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ANALYTICAL MODELLING AND VIBRATION ANALYSIS OF PARTIALLY CRACKED RECTANGULAR
PLATES WITH DIFFERENT BOUNDARY CONDITIONS AND LOADING
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Abstract

This study proposes an analytical model for vibrations in a cracked rectangular plate as one of the results from a programm
of research on vibration based damage detection in aircraft panel structures. This particular work considers an isotropic plate
typically made of aluminium, and containing a crack in the form of a continuous line with its centre located at the centre of the
plate, and parallel to one edge of the plate. The plate is subjected to a point load on its surface for three different possibl
boundary conditions, and one examined in detail. Galerkin’s method is applied to reformulate the governing equation of the
cracked plate into time dependent modal coordinates. Nonlinearity is introduced by appropriate formulations introduced by
applying Berger's method. An approximate solution technique, the method of multiple scales, is applied to solve the nonlinear
equation of the cracked plate. Results are presented in terms of natural frequency versus crack length and plate thickness, ¢
the nonlinear amplitude response of the plate is calculated for one set of boundary conditions and three different load location:
over a practical range of external excitation frequencies.

Overview only. Okamuraet al. [2] obtained the lateral deflection, the
Thin plate structures have gained special importance alhd carrying capacity, and the stress intensity factor of a
notably increased application in recent years. Complegctangular cross-section single-edge cracked column with
structures such as aircraft, ships, steel bridges, sea platfolmmegged ends under compression. They compared an un-
etc., all use metal plates. For example, it has been obsereeaicked column with a cracked column and examined the
that plate panels on the tips of aircraft wings are mainly undeffect of a crack on the load carrying capacity. Lateral
transverse pressure, and are often subjected to normal deflection decreased with the ratio of crack length to column
shear forces which act in the plane of the plate. The plate maigith, and the ratio of column width to column length. The
not behave as intended if it contains even a small crack effect was generally small, if the crack was short and the
form of damage, and such small disturbances can then creat®lamn was long. In particular these authors considered the
complete loss of equilibrium and cause failure. effect of compliance due to bending and ignored the effect of
The literature has been reviewed for research on crackesmpliance due to rotation induced by the axial load. Khadem
plates under tension and bending. Khadem and Rezaee dthfl Rezaee [3] established an analytical approach for damage
introduced a new technique for vibration analysis of cracked the form of a crack in a rectangular plate by the application
plates and considered the effect of compliance due to bendofgexternal loading for different boundary conditions. They
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concluded from their results that the presence of a crack atllae crack consists of a continuous line and certain simplifying
specific depth and depending upon its location, would affeassumptions are made in order to get an initial tractable
each of the natural frequencies differently. Krawcelidd. [4]  solution to the vibration problem. Principally, the effects of
applied a versatile numerical approach for the analysis wftary inertia and through-thickness shear stress effects are
wave propagation and damage detection within cracked platesglected. Berger’s formulation is used to generate the
Wu and Shih [5] theoretically analyzed the dynamic instabilitgonlinear term within the model differential equation of
and nonlinear response of cracked plates subjected to periadiation. An approximate analytical solution of the equation for
in-plane load. The results indicated that the stability behaviotire vibration in the cracked plate for given boundary
and the response of the system are governed by the creokditions, is found by the method of multiple scales,
location of the plate, the aspect ratio of the plate, conditionsfollowed by the presentation of some numerical results and
in-plane loading and the amplitude of vibration. Moreovegonclusions.

increasing the crack ratio i.e. the ratio of the crack length to

the length of the edge parallel to the crack, and/or the staBoverning Equation of the Rectangular Plate and
component of the in-plane load decreases the natuack Term

frequency of the system. Irwin [6] examined a part-through The classical form of the governing equation of
crack in a plate subjected to tension and derived a relation fectangular plate is rigorously treated in [9-11]. Here, the
the crack stress-field parameter and the crack extension foerpiilibrium principle is followed for the derivation of the
at the boundaries of a flat elliptical crack. Rice and Levy [foverning equation of the cracked rectangular plate, in which
employed two dimensional generalised plane stresses and usedack is present at the centre and parallel ta-thieection of
Kirchhoff's plate bending theories with a continuouslytthe plate, as depicted in Fig. 1, and consisting of a continuous
distributed line-spring to represent a part-through crack, afide of length 2. The following basic assumptions are
choose compliance coefficients to match those of an edgeinmarized:

