1.

When 0 < p < nPB the aggregate share function will exceed one when V is close to zero.
When V =

∑
HB eh/p the aggregate share function will be less than one since each individual

share function has an upper bound eh/n
∑

HS eh at this level of V . Since the aggregate share
function is strictly decreasing in V this implies there is a single V ∈ (0,

∑
HB eh/p] such that

n
∑

HB S̆h(nV, p) = 1, so strategic demand will be a function for all 0 < p < nPB. To show
that it is strictly decreasing in p we note that each individual share function is decreasing in p
and hence, so is the aggregate. This, together with the fact that the aggregate share function
is decreasing in V also implies that for higher values of p the V such that n

∑
HB S̆h(nV, p) = 1

will be lower, which gives the desired result.

Proof of Proposition 1. First we show that for every intersection of strategic supply and
demand there is a Nash equilibrium. For, suppose mmX S

1 (p̂) = nnXB
1 (p̂). Then the aggregate

offer is Q̂ = mmX S
1 (p̂) and the aggregate bid is B̂ = np̂nXB

1 (p̂), and the individual strategies are

q̂h = Q̂SS
h(Q̂, p̂)∀h ∈ HS and

b̂h = B̂SB
h (B̂, p̂)∀h ∈ HB.

But then by definition we have that

q̂h = BRS
h(Q̂−h, B̂)∀h ∈ HS and

b̂h = BRB
h (B̂−h, Q̂)∀h ∈ HB

implying the strategies form a Nash equilibrium in the game.
Next we show that if there is a Nash equilibrium then strategic supply and demand must

intersect. So suppose there is a Nash equilibrium (q̂, b̂) with aggregate offer Q̂ = mQ̂, ag-
gregate bid B̂ = nB̂ and price p̂ = nB̂/mQ̂. Since q̂h = BRS

h(Q̂−h, B̂)∀h ∈ HS and b̂h =
BRB

h (B̂−h, Q̂)∀h ∈ HB we must have that

q̂h = mQ̂SS
h(mQ̂, p̂)∀h ∈ HS and

b̂h = nB̂SB
h (nB̂, p̂)∀h ∈ HB.
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But then m
∑

HS SS
h(mQ̂, p̂) = 1 ⇒ Q̂ = mX S

1 (p̂) and n
∑

HB SB
h (nB̂, p̂) = 1 ⇒ B̂/p̂ = nXB

1 (p̂).
Then since p̂ = nB̂/mQ̂, mQ̂ = nB̂/p̂ and it follows that mmX S

1 (p̂) = nnXB
1 (p̂).

Proof of Theorem 1. We know that under the stated conditions strategic supply is a
continuous function defined for all p > mP S where it is non-decreasing in the price (Lemma
1) and strategic demand is a continuous function defined for all 0 < p < nPB where it is
strictly decreasing in the price (Lemma 2). Moreover, non-autarkic Nash equilibria are in one-
to-one correspondence with intersections of strategic supply and demand (Proposition 1). When
mP S ≥ nPB there is no price where strategic supply and strategic demand are both defined, so
they cannot intersect. In this case, there is no non-autarkic equilibrium: the only equilibrium is
autarky, which always exists. When mP S < nPB there is an εS such that mmX S

1 (p) < nnXB
1 (p)

when p = mP S + εS, and an εB such that mmX S
1 (p) > nnXB

1 (p) when p = nPB − εB. By
continuity, therefore, strategic supply and demand (at the aggregate level) must intersect. Since
the former is non-decreasing in the price whilst the latter is strictly decreasing in p, they can
intersect only once. Thus, there is a single non-autarkic Nash equilibrium (accompanied, of
course, by the autarkic no-trade equilibrium).

Proof of Lemma 3. Each buyer can be seen as solving the problem

max
b∈[0,eh]

vh

(
b

p

)
+ eh − b

the solution to which is

b̃h(p) =
{

0 if p ≥ v′h(0) or
min{b̃h(p), eh} if p < v′h(0)

where

b̃h(p) =
{

b : v′h

(
b

p

)
= p

}
.

