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Abstract 

This study proposes an analytical model for vibrations in a cracked rectangular plate as one of the results from a programme 
of research on vibration based damage detection in aircraft panel structures. This particular work considers an isotropic plate, 
typically made of aluminium, and containing a crack in the form of a continuous line with its centre located at the centre of the 
plate, and parallel to one edge of the plate. The plate is subjected to a point load on its surface for three different possible 
boundary conditions, and one examined in detail. Galerkin’s method is applied to reformulate the governing equation of the 
cracked plate into time dependent modal coordinates. Nonlinearity is introduced by appropriate formulations introduced by 
applying Berger’s method. An approximate solution technique, the method of multiple scales, is applied to solve the nonlinear 
equation of the cracked plate.  Results are presented in terms of natural frequency versus crack length and plate thickness, and 
the nonlinear amplitude response of the plate is calculated for one set of boundary conditions and three different load locations, 
over a practical range of external excitation frequencies.      
 
Overview 

Thin plate structures have gained special importance and 
notably increased application in recent years. Complex 
structures such as aircraft, ships, steel bridges, sea platforms 
etc., all use metal plates. For example, it has been observed 
that plate panels on the tips of aircraft wings are mainly under 
transverse pressure, and are often subjected to normal and 
shear forces which act in the plane of the plate. The plate may 
not behave as intended if it contains even a small crack or 
form of damage, and such small disturbances can then create a 
complete loss of equilibrium and cause failure. 

The literature has been reviewed for research on cracked 
plates under tension and bending. Khadem and Rezaee [1] 
introduced a new technique for vibration analysis of cracked 
plates and considered the effect of compliance due to bending 

only. Okamura et al. [2] obtained the lateral deflection, the 
load carrying capacity, and the stress intensity factor of a 
rectangular cross-section single-edge cracked column with 
hinged ends under compression. They compared an un- 
cracked column with a cracked column and examined the 
effect of a crack on the load carrying capacity. Lateral 
deflection decreased with the ratio of crack length to column 
width, and the ratio of column width to column length. The 
effect was generally small, if the crack was short and the 
column was long. In particular these authors considered the 
effect of compliance due to bending and ignored the effect of 
compliance due to rotation induced by the axial load. Khadem 
and Rezaee [3] established an analytical approach for damage 
in the form of a crack in a rectangular plate by the application 
of external loading for different boundary conditions. They 
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concluded from their results that the presence of a crack at a 
specific depth and depending upon its location, would affect 
each of the natural frequencies differently. Krawczuk et al. [4] 
applied a versatile numerical approach for the analysis of 
wave propagation and damage detection within cracked plates. 
Wu and Shih [5] theoretically analyzed the dynamic instability 
and nonlinear response of cracked plates subjected to periodic 
in-plane load. The results indicated that the stability behaviour 
and the response of the system are governed by the crack 
location of the plate, the aspect ratio of the plate, conditions of 
in-plane loading and the amplitude of vibration. Moreover, 
increasing the crack ratio i.e. the ratio of the crack length to 
the length of the edge parallel to the crack, and/or the static 
component of the in-plane load decreases the natural 
frequency of the system. Irwin [6] examined a part-through 
crack in a plate subjected to tension and derived a relation for 
the crack stress-field parameter and the crack extension force 
at the boundaries of a flat elliptical crack. Rice and Levy [7] 
employed two dimensional generalised plane stresses and used 
Kirchhoff’s plate bending theories with a continuously 
distributed line-spring to represent a part-through crack, and 
choose compliance coefficients to match those of an edge-
cracked strip in plane strain. The line of discontinuity was of 
length 2a and the plate was subjected to remote uniform 
stretching and bending loads along the far sides of the plate. 
These authors computed the force and moment across the 
cracked section to determine the stress intensity factor, and the 
solution to the problem was characterised in terms of the Airy 
stress function.  Their results showed that rs rsK K  (where 

rsK is the stress intensity factor for an all-over crack, and rsK  

is the stress intensity factor of an edge crack in plane strain for 
the same relative depth ol h , and for remote tensile or 
bending load) approaches unity with an increase in the ratio of 
crack length to plate thickness 2a h . Furthermore, at small 

values of relative depth ol h , the relative changes of stress 

intensity factors approaches unity for small values of 2a h .  