cracked strip in plane strain. The line of discontinuity was of

length 22 and the plate was subjected to remote uniforrh. The plate is made of a perfectly elastic, homogeneous,
stretching and bending loads along the far sides of the plate. isotropic material and has a uniform thicknasshich is
These authors computed the force and moment across the considered small in comparison with its other dimensions.
cracked section to determine the stress intensity factor, and 2he All strain components are small enough to allow Hooke’s
solution to the problem was characterised in terms of the Airy law to hold.

stress function. Their results showed t”ﬁL/Krs (where 3. The normal stress component in the direction transverse

. . . _ to the plate surface is small compared with other stress
K,is the stress intensity factor for an all-over crack, &)d components, and is neglected in the stress-strain

is the stress intensity factor of an edge crack in plane strain for re|ationship.
the same relative depth,/h, and for remote tensile or 4. Shear deformation is neglected in this case and it is
bending load) approaches unity with an increase in the ratio of assumed that sections taken normal to the middle surface

crack length to plate thicknesga/h. Furthermore, at small before deformation remain plane and normal to the
. . deflected middle surface of the plate.

values of relative depth, /h, the relative changes of stresss_ The effect of the rotary inertia pshear forces and in-plane

intensity factors approaches unity for small valuegath. force in the y-direction i.en,and n,, are neglected to

The solutions obtained based on linear models are
considered adequate for many practical and engineering
purposes although it is recognized that linearized equati
usually provide no more than a first approximation. Lineariz
models of vibrating systems are inadequate in cases wh
displacements are not small. In addition, problems treated
nonlinear theory exhibit new phenomena for example, the . A A ) ) - ,
dependence of frequency of vibration on amplitude that canngf 9w , , 0'w __9'w)__  o*w _ 9'w O'M, _ o'w
be predicted by means of linear theories. Moreover, an| ox* — ox%y® ay* az T oyt Yoy
example of such a source of nonlinearity is a crack within a (1)
plate, which can lead to profound changes in the vibrational
response of the system. In this study, much previous work hag
been considered together, leading to a proposal for a new ) ) . )
analytical model for the vibration analysis of a cracked plat8t the surfacep is the density of the plate, is the in-plane
In [8] the authors developed an approximate analyticat membrane forceMy, andn, are the moment and in-plane
solution for damage detection in an aircraft panel StruCtUfgce ner unit length due to inclusion of crack at the centre of
modelled as a cracked isotropic pl_ate Wltho_ut the applicatigpe plate, respectively.
of a load, essentially for free vibration. The literature does not
appear to contain any substantial references to analytical — _
mpopdels for cracked plztes undergoing forced vibration. th’he In Eq. (1) two new termsi, , and i, and caused by the
work presented here considers classical plate theory a#f@ck, are introduced by the application of the equilibrium
includes an arbitrarily located crack within a rectangular platerinciple based on classical plate theory. The formulation of

make the problem more tractable.

Z%gsed upon these assumptions, the final version of the
%overning equation of the cracked plate takes the following

y

ere D = Eh’/12(1-0?), P, is the load per unit area acting



these crack terms is obtained from the Rice and Levy [giresses at the far sides of the pldteis the thickness of the

model (in Egs. (10) and (11)). The Rice and Levy approachd%te, a is the half-crack length, and’, , a®, a2 = aC, are the
based on Kirchoff's bending theory for thin plates, and theon-dimensional bending compliance, stretching compliance
assumptions involved in this theory lead to importarﬂ 9 P ' 9 P

o . : . and stretching-bending compliance coefficients at the crack
simplifications in the governing equations. Actually, th% ntre respectivel
results are presented for the stress intensity factors in paﬁ- P Y.

through cracked plates, provided that the crack is not too deep._, . . . .
. . . This shows that the nominal tensile and bending stresses at
These stress relationship are used and then by making use _of . ) .
- . crack location can be regarded as a function of the nominal
Egs. (8) and (9), a new relationship for the force and momeEn

o . sile and bending stresses at the far side of the plate. It is
?Sigsﬁiﬂgbgégﬁoﬁmk has been developed, which is dealt mv?@rth noting that Okamuret al. [2] and Khadem and Rezaee