Competitive demand is simply the summation of individual demands at each price:

X̃B
1 (p) =

∑
HB

b̃h(p)
p

.

When p ≥ v′h(0)∀h ∈ HB, i.e. when p ≥ maxHB{v′h(0)}, the demand from each buyer, hence
at the per-replica and aggregate levels, will be zero. When p < maxHB{v′h(0)} there will be
some buyers who have positive demand, given by ṽh(p) = b̃h(p)/p. This is the solution in v
to v′h(v) = p, which, since v′′h(·) < 0, is strictly decreasing in p. Thus, X̃B

1 (p) will be strictly
decreasing in p. Continuity derives from continuity of v′h(·).

Proof of Lemma 4. The price np̃(Q) is that which is consistent with Q = nX̃B
1 (p). We

know from Lemma 3 that X̃B
1 (p) is strictly decreasing in p when v′′h(·) < 0 and so it directly

follows that for higher values of Q the price consistent with Q = nX̃B
1 (p) must be lower. Thus,

np̃(Q) is strictly decreasing in Q. The limit is a consequence of continuity of X̃B
1 (p) and the

easily discernable fact that X̃B
1 (p) → 0 as p → maxHB{v′h(0)}.

Proof of Lemma 5. Each seller h ∈ HS may be seen as solving the problem maxq∈[0,eh] vh(eh−
q) + qnp̃(q +Q−h). The best response is

nB̃R
S

h(Q−h) =

{
0 if np̃(Q−h) ≤ v′h(eh) or
min{nb̃r

S

h(Q−h), eh} if np̃(Q−h) > v′h(eh)
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where
nb̃r

S

h(Q−h) = {q : v′h(eh − q) = np̃(q +Q−h) + qnp̃′(q +Q−h)} .

Now consider those offers consistent with a Nash equilibrium in which the aggregate offer and
price take certain values. By replacing Q−h with Q − q and np̃(Q) with p we find such offers,
and by considering shares of the aggregate offer we find the share correspondence of each seller
in a Cournot oligopoly. This takes the form

nS̃S
h(Q, p) =

{
0 if p ≤ v′h(eh) or
min

{
ns̃S

h(Q, p), eh

Q
}

if p > v′h(eh)

where
ns̃S

h(Q, p) = {s : v′h(eh − sQ) = p + sQnp̃′(Q)} .

When multiplied by Q, this correspondence gives those offers of seller h ∈ HS consistent with a
Cournot equilibrium in which the aggregate offer is Q and the price is p.

At any given price we then seek those aggregate offers that are consistent, in that they
generate individual offers that sum to the aggregate offer. Alternatively, we look for those values
of Q where the sum of all sellers’ share correspondences are equal to one. In a type-symmetric
economy the aggregate offer will be Q = mQ and strategic supply is those levels of Q at each
price such that the aggregate share function evaluated at mQ is equal to one:

m,nX̃ S
1 (p) = {Q : m

∑
HS

nS̃S
h(mQ, p) = 1}.

In order to determine the properties of strategic supply we must first determine the properties
of individual share correspondences. Since v′′h(·) < 0 we know v′h(eh − sQ) is increasing in s.
Moreover, since np̃′(Q) < 0 we know p + sQnp̃′(Q) is decreasing in s. As such, for any p and Q
there will be only a single s such that v′h(eh−sQ) = p+sQnp̃′(Q), so ns̃S

h(Q, p), hence nS̃S
h(Q, p),

will be a function.
We show next that it is strictly decreasing in Q and non-decreasing in p. Sufficient is to

show that ns̃S
h(Q, p) is strictly decreasing in Q and strictly increasing in p. First for Q: suppose,

contrarily, that for Q′ > Q we have s′ = ns̃S
h(Q′, p) ≥ ns̃S

h(Q, p) = s. Then we would have
eh − s′Q′ < eh − sQ and so concavity of vh(·) implies

p + s′Q′np̃′(Q′) = v′h(eh − s′Q′) > v′h(eh − sQ) = p + sQnp̃′(Q).