The solutions obtained based on linear models are 
considered adequate for many practical and engineering 
purposes although it is recognized that linearized equations 
usually provide no more than a first approximation. Linearized 
models of vibrating systems are inadequate in cases where 
displacements are not small. In addition, problems treated by 
nonlinear theory exhibit new phenomena for example, the 
dependence of frequency of vibration on amplitude that cannot 
be predicted by means of linear theories. Moreover, an 
example of such a source of nonlinearity is a crack within a 
plate, which can lead to profound changes in the vibrational 
response of the system. In this study, much previous work has 
been considered together, leading to a proposal for a new 
analytical model for the vibration analysis of a cracked plate. 
In [8] the authors developed an approximate analytical 
solution for damage detection in an aircraft panel structure 
modelled as a cracked isotropic plate without the application 
of a load, essentially for free vibration. The literature does not 
appear to contain any substantial references to analytical 
models for cracked plates undergoing forced vibration. The 
work presented here considers classical plate theory and 
includes an arbitrarily located crack within a rectangular plate. 

The crack consists of a continuous line and certain simplifying 
assumptions are made in order to get an initial tractable 
solution to the vibration problem. Principally, the effects of 
rotary inertia and through-thickness shear stress effects are 
neglected. Berger’s formulation is used to generate the 
nonlinear term within the model differential equation of 
motion. An approximate analytical solution of the equation for 
the vibration in the cracked plate for given boundary 
conditions, is found by the method of multiple scales, 
followed by the presentation of some numerical results and 
conclusions. 
 
Governing Equation of the Rectangular Plate and 
Crack Term 

The classical form of the governing equation of 
rectangular plate is rigorously treated in [9-11]. Here, the 
equilibrium principle is followed for the derivation of the 
governing equation of the cracked rectangular plate, in which 
a crack is present at the centre and parallel to the x-direction of 
the plate, as depicted in Fig. 1, and consisting of a continuous 
line of length 2a. The following basic assumptions are 
summarized: 

 
1. The plate is made of a perfectly elastic, homogeneous, 

isotropic material and has a uniform thickness h which is 
considered small in comparison with its other dimensions. 

2. All strain components are small enough to allow Hooke’s 
law to hold. 

3. The normal stress component in the direction transverse 
to the plate surface is small compared with other stress 
components, and is neglected in the stress-strain 
relationship.  

4. Shear deformation is neglected in this case and it is 
assumed that sections taken normal to the middle surface 
before deformation remain plane and normal to the 
deflected middle surface of the plate. 

5. The effect of the rotary inertia, shear forces and in-plane 
force in the y-direction i.e. yn and xyn  are neglected to 

make the problem more tractable. 
 
Based upon these assumptions, the final version of the 
governing equation of the cracked plate takes the following 
form, 
 

24 4 4 2 2 2

4 2 2 4 2 2 2 2
2 .ρ

  ∂∂ ∂ ∂ ∂ ∂ ∂+ + = − + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

y
x y z

Mw w w w w w
D h n n P

x x y y t x y y

(1) 
 
where 3 212(1 )D Eh υ= − , zP  is the load per unit area acting 

at the surface, ρ  is the density of the plate, xn  is the in-plane 

or membrane force, yM , and yn  are the moment and in-plane 

force per unit length due to inclusion of crack at the centre of 
the plate, respectively.  
 

In Eq. (1) two new terms, yM , and yn , and caused by the 

crack, are introduced by the application of the equilibrium 
principle based on classical plate theory. The formulation of 
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these crack terms is obtained from the Rice and Levy [7] 
model (in Eqs. (10) and (11)). The Rice and Levy approach is 
based on Kirchoff’s bending theory for thin plates, and the 
assumptions involved in this theory lead to important 
simplifications in the governing equations. Actually, the 
results are presented for the stress intensity factors in part-
through cracked plates, provided that the crack is not too deep. 
These stress relationship are used and then by making use of 
Eqs. (8) and (9), a new relationship for the force and moment 
caused by the crack has been developed, which is dealt in the 
following section. 