[3] also restricted their analysis to the effects of bending
: . _ — compliance. These three compliance coefficients depend upon
Later, P, in Eq. (1) is replaced by a point lodg based the crack depthd to plate thicknessh and vanish when

on the application of the appropriate delta function in Eq. (24) =5 |t is shown in [7] that in general the compliance

to make it co_mpatlble_,- W't.h _the ex_perlmental Con_f'gurat'orl:oefficient is a function of the ratio of crack depth to plate
Furthermore, in practice, it is straightforward to 'mpleme%ickness. After  suitable nondimensionalisation  the

this type of loading. compliance coefficients at the centre of the crack takes this
form,

Crack Terms Formulation o
Rice and Levy [7] obtained an approximate relation for a,, =1.1547a,, . (4)

nominal tensile and bending stresses at the location of the

crack. These two relations are taken after some rearrangem@iMere A, z=b,t are intermediate variables used in [7] for

and making use of the relationships within Egs. (8) and (g}gebraic

from which it can be deduced thamg=60,.

representation of these stresses is given in Fig. 1.

simplification. The appropriate compliance
coefficients, a,, , may then be calculated from the following
relation, noting that they are valid only fgf =d/h values

o within the range 0.1-0.7. In the present analysis, we take

. Z =0.6, leading to calculation of the compliance coefficients
i\) o, [1-2, 7] as follows,
Y m,
o =2 1.98- 0.54 + 18.68° - 33.70+ 99.Z6
t —211.9Q75 + 436.84° - 460.48 + 28908/
T ®)

e 1.98- 3.2¢" + 14.43>- 31.26+ 63.56

o ®7 | -103.3¢5+ 147.52° - 127.69 + 6158

(6)

Fig. 1 Line Spring model representing the bending and

tensile stresses for a part-through crack of length 2a, after [

[7] ay =ay =47

1.98-1.97%+ 16.002- 34.94+ 83.83
-153.6%5+ 256.725 - 244.G7 + 13358

s © "

— 2a
Ors =

This means that uniformly distributed tensile and bending

B 2a stresses are at the two sides of the crack location, and these
and, ms = o M. tensile and bending stresses can be expressed in term of tensile
3[%+a§b](3+u)(1—u)h+ % (3)  and bending force effects. Therefore, we can write the tensile
and bending stresses at the far sides as [7],

We define g,;and mgas the nominal tensile and bending

stresses respectively, at the crack location and on the surface N
of the plate,o,,and m are the nominal tensile and bending " h

1 +Pj‘/2 (8)
== T.s(X,y,2z)dz,
h -h/2



6 6 +h/2 (9)
ms = ? M rs = ? _,'1[,2 ZTrs(Xv y,z)dz, D[ atz 0X2 z
2a 0°M

ay* (14)

*w . o'w  d'w)_ 0w 9w
ATt | TPt R
0X oxoy- oy

where r,s=1,2 are intermediate variables required for 0
. Oy o
algebraic simplificationn,jand M are the force and moment 3[6+C’bb](3+U)(1‘U)h+ 2a
per unit length in the y-direction at the far sides of the plate, )
respectively, and,¢(x, y, z) is the stress state. _ 2a n 0w
(605, +ag) a-v?h+2a * oy?

The force and moment were calculated from two-
dimensional plane stress-plate bending theory, with t%%
cracked section represented as a continuous line spring ha IXQ
its compliance matched to that of the edge cracked strip T/’
plane strain. Accordingly, we can write Egs. (2) and (3) in the

the bending stresses at the far sides of the plate are defined

2 2
form of force and moment as, M, = _D(ZT\;V+UZT‘2VJ, (15)
s (10)
(60{[, +atct>)(1_u2 dh+2a then Eq. (15) can be substituted into Eq. (14) to get the final
form,
d Mg= 2a M o'w _ d'w | d'w *w 9w
and, rs a° s (11) D| —+2——+— |=-pPh—+n—+P,
3 %+a§b (3+v)A-v)h+2a oX ox“oy® oy ot