However,

d
dQ

{sQnp̃′(Q)} = s(np̃′(Q) +Qnp̃′′(Q)) +
ds

dQ
{Qnp̃′(Q)}

≤ 0

as np̃′(Q) +Qnp̃′′(Q) ≤ 0, np̃′(Q) < 0 and ds
dQ ≥ 0 by presumption, which is a contradiction as

the first inequality implies s′Q′np̃′(Q′) > sQnp̃′(Q).
Next to show that ns̃S

h(Q, p) is strictly increasing in p. In order to demonstrate this we note
that

∂ns̃S
h(Q, p)
∂p

= −
∂
∂p{v

′
h(eh − sQ)− p− sQnp̃′(Q)}

∂
∂s{v

′
h(eh − sQ)− p− sQnp̃′(Q)}

= − 1
Qv′′h(eh − sQ) +Qnp̃′(Q)

> 0
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as v′′h(·) < 0 and p̃′(·) < 0, which gives the result.
Now, when p > v′h(eh) and Q is small we may have situations in which the share function

exceeds one. To avoid this economically meaningless case we restrict the domain of the share
function to Q > Qh(p) where Qh(p) is such that v′h(eh − Qh(p)) = p + Qh(p)np̃′(Qh(p)). By
definition, nS̃S

h(Qh(p), p) = 1.
If p ≤ minHS{v′h(eh)} all sellers’ share functions are zero, as is the aggregate. When p >

minHS{v′h(eh)} there is a set of sellers, denoted HS
∗ , for whom p > v′h(eh) and who have positive

share functions defined for Q > Qh(p) which are continuous, bounded above by min
{
1, eh

Q
}
,

strictly decreasing in Q, non-decreasing in p and such that nS̃S
h(Qh(p), p) = 1. We take the

aggregate share function to be defined for all Q ≥ maxHS
∗
{Qh(p)}. When Q = maxHS

∗
{Qh(p)}

the aggregate share function is no lower than one. When Q = m
∑

HS eh it is no higher than
one. As it is strictly decreasing in Q there is a single Q ∈ [maxHS

∗
{Qh(p)},

∑
HS eh] such that

m
∑

HS
nS̃S

h(mQ, p) = 1. Thus, strategic supply is a function. As individual share functions are
non-decreasing in p, so is

∑
HS

nS̃S
h(mQ, p) and, since this function is strictly decreasing in Q,

the value of Q such that m
∑

HS
nS̃S

h(mQ, p) = 1 can be no lower for higher levels of p: m,nX̃ S
1 (p)

is non-decreasing in p.

Proof of Proposition 2. First we show that if mm,nX̃ S
1 (p̂) = nX̃B

1 (p̂) then there must be
a Nash equilibrium with price p̂. When np̃′(Q) + Qnp̃′′(Q) ≤ 0 the aggregate offer at price p̂
is exactly Q̂ = mm,nX̃ S

1 (p̂) and we will have p̂ = np̃(Q̂) by definition. For each seller h ∈ HS

we know q̂h = Q̂nS̃S
h(Q̂, p̂) and this implies q̂h = nB̃Rh(Q̂−h)∀h ∈ HS in turn implying the

strategies {q̂h}h∈HS form a Nash equilibrium.
Next, suppose the strategies {q̂h}h∈HS form a Nash equilibrium with aggregate offer Q̂.

Then the price will be p̂ = np̃(Q̂) and demand from the buyers will be nX̃B
1 (p̂). Since the

strategies form a Nash equilibrium we have that q̂h = nB̃Rh(Q̂−h)∀h ∈ HS and this im-
plies q̂h = Q̂nS̃S

h(Q̂, p̂)∀h ∈ HS, in turn implying Q̂ = m,nX̃ S
1 (p̂) because it follows that

m
∑

HS
nS̃S

h(mQ̂, p̂) = 1. As p̂ = np̃(Q̂), this implies mQ̂ = nX̃B
1 (p̂) in turn implying mnX̃ S

1 (p̂) =
nX̃B

1 (p̂).