 
Later, zP  in Eq. (1) is replaced by a point load zP  based 

on the application of the appropriate delta function in Eq. (24) 
to make it compatible with the experimental configuration. 
Furthermore, in practice, it is straightforward to implement 
this type of loading. 

 
 
Crack Terms Formulation 

Rice and Levy [7] obtained an approximate relation for 
nominal tensile and bending stresses at the location of the 
crack. These two relations are taken after some rearrangement, 
and making use of the relationships within Eqs. (8) and (9) 
from which it can be deduced that 6rs rsm σ= . A 

representation of these stresses is given in Fig. 1. 
 
 
 
 
 
 
 
 
 
    
 
 
 
 

 

 

Fig. 1 Line Spring model representing the bending and 
tensile stresses for a part-through crack of length 2a, after 
[7]  
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We define rsσ and rsm as the nominal tensile and bending 

stresses respectively, at the crack location and on the surface 
of the plate, rsσ and rsm are the nominal tensile and bending 

stresses at the far sides of the plate, h  is the thickness of the 

plate, a  is the half-crack length, and obbα , o
ttα , o o

bt tbα α=  are the 

non-dimensional bending compliance, stretching compliance 
and stretching-bending compliance coefficients at the crack 
centre respectively.  
 

This shows that the nominal tensile and bending stresses at 
the crack location can be regarded as a function of the nominal 
tensile and bending stresses at the far side of the plate. It is 
worth noting that Okamura et al. [2] and Khadem and Rezaee 
[3] also restricted their analysis to the effects of bending 
compliance. These three compliance coefficients depend upon 
the crack depth d  to plate thickness h  and vanish when 

0d = . It is shown in [7] that in general the compliance 
coefficient is a function of the ratio of crack depth to plate 
thickness. After suitable nondimensionalisation the 
compliance coefficients at the centre of the crack takes this 
form,  
 
 1.1547 ,o

λµ λµα α=  (4) 

 
where , ,b tλ µ =  are intermediate variables used in [7] for 

algebraic simplification. The appropriate compliance 
coefficients, λµα , may then be calculated from the following 

relation, noting that they are valid only for d hζ =  values 

within the range 0.1-0.7. In the present analysis, we take 
ζ = 0.6, leading to calculation of the compliance coefficients 

[1-2, 7] as follows, 
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(7) 
 
This means that uniformly distributed tensile and bending 
stresses are at the two sides of the crack location, and these 
tensile and bending stresses can be expressed in term of tensile 
and bending force effects. Therefore, we can write the tensile 
and bending stresses at the far sides as [7],  
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where , 1,2r s =  are intermediate variables required for 

algebraic simplification. rsn and rsM are the force and moment 

per unit length in the y-direction at the far sides of the plate, 
respectively, and ( , , )rs x y zτ is the stress state.  

 
The force and moment were calculated from two-

dimensional plane stress-plate bending theory, with the 
cracked section represented as a continuous line spring having 
its compliance matched to that of the edge cracked strip in 
plane strain. Accordingly, we can write Eqs. (2) and (3) in the 
form of force and moment as,  
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where rsn  and rsM are the force and moment per unit length 

in the y-direction at the crack location of the plate, 
respectively. 

 
It is evident from the work of Rice and Levy [7] that when 

two forces are acting on the plate element to stretch and bend 
it, the results of their work show that the Airy stress function 
satisfies the compatibility condition in a region where the 
body force field is zero.  Here, it is very useful to mention that 
the present theory and the model of the Rice and Levy are 
based on classical plate theory, therefore the force and 
moment obtained from Eqs (10) and (11) are the required 
terms and are added into the cracked plate model with a 
negative sign because damage causes a reduction in the overall 
stiffness of the plate structure, a phenomenon which can also 
be seen in the literature, such as the work of Khadem and 
Razaee [1,3], and Wu and Shih [5]. Therefore, we can write, 
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(13) 

Substituting the values of yn  and yM from Eqs. (12) and (13) 

into the Eq. (1), so the governing equation of the plate with 
crack extends to the following form, 
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As the bending stresses at the far sides of the plate are defined 
by,  
 
 2 2

2 2
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 (15) 

 
then Eq. (15) can be substituted into Eq. (14) to get the final 
form, 
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General Solution for a Vibrating Cracked Plate 

Now we consider the rectangular plate of Fig. 2, of length 

1l  in the x-direction and 2l  in the y-direction containing a 

crack which consists of a continuous line of length 2a located 
at the centre and parallel to the x-direction of the plate.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              

Fig. 2 Isotropic Plate loaded by concentrated force and 
small crack of length 2a at the centre, and parallel to the   
x -axis 

y 
,z w
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A point load zP  based on the application of the appropriate 

delta function (in Eq. (24)) is introduced at the location of 
( , )o ox y . 