2a 'w  d'w

a Y - T ot oyx? (16)

yvhere Nes a_nd Mrsare the force and moment per unit length 4 ot 1 g0 |(B3+u)A-vh+ 2

in the y-direction at the crack location of the plate, 6

respectively. 2a 22w
—

nTS
It is evident from the work of Rice and Levy [7] that when (6a§, +0’t?) @-uv*)h+2a oy
two forces are acting on the plate element to stretch and bend
it, the results of their work show that the Airy stress funCtio&eneral Solution for a Vibrating Cracked Plate

satisfies the compatibility condition in a region where the Now we consider the rectangular plate of Fig. 2leafjth

body force field is zero. Here, it is very useful to mention tha}t in the x-direction andl. in the v-direction containing a
the present theory and the model of the Rice and Levy afe 2 y 9

based on classical plate theory, therefore the force afi@Ck which consists of a continuous line of lengihdzated
moment obtained from Egs (10) and (11) are the requiréélthe centre and parallel to tkelirection of the plate.
terms and are added into the cracked plate model with a
negative sign because damage causes a reduction in the overall
stiffness of the plate structure, a phenomenon which can also
be seen in the literature, such as the work of Khadem and
Razaee [1,3], and Wu and Shih [5]. Therefore, we can write,

N, =-n.=- 2a Nes» (12)
(6at, +ag) (1-v?)n+ 2a

= _ = 2a
and,M =-M=- M;s

y rs o
3[”(;" + ang(3+u)(l—u)h +22  (13) v
[y

L

Substituting the values di, and My from Egs. (12) and (13) ZW
Crack of length @

into the Eqg. (1), so the governing equation of the plate with

crack extends to the following form, Fig. 2 Isotropic Plate loaded by concentrated force and

small crack of length 2a at the centre, and parallel to the
X -axis



A point load P, based on the application of the appropriate A X A x (A x (A x
delta function (in Eq. (24)) is introduced at the location of<m = CO T - €os T RO T -sin T ’

(%1 %o) - 18)

Leissa [9] studied a wide range of rectangular plates with
different boundary conditions, producing seminal data ony - Ay oS Ay —y | sin Ay —sin Ay
natural frequencies and mode shapes. Many approaches have l, l, " l, l,
been adopted from time to time to form the general solution (19)
for vibrating plate. Yagiz and Sakman [12] observed the
dynamic response of a bridge modelled as an isotropic plqlﬁ,-
; . ; . e/
under the effect of a moving load with all sides simply .
supported. They considered a vehicle in the form of a sevéiind in standard reference text such as [9,19].
degree of freedom system as the moving load. A mathematical o )
model was obtained by the use of Lagrange’s formulation aR@undary Condition 2. Two adjacent edges are clamped
was used to investigate the dynamic response of the bridi@ile the other two edges are freely supported — CCSS [20]
and vehicle. Au and Wang [13] studied the dynamic responses
in terms of sound radiation from forced vibration of an Zm mMzx . mx _ 1o ( m7zx 3mlTXJ
m=1

mnand the y, are mode shape constants and can be

orthotropic plate with the effects of moving mass, damping'm ~ sin l, S 2, "2l €0s 2, - €08 2,
coefficient, boundary conditions. Fan [14] analyzed the
transient vibration and sound radiation of a rectangular plate
with visco-elastic boundary supports subjected to impact
loading and obtained the sound radiation pressure in the tirQnezzeo sinVW gin™WY _ige cosVW - 3nrry
and frequency domain by the Rayleigh integral. n=1 I, 2, 24z
Mukhopadhyay [15] presented a numerical method for the 1)
solution c_)f rectangular plat_es ha\_/lng different edge Cond't'o@ﬁ)undary Condition 3. All sides are simply supported —
and loadings. Young [16] investigated and calculated the &t

. ) : L SS[9,10,12]
of functions, which define the normal modes of vibration of a
uniform beam and obtained the solution for the plate problem
with different boundary conditions by the use of Ritz method. Xp=>" sin x| (22)
Stanis¢ [17] and Nagaraja and Rao [18] obtained an m=L l
approximate solution to find the dynamical behaviour of
rectangular plates for different boundary conditions.