Proof of Theorem 2. We know from Lemma 3 that competitive demand is positive only
when 0 < p < maxHB{v′h(0)} where it is a continuous strictly decreasing function. From Lemma
5 we know that strategic supply is defined only for p > minHS{v′h(eh)} where it is a function
that is positive, continuous and non-decreasing in p. Thus, if minHS{v′h(eh)} ≥ maxHB{v′h(0)}
strategic supply and demand never intersect at a positive level and the only equilibrium is au-
tarky. Conversely, when minHS{v′h(eh)} < maxHB{v′h(0)} they intersect once and only once by
arguments analogous to those presented in the proof of the former uniqueness theorem. Then
applying Proposition 2 we get our result. Unlike in the simultaneously-played strategic market
game, autarky is not always an equilibrium in a Cournot market: when a non-autarkic equilib-
rium exists, it is the only equilibrium.

Proof of Lemma 6. We will first show that for each h ∈ HB

nBSB
h (nB, p) →n→∞ b̃h(p)∀B > 0, ∀p.

The magnitude nBSB
h (nB, p) is equivalent to the replacement function RB

h (B, p) which gives the
bid of a buyer consistent with a Nash equilibrium in which the aggregate bid is B and the price
is p. It is found by replacing B−h with B − b and B/Q with p in the best response function, and
is such that

RB
h (B, p) =

{
0 if p ≥ v′h(0) or
min{rB

h (B, p), eh} if p < v′h(0)
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where

rB
h (B, p) =

{
b : v′h

(
b

p

)
=

1
1− b

B
p

}
.

It will suffice to show that rB
h (nB, p) →n→∞ b̃h(p)∀B > 0, ∀p. This is obviously true as

1
1− b

nB

p →n→∞ p∀B > 0, ∀p implying rB
h (nB, p) tends to the solution in b to v′h

(
b
p

)
= p,

which is precisely b̃h(p).
Then we have that

nB
∑
HB

SB
h (nB, p) →n→∞

∑
HB

b̃h(p)∀B > 0, ∀p.

B is positive when 0 < p < nPB and one can check that limn→∞
nPB = maxHB{v′h(0)}. Then

setting B = pnXB
1 (p) and dividing by p we find

nnXB
1 (p)

∑
HB

SB
h (npnXB

1 (p), p) →n→∞
∑
HB

b̃h(p)
p

= X̃B
1 (p)∀0 < p < max

HB
{v′h(0)}.

But n
∑

HB SB
h (npnXB

1 (p), p) = 1 by definition, so

nXB
1 (p) →n→∞ X̃B

1 (p)∀0 < p < max
HB

{v′h(0)},

which is the desired result.

Proof of Lemma 7. When nη(Q, p) =
∣∣∣ p
Q

1
np̃′(Q)

∣∣∣ Q 1 we have

−p R Qnp̃′(Q) ⇒
(1− s)p R p + sQnp̃′(Q)

by multiplying the first inequality by s and adding p to each side. Now, sS
h(Q, p) is that s where

v′h(eh − sQ) = (1 − s)p, whilst ns̃S
h(Q, p) is that s where v′h(eh − sQ) = p + sQnp̃′(Q). Since

v′h(eh−sQ) is increasing in s (by concavity of vh(·)) it follows that when (1−s)p R p+sQnp̃′(Q)
we have that sS

h(Q, p) R ns̃h(Q, p). Thus, it follows that

nη(Q, p) Q 1 ⇔
∑
HS

SS
h(Q, p) R

∑
HS

nS̃h(Q, p).

Setting Q = nX̃ S
1 (p) we get that

nη(nX̃ S
1 (p), p) Q 1 ⇔

∑
HS

SS
h(nX̃ S

1 (p), p) R
∑
HS

nS̃h(nX̃ S
1 (p), p) = 1.