 
Leissa [9] studied a wide range of rectangular plates with 

different boundary conditions, producing seminal data on 
natural frequencies and mode shapes. Many approaches have 
been adopted from time to time to form the general solution 
for vibrating plate. Yagiz and Sakman [12] observed the 
dynamic response of a bridge modelled as an isotropic plate 
under the effect of a moving load with all sides simply 
supported. They considered a vehicle in the form of a seven 
degree of freedom system as the moving load. A mathematical 
model was obtained by the use of Lagrange’s formulation and 
was used to investigate the dynamic response of the bridge 
and vehicle. Au and Wang [13] studied the dynamic responses 
in terms of sound radiation from forced vibration of an 
orthotropic plate with the effects of moving mass, damping 
coefficient, boundary conditions. Fan [14] analyzed the 
transient vibration and sound radiation of a rectangular plate 
with visco-elastic boundary supports subjected to impact 
loading and obtained the sound radiation pressure in the time 
and frequency domain by the Rayleigh integral. 
Mukhopadhyay [15] presented a numerical method for the 
solution of rectangular plates having different edge conditions 
and loadings. Young [16] investigated and calculated the set 
of functions, which define the normal modes of vibration of a 
uniform beam and obtained the solution for the plate problem 
with different boundary conditions by the use of Ritz method. 
Stanišië [17] and Nagaraja and Rao [18] obtained an 
approximate solution to find the dynamical behaviour of 
rectangular plates for different boundary conditions.  

 
The solution for the governing differential equation of the 

plate subjected to transverse loading is obtained by defining 
the characteristic functions depending upon the boundary 
conditions of the plate. The basic model for solution is the one 
in which all edges are simply supported, while for other 
boundary conditions the principle of superposition holds 
[11,19].  The most general form of the transverse deflection of 
the plate is 

 
 

1 1
( , , ) ( ),mn m n mnn m

w x y t A X Y tψ∞ ∞

= =
=∑ ∑  (17) 

 
 
where mX and nY are the characteristic or modal functions of 

the cracked rectangular plate,mnA is an, as yet, arbitrary 

amplitude and ( )mn tψ is the time dependent modal coordinate. 

 
The appropriate expressions for the characteristic or modal 
functions are given below and satisfy the stated boundary 
conditions of the plate. For all cases 1l and 2l are the lengths of 

the sides of the plate along the x and y directions respectively. 
Three boundary condition cases are given next. 
 
Boundary Condition 1. Two adjacent edges are clamped 
while the other two edges are free – CCFF [9,16,18,19] 
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(19)  
 
The ,m nλ and the ,m nγ are mode shape constants and can be 

found in standard reference text such as [9,19].  
 
Boundary Condition 2. Two adjacent edges are clamped 
while the other two edges are freely supported – CCSS [20] 
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(21)             
Boundary Condition 3. All sides are simply supported – 
SSSS [9,10,12] 
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The lateral load zP  at position ( ox , oy ) can be readily 

expressed as follows [14]  
 
 ( ) ( ) ( )z o o oP P t x x y yδ δ= − −  (24) 

 
Substituting the definition of ( , , )w x y t  from Eq. (17) and zP  

from Eq. (24) into Eq. (16), we get, 
 

( )

4 4 4 2

4 2 2 4 2

2 2

2 22

4 4

4 2 2

( )
2 ( )

2
( ) ( )