(20)

. o . . Y, =Z"°:lsin[ nry J (23)
The solution for the governing differential equation of the " 1,

plate subjected to transverse loading is obtained by defining

the characteristic functions depending upon the boundafye |ateral load P. at position ,,y,) can be readily
conditions of the plate. The basic model for solution is the one z °

in which all edges are simply supported, while for Othet?,xpressed as follows [14]

boundary conditions the principle of superposition holds _

[11,19]. The most general form of the transverse deflection of P, =R o(x=x%,)3(y - Y,) (24)
the plate is

Substituting the definition ofv(x, y,t) from Eq. (17) andP,
Wiy, =3" 3" ALX Yl ), (17) from Eq. (24) into Eq. (16), we get,
9*X *X Y, % %y(t)
D Y+ m1+—aX t) = —-ph—== A XY,
whereX _and Y, are the characteristic or modal functions of ( axt " axPay? oy* mJA“”w() P A Xy
the cracked rectangular plafg,is an, as yet, arbitrary %X 2a %Y.

+n,—1Y t)— n,— X t
amplitude andy,, (t) is the time dependent modal coordinate. * 9x° At (1) (Gafg +a§)(1—uz)h+ 22 " oy? A/ (1)

The appropriate expressions for the characteristic or modal 2a D(L\fg xm+U%]Aml/l(t)
functions are given below and satisfy the stated boundaryy a"?‘+a§b](3+u)(l—u)h+ xn oy 0y ox
conditions of the plate. For all casgand |, are the lengths of 6

the sides of the plate along tk@ndy directions respectively. +P (t) d(x—x,) (Y- V,)-

Three boundary condition cases are given next. (25)

Bogndary Condition 1. Two adjacent edges are clamped Berger [21] determined the deflection of a plate by
while the other two edges are free — CCFF [9,16,18,19] neglecting the strain energy due to the second invariant of the



2
of magnitude of the thickness of the plate. This can be usedatud, Nishhlp _EII
obtain forms for the in-plane forceg and n,¢ per unit length 12D 20 0
in the x and y direction respectively, and applies theory
predominantly based on aspect ratios equal to 1, 1.5, 2, splying the definition ofw(x, y,t) from Eq. (17) we get,
infinity. Berger showed that this approach works well for
combinations of simply supported and clamped boundary 2
conditions, as shown previously. We note in passing that Wah Ny = DR A ¢m (0, (34)
[22] and Ramachandran and Reddy [23] also applied Berger's
formulation efficiently for analysing the nonlinear vibrationsvhere
of undamped rectangular plates.

I,
To make the form of the in-plane forces, the middle surfacraJmn -_5 zw Zm Jj{[ax j Y2+U[66Y ] Xm}dxdy,
= y

middle surface strains and when the deflection is of the order Iy 1y
ERCIE

strains in thex andy directions can be given by [11], h, ™0 0x "
2 (35)
ou ow (26)
&x __+_ P d 2,2
x 2| ox and, M = DFym A2 2, (1), (36)
av 1 ow 2 where
&= ay 2 oy @7 6 1l oy 2 X,
Fzrm h2|]_|2 Zn:lZm:]_([_([|:[ ay J xm +U [ a j Y }dXdy
whereu andv are the displacements in tkeandy directions (37)

respectively.

Substituting the in-plane forces, and n from Egs. (34) and
(36) into Eqg. (25), multiplying each part of Eq. (25) by the

Accordingly, we can write the in-plane forces as, [11],

_ Eh modal function X and Y, for one of the three example
My T1-2 (€X+U€y)’ (28) boundary conditions mentioned above, and then integrating
over the plate area, we find that,
Eh
e =2 (605 (29) M e t) * K el (1) + Gl (1) = P (38)
where
Substituting Egs. (26) and (27) into Egs. (28) and (29), we get
I
,Oh i 2
M _ X2 Y “dxdy, 39
nxh2 _a_u UaV 1[6Wj +_1U a_W 2 (30) mn D Z 1Zm lA‘ﬂn_[J. y ( )
12D ox dy 2\ dx 2 \ay )’
XM, 42X Y+ Y X
and therefore for vy, Iy ( VIR )
[ © 2aluX] Y, +Y X
K=, > Am m m XY dixdy,
n.h? v ou, 1fow 21 (ow)? - .([J; g % +ag, |(3+v)1-vh+2a
L T e ) :
12D oy ax 2\ oy 2 \ox (40)
We multipl i ~Fam Xm XY
ply Egs. (30) and (31) lxdy and integrate over the L1, n