When
∑

HS SS
h(nX̃ S

1 (p), p) R 1 the value of Q that ensures equality with one, which is precisely
X S

1 (p), must be R nX̃ S
1 (p) since the function

∑
HS SS

h(Q, p) is strictly decreasing in Q. As such,

nη(nX̃ S
1 (p), p) Q 1 ⇔ X S

1 (p) R nX̃ S
1 (p).
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Proof of Proposition 3. If the elasticity of competitive demand at the Cournot equilib-
rium is unity we know that strategic supply in the strategic market game is the same as that
in the Cournot market in a neighborhood of the price at the Cournot equilibrium. Moreover,
we know from Lemma 6 that strategic demand converges to competitive demand as n → ∞.
This implies that the price and aggregate quantity of the consumption commodity traded in the
strategic market game will converge to those at the Cournot equilibrium. Let limn→∞

np̂C = p̂C

and limn→∞
nQ̂C = Q̂C. Then np̂ →n→∞ p̂C and nQ̂ →n→∞ Q̂C. Moreover, we know that when

the elasticity of competitive demand is one SS
h(Q, p) and nS̃S

h(Q, p) coincide for each h ∈ HS and
this implies that at a given price and aggregate offer individual offers will coincide. As the price
and aggregate offer converge we thus find nq̂h = SS

h(nQ̂, np̂) →n→∞ S̃S
h(Q̂C, p̂C) = q̂C

h (where
S̃S

h(Q, p) = limn→∞
nS̃S

h(Q, p)). In addition, for the buyers we recall from the proof of Lemma 6
that nBSB

h (nB, p) →n→∞ b̃h(p) and this, combined with the fact that the price converges and
nB̂ = np̂nQ̂ →n→∞ p̂CQ̂C = B̂C implies individual bids will converge: nb̂h →n→∞ b̂C

h ∀h ∈ HB.
Since the allocation mechanism is the same we thus see convergence in allocations and prices in
the many-buyer limit.

Conversely, when the elasticity of competitive demand is not unity the equilibrium price and
aggregate offer will not converge in the limit, and so generically we will see a discrepancy between
offers and bids in the limit, implying allocations and prices will not converge.

Proof of Proposition 4. We could infer this from our previous analysis (in the proof of
Lemma 2) concerning share functions, but for completeness we show it directly. Fix the offers
of the sellers at {qh}h∈HS so we specify the subgame. In this subgame the aggregate offer is
Q. As the maximisation problem of each buyer is the same as in the simultaneous-move game
we know her best response will be BRB

h (B−h,Q). Let us consider her bids consistent with an
equilibrium in this subgame in which the aggregate bid is B. Such a bid will be a best response
to B minus itself (and Q) and these (or rather their ratio to B) can be represented by the share
correspondence

ŠB
h (B,Q) =

{
0 if v′h(0) ≤ B

Q or
min

{
šB

h (B,Q), eh

B
}

if v′h(0) > B
Q

where

šB
h (B,Q) =

{
s : v′h(sQ) =

1
1− s

B
Q

}
.

The properties of this share correspondence are outlined in the following lemma.

Lemma 14. The share correspondence ŠB
h (B,Q) is a function that is continuous and, where

positive, strictly decreasing in B > 0. When B > B̄h(Q) (which is equal to v′h(0)Q) it is identically
zero. When 0 < B < B̄h(Q) it is positive, bounded above by min

{
1, eh

B
}
, strictly decreasing in

B > 0 and is such that limB→0 ŠB
h (B,Q) = 1.

Proof. That it is a function follows from realising that v′h(sQ) is strictly decreasing in s (by
concavity) whilst 1

1−s
B
Q is strictly increasing in s so there can be at most one s consistent with

equality between the two. For any given Q > 0 there will be some cutoff value B̄h(Q) = v′h(0)Q.
When B ≥ B̄h(Q), v′h(0) ≤ B

Q and so ŠB
h (B,Q) = 0. When B < B̄h(Q), v′h(0) > B

Q and
ŠB

h (B,Q) = min
{
šB

h (B,Q), eh

B
}
. To show that the function is decreasing in B suppose, to the

contrary that when B > B′ we have s′ = šB
h (B′,Q) ≥ šB

h (B,Q) = s. Then s′Q ≥ sQ and
1

1−s′
B′
Q > 1

1−s
B
Q . But concavity of vh(·) implies

1
1− s′

B′

Q
= v′h(s′Q) ≤ v′h(sQ) =

1
1− s

B
Q

,
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a contradiction. When B → 0, 1
1−s

B
Q approaches a y shape (where s is on the horizontal axis)

with the corner at (1, 0). As such, intersection between v′h(sQ) and 1
1−s

B
Q tends to occur when

s = 1.