6 (1 ) 2

2

3 (3 )(1 ) 2
6

ψψ ρ

ψ ψ
α α υ

υ ψ
α α υ υ

 ∂ ∂ ∂ ∂+ + = −  ∂ ∂ ∂ ∂ ∂ 

∂ ∂+ −
∂ ∂+ − +

 ∂ ∂+ +    ∂ ∂ ∂ + + − + 
 

m m n n
n m mn mn m n

m n
x n mn rs m mno o

tb tt

n m n
m mno

obt
bb

X X Y Y t
D Y X A t h A X Y

x x y y t

X a Y
n Y A t n X A t

x yh a

a Y X Y
D X A

y y x
h a

0

( )

( ) ( ) ( ).δ δ+ − −o o

t

P t x x y y

(25) 
  
Berger [21] determined the deflection of a plate by 

neglecting the strain energy due to the second invariant of the 
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middle surface strains and when the deflection is of the order 
of magnitude of the thickness of the plate. This can be used to 
obtain forms for the in-plane forces xn  and rsn  per unit length 

in the x and y direction respectively, and applies theory 
predominantly based on aspect ratios equal to 1, 1.5, 2, and 
infinity. Berger showed that this approach works well for 
combinations of simply supported and clamped boundary 
conditions, as shown previously. We note in passing that Wah 
[22] and Ramachandran and Reddy [23] also applied Berger’s 
formulation efficiently for analysing the nonlinear vibrations 
of undamped rectangular plates.  
  
To make the form of the in-plane forces, the middle surface 
strains in the x and y directions can be given by [11], 
 
 2

1
,

2x
u w

x x
ε ∂ ∂ = +  ∂ ∂ 

 
(26) 

 

                      
 2

1
,

2y
v w

y y
ε  ∂ ∂= +  ∂ ∂ 

 (27) 

 
where u and v are the displacements in the x and y directions 
respectively. 
 
Accordingly, we can write the in-plane forces as, [11], 
 
 ( )2

,
1

x x y
Eh

n ε υε
υ

= +
−

 (28) 

 
 ( )2

.
1

rs y x
Eh

n ε υε
υ

= +
−

 (29) 

 
 
Substituting Eqs. (26) and (27) into Eqs. (28) and (29), we get 
  
 222 1 1

,
12 2 2

xn h u v w w

D x y x y
υ υ

 ∂ ∂ ∂ ∂ = + + +   ∂ ∂ ∂ ∂   
 (30) 

           
and therefore for y,  
 
 2 22 1 1

.
12 2 2

rsn h v u w w

D y x y x
υ υ ∂ ∂ ∂ ∂ = + + +   ∂ ∂ ∂ ∂  

 (31) 

 
We multiply Eqs. (30) and (31) by dxdy and integrate over the 
plate area, and then impose the conditions that u and v vanish 
at the external boundaries and around the crack due to 
symmetry, leading to, 
 
 1 2 222

1 2

0 0

1
,

12 2

l l

xn h l l w w
dxdy

D x y
υ

  ∂ ∂  = +   ∂ ∂     
∫ ∫  (32) 

 

 
and, 

1 2 2 22
1 2

0 0

1
.

12 2

l l

rsn h l l w w
dxdy

D y x
υ

  ∂ ∂  = +   ∂ ∂    
∫ ∫  (33) 

 
Applying the definition of ( , , )w x y t from Eq. (17) we get,   
 
 2 2

1 ( )
mnx mn mnn DF A tψ= , (34) 

 
where  
 

1 2 22
2 2

1 2 1 1
1 2 0 0

6
,

n

l l

m n
mn mn m

X Y
F Y X dxdy

x yh l l
υ

∞ ∞

= =

  ∂ ∂  = +   ∂ ∂     
∑ ∑ ∫∫  

                                                                                              (35)  
 
and, 2 2

2 ( ),
mnrs mn mnn DF A tψ=  (36) 

 
where

1 2 2 2
2 2

2 2 1 1
1 2 0 0

6
.

n

l l

n m
mn mn m

Y X
F X Y dxdy

y xh l l
υ

∞ ∞

= =

  ∂ ∂  = +   ∂ ∂    
∑ ∑ ∫∫  

                                                                                              (37)  
 
Substituting the in-plane forces xn  and rsn  from Eqs. (34) and 

(36) into Eq. (25), multiplying each part of Eq. (25) by the 
modal function mX  and nY  for one of the three example 

boundary conditions mentioned above, and then integrating 
over the plate area, we find that,  
 