28F po X 2X, Yo dxdy,
(Gat% + at‘t’) a-v*)h+2a

plate area, and then impose the conditionsuteidv vanish G - Z J‘
at the external boundaries and around the crack due to e 2o ™3
symmetry, leading to,

o —

+

(41)
2“‘{( J [ J]dxdy (32) The integral of the delta function is given by

jxm(x)d(x—xo)dxzxm(xo). Therefore, the force term in

nh?l,
12D

—00

Eq. (38) can be expressed as



_P) (42) To obtain a uniformly valid approximate solution to this
Pm = D Qm problem it is necessary to order the cubic term, the damping,
and the excitation. To accomplish this we choose to set the
following to O¢)*,

where Qmn = X (%) Ya (Vo) - (43)

Equation (38) is in the form of the well known Duffing H=et B =EBm, P=EP. (52)
equation containing a cubic nonlinear term, and can be re- o ) .

stated as After substituting Egs. (51) and (52) into Eq. (50), it becomes

as follows,

. 3 — /]mn
PO+ YO A O RO Dy 240 90+ Bt ™) =2 peOS 0 )

where (53)
K_rm, (45) This introduces damping, the cubic nonlinearity, and the
M m excitation to first order perturbation, which is considered to be
in line with the appropriate experimental configuration, and
G other work on weakly nonlinear vibrating systems [24-27]. It
Bm :M_' (46) is important to note here that for Duffing equations the
m coefficient of the cubic term, in this casgs,, can be
Qm
M

numerically positive or negative, leading to overhangs of the
, (47) response curve in the frequency domain to the right or left,
mn respectively.

and a,, is the natural frequency of the cracked rectanguldhe Method of Multiple Scales
plate. The method of multiple scales is well discussed in the
seminal work of Nayfeh and Mook [24] and also in the well

Now if it is assumed that the system is under the influen&Bown books of [25], and [26]. Cartmedl al. [27] reviewed

of weak classical linear viscous dampipg then the equation the multiple scales method as applied to weakly nonlinear
dynamics of mechanical systems. For the method of multiple
of the model of the rectangular cracked plate becomes, . L .
scales, the solution of the equation is approximated by a

J uniformly valid expansion of the form,

gty +up )+’ Yt)+ B> t)="R,(t).  (48)
" D l//mn(tv‘g):worm(To'Tl)"'gwlnh(TO’T1)+0(52)1 (54)

Letting the load be harmonic, such that,
where ¢, (T,.T;) and ¢, (T,,T;) are functions yet to be

P, (t) = pcosQ it (49) determined. Independent time scales are introduced vifijere
is nominally considered dast time and T, asslow time, such
that, T, =t andT, = ¢t. We can express the excitation in term
of T, andT, as

leads to,

. A
PO+ 21O+ Y O+ Bt ()= 2 POt (50)
Po (t) = spcos(a,}mTo + anth)' (55)
Instead of using the excitation frequen@y,, as a parameter, Substituting the expansion of Eq. (54) and the excitation term
we introduce a detuning parameter,,, which quantitatively from Eq. (55) into Eq. (53), we get,
describes the nearness Of,, to «},, and this is a case of
2 212 2 212

primary resonance. This has the advantage of clarifyir&Po +2£D,D; +£°D; }‘/IOan"g[Do +26D,D, +£°D] }‘/'lmn

identification of the terms in the governing equation at first ) .2y 4 o-/[D + D +224[D. +£D +2e11 0(£2
order perturbation that lead to secular terms. Accordingly we (%) + 26[ Do + £D4]do H[Bo *£D1 ] + 2614 0(%)
write, [24], 0 Polllo oy + ERA oy + G O(£2) +5f3mn{‘/’3m +eyd +o(£2)}

o

Q= W +E0, (51) = g%m pcoy WmTo + Ty Ta)-

where ¢ is an arbitrarily small perturbation parameter : . . (56)
' Separating terms of like orderyields, to order®:



2 — — )
Doworm +a‘ﬁ1nl/jorm =0, (57) -2y, D1B - 2 e, B - ?ﬁmnBzB+/;—nl; pelg""-r1 =0. (63)

and to order™: _ o _ _
In solving Eq. (63), it is convenient to write the complex