When multiplied by B the share function gives the bid of the buyer consistent with an
equilibrium in which the aggregate bid of all buyers is B in the subgame in which the aggregate
offer is Q. In order to identify an equilibrium in this subgame we need only find a consistent
aggregate bid, i.e. such that the individual bids generated by it add up to the aggregate bid,
or where the aggregate share function is equal to one. Indeed, one can check in the routine
way that there is a Nash equilibrium in the subgame in which the aggregate offer is Q with
per-replica bid B (aggregate bid nB) if and only if n

∑
HS ŠB

h (nB,Q) = 1. Now, we know that
when B is arbitrarily close to zero, n

∑
HS ŠB

h (nB,Q) > 1, and when B =
∑

HB eh the aggregate
share function will not exceed one due to the upper bound on individual share functions. Since
individual share functions are strictly decreasing in B the aggregate inherits this property and
there will be a unique B ∈ (0,

∑
HS eh] such that n

∑
HS ŠB

h (nB,Q) = 1, ergo a unique Nash
equilibrium in which the strategy of each buyer is nBŠB

h (nB,Q).
The magnitude of of this per-replica bid, hence the nature of individual strategies, is only

dependent on the aggregate offer Q, not its composition. As such, in any subgame in which the
aggregate offer is the same, the optimal responses of the buyers will be the same.

Proof of Lemma 9. This proof exactly parallels that of Lemma 5 but where the strategic
supply function m,nX̃ S

1 (p) is replaced with m,nẊ S
1 (p), the share function nS̃h(Q, p) is replaced

with nṠS
h(Q, p) and the price functional np̃(Q) is replaced with nṗ(Q). The details are thus

omitted.

Proof of Proposition 5. Given any aggregate offer Q we know that the second-stage buy-
ers will behave optimally and use Nash equilibrium strategies in the second stage of the game.
As such, the price will be nṗ(·) and the best response of each first-stage seller will be nḂR

S

h(·).
A SPNE is identified by a set of mutually consistent best responses for the sellers (and the
corresponding optimal responses from the buyers).

First we show that whenever mm,nẊ S
1 (p̂) = nnXB

1 (p̂) there is a SPNE in which the price is
p̂. The per-replica offer at price p̂ is Q̂ = m,nẊ S

1 (p̂) and the per-replica bid is B̂ = p̂nXB
1 (p̂). We

know that for each buyer h ∈ HB, b̂h = nB̂SB
h (nB̂, p̂) = BRB

h (B̂ − b̂h, Q̂) by construction and so
buyers are playing optimal responses when the aggregate offer is Q̂ = mQ̂, i.e. there is a Nash
equilibrium in the subgame. Moreover, since the price is p̂ = nṗ(Q̂) we know that for each seller
h ∈ HS, q̂h = Q̂nṠS

h(Q̂, p̂) = nḂR
S

h(Q̂− q̂h) and so each seller is using a mutually consistent best
response. Thus, there is a SPNE in which the price is p̂.

Next suppose we have a SPNE in which the price is p̂, then we need to show that aggregate
strategic supply and demand are equal at this price. So, suppose the strategies ({q̂h}h∈HS , {b̂h}h∈HB)
form a SPNE. For each buyer h ∈ HB, b̂h = BRB

h (B̂ − b̂h, Q̂) and so b̂h = nB̂SB
h (nB̂, p̂) implying

n
∑

HB SB
h (nB̂, p̂) = 1 in turn implying B̂

p̂ = nXB
1 (p̂) and moreover that p̂ = nṗ(Q̂). Then for each

seller h ∈ HS we must have q̂h = nḂR
S

h(Q̂−h) and so it follows that q̂h = Q̂nṠS
h(Q̂, p̂)∀h ∈ HS

by definition. But then m
∑

HS
nṠS

h(mQ̂, p̂) = 1 implying Q̂ = m,nẊ S
1 (p̂). Then since p̂ = nṗ(Q̂)

and nṗ(Q̂) is such that Q̂ = nnXB
1 (nṗ(Q̂)) it follows that mm,nẊ S

1 (p̂) = nnXB
1 (p̂).