 3( ) ( ) ( ) .mn mn mn mnM t K t G t Pψ ψ ψ+ + =ɺɺ  (38) 

 
where    
 

 
1 2

2 2
1 1

0 0

,
m n

l l

mn mnn m

h
M A X Y dxdy

D

ρ ∞ ∞
= == ∑ ∑ ∫ ∫  (39) 

            

( )1 2

1 1
0 0

2

2
,

3 (3 )(1 ) 2
6

m n

n

iv iv
n m n m

l l iv
m n m

mn mn m nn m o
obt
bb

X Y X Y Y X

a X Y Y X
K A X Y dxdy

h a

υ

α α υ υ

∞ ∞

= =

 ′′ ′′+ +
 
 ′′ ′′ + = − 

  + + − +   
  

∑ ∑ ∫ ∫                                

(40) 

( )
1 2

2
1

3 2
21 1

0 0 2

,2

6 (1 ) 2α α υ

∞ ∞
= =

 ′′−
 
 ′′=
 +
 + − + 
 

∑ ∑ ∫ ∫
n

mn m

mn m ml l

mn mn n nn m
o o
tb tt

F X X Y

G A dxdyaF X Y Y

h a

 

(41) 
 

The integral of the delta function is given by 

0( ) ( ) ( )m m oX x x x dx X xδ
∞

−∞

− =∫ . Therefore, the force term in 

Eq. (38) can be expressed as 
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( )

,o
mn mn

P t
P Q

D
=  

(42) 
 

 
where 0 0( ) ( ).mn m nQ X x Y y=  (43) 
 
Equation (38) is in the form of the well known Duffing 
equation containing a cubic nonlinear term, and can be re-
stated as 
 
 2 3( ) ( ) ( ) ( ) ,

mn

mn
mn ot t t P t

D

λψ ω ψ β ψ+ + =ɺɺ  (44) 

 
where   
 2 ,

mn

mn

mn

K

M
ω =  (45) 

                               
 

,mn
mn

mn

G

M
β =  (46) 

 
 
 ,mn

mn
mn

Q

M
λ =  (47) 

 
and  mnω  is the natural frequency of the cracked rectangular 

plate. 
 

Now if it is assumed that the system is under the influence 
of weak classical linear viscous damping µ , then the equation 
of the model of the rectangular cracked plate becomes, 
 
 2 3( ) 2 ( ) ( ) ( ) ( ).

mn

mn
mn ot t t t P t

D

λψ µψ ω ψ β ψ+ + + =ɺɺ ɺ  (48) 

 
Letting the load be harmonic, such that,  
 
 ( ) coso mnP t p t= Ω  (49) 
 
leads to, 
 
 2 3( ) 2 ( ) ( ) ( ) cos .

mn

mn
mn mnt t t t p t

D

λψ µψ ω ψ β ψ+ + + = Ωɺɺ ɺ  (50)

  
Instead of using the excitation frequency Ωmn  as a parameter, 

we introduce a detuning parameter, mnσ , which quantitatively 

describes the nearness of Ωmn  to mnω  and this is a case of 

primary resonance. This has the advantage of clarifying 
identification of the terms in the governing equation at first 
order perturbation that lead to secular terms. Accordingly we 
write, [24],  
 
 ω εσΩ = +mn mn mn  (51) 
 
where ε  is an arbitrarily small perturbation parameter. 
 

To obtain a uniformly valid approximate solution to this 
problem it is necessary to order the cubic term, the damping, 
and the excitation. To accomplish this we choose to set the 
following to O(ε)1 , 
 

 , ,  .mn mn p pµ εµ β εβ ε= = =  (52) 
                                                                                                                                              
After substituting Eqs. (51) and (52) into Eq. (50), it becomes 
as follows,  
 

2 3( ) 2 ( ) ( ) ( ) cos( ) .
mn

mn
mn mn mnt t t t p t

D

λψ εµψ ω ψ εβ ψ ε ω εσ+ + + = +ɺɺ ɺ

                            (53) 
 
This introduces damping, the cubic nonlinearity, and the 
excitation to first order perturbation, which is considered to be 
in line with the appropriate experimental configuration, and 
other work on weakly nonlinear vibrating systems [24-27]. It 
is important to note here that for Duffing equations the 
coefficient of the cubic term, in this case mnεβ , can be 

numerically positive or negative, leading to overhangs of the 
response curve in the frequency domain to the right or left, 
respectively. 
 