Dflﬂlmn + Wl = =206 Dl rm = 24D oW mn —,anlﬂfm amplitude B in the polar form,B = —be"’ , (64)

+2m. pcos( Wy T, + Ty ).
D nlo T whereb and a are real amplitude and phase functionsTof

(58) respectively. Substituting Eq. (64) into Eq. (63), we get,

The higher orders of? ¢* and so on, may be neglected
Bm’] b3

because higher order perturbation equations will vyield Wpbd' =i b — it ——2
negligible corrections for the problem as set up here. The i 8 (65)
general solution of Eq. (57) can be written as +% PlCOSE,,, T, — @ )+i sing,, T, -a )= 0
Womn = BT)E™ + B(T)e“m™, (59) | o

where the prime denotes the derivative with respect;to

where B is an unknown complex amplitude arf@l is the Now, separating the result into real and imaginary parts, we

complex conjugate d . This amplitude will be determined obtain,
by eliminating the secular terms frog,, . Substituting the b'=-ub+ psm( -a), (66)
solution from Eq. (59) into Eq. (58), we get,
3
D21 + Whrstfm = 2D Dl{B(Fl)e"“mT° +B(Ty)e '%“T} b = P __Am PCOSOmI —a). (67)
8y 24D

241D B(T)E T + B(Ty)e ")
LY Equations (66) and (67) can be transformed into an
_:Bn'n{B(rl)e%o +B(Ty)e w"""} +% pcos(@mlo+TmTi).  autonomous system i.e. one in whidh does not appear

(60) explicitly, by letting, x = o,,,T; —@. (68)

which, after dropping the argumenf; in the complex Substituting Eq. (68) into Egs. (66) and (67), we get,
amplitudes, leads to the following,

A
_ _ b'=-ub+—""— psink, (69)
walmn +w$nl//lmn =-2 Dl{a'}mBel%T a‘f’nn |(u,mT } wamD
. Be' G To BS e3| Ty +B e—3| Ty 3 b3 /]
2iu Hm™E it (" Bm T = w1 bk’ :amnb—ﬁ& PCOSK . (70)
gy, AT o +3BB{Bd "> +Be o) 8w 2D
+’1_mn pCOS(wrmTo +UmnT1)- In the case of steady-state motidsi =«'=0, and this
D corresponds to the singular points of Egs. (69) and (70); that
(61) s,
Expressingco T, +0,,.,T;) in complex form, we get,
pressingcos( dmo + ImTh) p g b= ZAWD osin. a1
Wm

—Zi%nDlB—z/mamB

D2y o + = g%mTo 3
W ¥ Gl 36, BB + 2. pdon’ 3wl
8cm

A
b=-——"™_pcosk. 72
25" (72)

~BmB 4+, . : : :
Squaring and adding these equations, we obtain,

(62)
where cc denotes the complex conjugate of the preceding 38, b2 2 , )2 )
terms. Any particular solution of Eq. (62) can have secular o+ Oy =~ — =—"=Pp" (73)
S%H 4a‘ﬁ1nD

terms containing the factol,e“™ unless D,B=0. To
eliminate the secular terms from Eq. (62), we must put,



Table 1. Natural frequencies of cracked plate model for different boundary conditions and aspect ratios

Lengths of the sides Two adjacent edges clamped, the Two adjacent edges clamped, the other All edges simply supported
of the plate other two free (CCFF) two simply supported (CCSS) (SSSS)
First mode natural frequenayy,, [rad/s] for a half crack length, a = 0.05 [m]
it () un-cracked cracked un-cracked cracked un-cracked cracked
1 1 80.462 70.559 445.666 403.779 77.580 71.119
0.5 1 231.061 227.611 1161.770 1138.530 193.95] 189.581
0.5 0.5 321.849 282.237 1782.660 1615.120 310.327 284.4Y5