Proof of Theorem 3. We recall from Lemma 2 that strategic demand is positive only
for 0 < p < nPB where it is a function that is continuous and strictly decreasing in p, and
from Lemma 9 that strategic supply in the two-stage market game in which the sellers move
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first is positive only for p > minHS{v′h(eh)} where it is a continuous function that is non-
decreasing in p. Moreover, Proposition 5 tells us that non-autarkic SPNE are in one-to-one
correspondence with intersections of strategic supply and demand at the aggregate level. When
minHS{v′h(eh)} ≥ nPB there are no prices where both strategic supply and demand are defined,
so they cannot intersect. Thus, there is no non-autarkic SPNE; the only equilibrium is autarky.
Conversely, when minHS{v′h(eh)} < nPB strategic supply and demand must intersect, and due
to their monotonicity properties they intersect only once. As such, there is a unique non-autarkic
SPNE.

In this latter case, contrary to the simultaneous-move market game, autarky is not also an
equilibrium. If the aggregate offer from the sellers in the first stage is positive, any buyer, even
if she is acting alone, has the incentive to make a positive bid so the aggregate bid in the second
stage will generically be strictly positive if the aggregate offer is positive. Given this, individual
sellers have an incentive to make a positive offer in an attempt to acquire the whole of this bid
if it is individually rational to do so. If minHS{v′h(eh)} < nPB there will indeed be such an offer
and no autarkic equilibrium will exist.

Proof of Lemma 12. We first show that limn→∞
nṠS

h(Q, p) = limn→∞
nS̃S

h(Q, p)∀Q >
0, ∀p, noting that it will suffice to show limn→∞

nṡS
h(Q, p) = limn→∞

ns̃S
h(Q, p). The former is

that level of s where v′h(eh − sQ) = p + sQnṗ′(Q) whilst the latter is where v′h(eh − sQ) =
p + sQnp̃′(Q). But we know from Lemma 6 that nXB

1 (p) →n→∞ X̃B
1 (p) and this implies

limn→∞
nṗ(Q) = limn→∞

np̃(Q)∀Q > 0, which implies the desired result.
As a consequence, we know that

lim
n→∞

∑
HS

nṠS
h(Q, p) = lim

n→∞

∑
HS

nS̃S
h(Q, p)∀Q > 0, ∀p.

Setting Q = limn→∞
nX̃ S

1 (p), which is positive for all p > minHS{v′h(0)} we get that

lim
n→∞

∑
HS

nṠS
h( lim

n→∞
nX̃ S

1 (p), p) = lim
n→∞

∑
HS

S̃S
h( lim

n→∞
nX̃ S

1 (p), p) = 1∀p > min
HS

{v′h(0)}.

Since
∑

HS
nṠS

h(Q, p) is strictly decreasing in Q under the stated conditions this implies that the
only value of Q consistent with limn→∞

∑
HS

nṠS
h(Q, p) = 1 (which is precisely limn→∞

nẊ S
1 (p))

is Q = limn→∞
nX̃ S

1 (p). Thus, limn→∞
nẊ S

1 (p) = limn→∞
nX̃ S

1 (p)∀p > minHS{v′h(0)}.