It is then possible to rearrange Eq. (73) to give the amplitude It may be seen from Table 1 that the presence of the
of the responseb as a function of the detuning parametefshown here as a deliberately large) crack at the centre of the
o,, and the amplitude of the excitatipgand this is the p|atje S'?Tglcarl‘t?/ |r_1flue”ntches the nathla| tfrzequegcy of thte flrSt_t
; mode of the plate, in all three cases. In the subsequent section
frequency-response equation, as follows, attention will be focused on the case for which two adjacent
edges are clamped while the other two edges are free (CCFF),
_38,,b? N o s 2 and the results are shown for the first mode only. Although it
- 8w, 4aﬁ1 b2D 2 pr-a cannot be easily shown in Fig. 3 due to the necessary scaling
n of the plot, increasing the half-crack length from 0.05 m to
) ) ] 0.125 m introduces small changes to the degree of nonlinear
Numerical Results and Discussion ~ overhang in the softening direction, with some attendant
In this section the results are present_ed as func'tlons cfPfange in the modal natural frequency. It has also been
frequency, half-crack length and plate thickness. Figure gdserved that changing the location of the load on the plate
shows the plot of amplituddy as a function ofy,,, for given  slightly affects the global nonlinearity of the system, as shown
4 and p in the form of a frequency-response curve. Eadn Fig. 3 and evidenced by the increasingly wide nonlinear

point on this curve corresponds to a singular point. To drdiggion as the excitation location moves closer to the
such a curve, one solves for,, in terms ofb. The material unsupported cormer.

properties of aluminium have been considered for different
7.03 x 16° N/m?,
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(74)

mn

cases of half-crack length i.eE = 20
p = 2660 kg/m, v = 0.33, and damping factoy = 0.08 while
the geometric values of the plate &ye= 0.5 m,l, = 1 m, s |
h=0.01 m angb = 10 N is the load acting upon the surface of @
the plate at different points. The effect of changing the 8 wET
position of the load is shown in Fig. 3. The natural frequencies E
without and with the crack for different boundary conditions s ™|
and aspect ratios are tabulated in Table 1. ns
0.0032 L L L L r
—(X,,Y,)=(0.375,0375) i 0.0l 0.0z 0.0z 0.04 0.08
BoonESt - )=(0.375,050) ]
X, Yo )= (0.375,0. a[m
_, ob.oozf -~ (X%, ¥,)=(0.375,0.75) ]
% a.o015f Fig. 4 Plate first mode natural frequency as a function of
half-crack length
o.o0Lf " ] . .
Y Figure 4 shows the decrease in the natural frequency as we
0.0005 ¢ . ] go on to increase the half-crack length for the same parameters
- R - as considered earlier. These changes are very small for small

half-crack lengths, as one would expect. Moreover, the natural
frequency is also influenced if the geometry of the plate is
changed, in particular its length and thickness, in addition to
the effect of the half-crack length. Similarly, it may be seen
from Fig. 5 that by increasing the thickness of the plate the
natural frequency of the first mode also increases for different
values of half-crack length. This means that this natural
frequency is directly related to the thickness of the plate. The
theory presented in this paper currently holds only for a plate

Fig. 3 The amplitude of the response as a function of the
detuning parameter [rad/s] and the point load at different
locations [m] of the plate element.



with a crack at the centre and defined by a continuous li@®nclusions

model. Results of this sort could equally be obtained for the This research presents a new analytical model for the
cases of CCSS and SSSS, but space limitations currentligration analysis of cracked plates subjected to transverse
preclude that.

zon

150

lo0

®mn [rad/s]

50

Fig. 5 Plate first mode natural frequency as a function of

a_ooz

o_oog 0,006

h [m]

a_00s

o.ol

the thickness of the plate for the half-crack length 0.05 m

It is also instructive to note that if the cubic nonlinearity,
B is set to zero then the problem is linearized, but in the

loading at some specified position with different sets of
boundary conditions. Berger’'s formulation is effectively
applied to make the governing equation for vibration of a
cracked plate nonlinear and in the form of a Duffing equation.
It has been found that for a square plate with the CCFF
boundary conditions there is an approximately 12% reduction
in natural frequency in the presence of a large centrally
located crack of length 0.1 m. However, the reduction in the
value of natural frequency is lower for other plate aspect ratios
and linear and nonlinear results tend to coalesce for very low
amplitude ratios.

Finally, it is concluded that the decrease in the natural
frequency when there is a crack present may substantiate use
of the model in constructing a vibration based analysis
methodology for plate structures and for further development
of vibration based health monitoring. Further work is under
way to extend the theory of this paper to cracks in arbitrary
locations and orientations.
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