Proof of Theorem 5. Since nXB
1 (p) →n→∞ X̃B

1 (p)∀0 < p < minHB{v′h(0)} and
limn→∞

nẊ S
1 (p) = limn→∞

nX̃ S
1 (p)∀p > minHS{v′h(eh)} we know limn→∞

np̂SB = limn→∞
np̂C

and limn→∞
nQ̂SB = limn→∞

nQ̂C. A direct consequence is that limn→∞
nB̂SB = limn→∞

nB̂C.
It only remains to show that individual bids and offers converge. For the sellers, their indi-
vidual offers in the two-stage game are nQ̂SBnṠS

h(nQ̂SB, np̂SB) whilst in the Cournot oligopoly
they are nQCnS̃S

h(nQC, npC). In the proof of Lemma 12 we showed that for each h ∈ HS,
limn→∞

nṠS
h(Q, p) = limn→∞

nS̃S
h(Q, p)∀Q > 0, ∀p. As such, since limn→∞

nQ̂SB = limn→∞
nQ̂C

and limn→∞
np̂SB = limn→∞

np̂C it follows that limn→∞
nq̂SB

h = limn→∞
nQ̂SBnṠS

h(nQ̂SB, np̂SB) =
limn→∞

nQCnS̃S
h(nQC, npC) = limn→∞

nq̂C
h . The buyers’ individual bids in the two-stage game

are nnB̂SBSB
h (nnB̂SB, np̂SB) whilst in the Cournot oligopoly they are b̃h(np̂C). We showed in the

proof of Lemma 6 that nBSh(nB, p) →n→∞ b̃h(p)∀B > 0, ∀p. As such, since limn→∞
np̂SB =

limn→∞
np̂C, it follows that for each h ∈ HB, limn→∞

nb̂SB
h = limn→∞ nnB̂SBSB

h (nnB̂SB, np̂SB) =
limn→∞ b̃h(np̂C) = limn→∞

nb̂C
h .
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Proof of Lemma 13. Write the share correspondence of each buyer in terms of the ratio
V = B

p , in which case it takes the form

˘̈SB
h (V, p) =

{
0 if p ≥ v′h(0) or
min

{
˘̈sB
h (V, p), eh

Vp

}
if p < v′h(0)

where
˘̈sB
h (V, p) =

{
s : v′h(sV) =

p2

p− sVpp̈′(Vp)

}
.

The magnitude of a buyer’s bid consistent with a SPNE in which the ratio of aggregate bid to
price is V and the price is p is given by Vp ˘̈SB

h (V, p), and in order to find the consistent level of

V = nV , i.e. strategic demand, we look for that level of V such that n
∑

HB
˘̈SB
h (nV, p) = 1. [One

can verify in the usual way that ˘̈SB
h (V, p) is a function that is strictly decreasing in V.]

Now, the first task is to show nV p ˘̈SB
h (nV, p) →n→∞ b̃h(p)∀V > 0, ∀p. The magnitude

nV pn ˘̈SB
h (nV, p) is equivalent to the replacement value

˘̈RB
h (nV, p) =

{
0 if p ≥ v′h(p)or
min{˘̈rB

h (nV, p), eh} if p < v′h(0)

where
˘̈rB
h (nV, p) =

{
b : v′h

(
b

p

)
=

p2

p− bp̈′(nV p)

}
and it will suffice to show ˘̈rB

h (nV, p) →n→∞ b̃h(p)∀V > 0, ∀p. But the former is that b where

v′h

(
b
p

)
= p2

p−bp̈′(nV p) whilst the latter is where v′h

(
b
p

)
= p. As n → ∞, p̈′(nV p) → 0 (the

marginal effect of any buyer on the price diminishes to zero as their number increases) and so
p2

p−bp̈′(nV p) → p and the desired result follows.
Then we have

nV p
∑
HB

˘̈SB
h (nV, p) →n→∞

∑
HB

b̃h(p)∀V > 0, ∀p.

Setting V = nẌB
1 (p) which is positive for all 0 < p < maxHB{v′h(0)} and dividing by p we get

nnẌB
1 (p)

∑
HB

˘̈SB
h (nnẌB

1 (p), p) →n→∞
∑
HB

b̃h(p)
p

= X̃B
1 (p)∀0 < p < max

HB
{v′h(0)}.

But n
∑

HS
n ˘̈SB

h (nnẌB
1 (p), p) = 1, which gives the desired result.
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