The Method of Multiple Scales 

The method of multiple scales is well discussed in the 
seminal work of Nayfeh and Mook [24] and also in the well 
known books of [25], and [26]. Cartmell et al. [27] reviewed 
the multiple scales method as applied to weakly nonlinear 
dynamics of mechanical systems. For the method of multiple 
scales, the solution of the equation is approximated by a 
uniformly valid expansion of the form,  

    
 2

1 1 1( , ) ( , ) ( , ) ( ),mn o mn o mn ot T T T T oψ ε ψ εψ ε= + +  (54) 

    
where 1( , )omn oT Tψ  and 1 1( , )mn oT Tψ  are functions yet to be 

determined. Independent time scales are introduced where oT  

is nominally considered as fast time and 1T  as slow time, such 

that, oT t=  and 1T tε= . We can express the excitation in term 

of oT  and 1T  as  

 
 ( )1( ) cos .o mn o mnP t p T Tε ω σ= +  (55) 

Substituting the expansion of Eq. (54) and the excitation term 
from Eq. (55) into Eq. (53), we get, 
 

[ ] [ ]
{ }

( )

1 1

1

2 2 2 2 2 2
1 1 1

2 2 2
1 1 1

2 2 2 2 3 3 2
1

1

2 2

( ) 2 2 2 ( )

( ) ( )

cos .

o o

mn mn mn
o mn mn

o o mn o mn

o o mn o mn

o mn mn mn

mn
mn o mn

D D D D D D D D

o D D D D o

o o

p T T
D

ε ε ψ ε ε ε ψ

ε εµ ε ψ ε µ ε ψ εµ ε

ω ψ εω ψ ω ε εβ ψ εψ ε

λε ω σ

   + + + + +
   

+ + + + + +

+ + + + + +

= +

                                                                                             (56) 
Separating terms of like order ε  yields, to order εo: 
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 2 2 0,
o o mn mn o mnD ψ ω ψ+ =  (57) 

 
and to order ε1: 
 

( )

2 2 3
1 1 1

1

2 2

cos .

mn
o o mnmn mn o o mn o o mn mn

mn
mn o mn

D D D D

p T T
D

ψ ω ψ ψ µ ψ β ψ

λ ω σ

+ = − − −

+ +
 

(58) 
 
The higher orders of ε2, ε3 and so on, may be neglected 
because higher order perturbation equations will yield 
negligible corrections for the problem as set up here. The 
general solution of Eq. (57) can be written as 
 
 

1 1( ) ( ) ,mn o mn oi T i T
o mn B T e B T eω ωψ −= +  (59) 

 
where B  is an unknown complex amplitude and B  is the 
complex conjugate ofB . This amplitude will be determined 
by eliminating the secular terms from 1mnψ . Substituting the 

solution from Eq. (59) into Eq. (58), we get, 
 

{ }
{ }

{ } ( )

2 2
1 1 1 1 1

1 1

3

1 1 1

2 ( ) ( )

2 ( ) ( )

( ) ( ) cos ,

mn o mn o
mn

o

mn o mn o

mn o mn o

i T i T
mn mn o

i T i T
o

i T i T mn
mn mn o mn

D D D B T e B T e

D B T e B T e

B T e B T e p T T
D

ω ω

ω ω

ω ω

ψ ω ψ

µ

λβ ω σ

−

−

−

+ = − +

− +

− + + +

      

(60) 
 
which, after dropping the argument 1T  in the complex 
amplitudes, leads to the following, 
 

{ }

{ }
( )

2 2
1 1 1

33 33

1

2

2
3

cos .

mn o mn o
mn

o

mn o mn omn o

mn o mn omn o

i T i T
mn mn mn mn

i T i Ti T
mn

mn i T i Ti T
mn

mn
mn o mn

D iD Be Be

B e B eBe
i

BB Be BeAe

p T T
D

ω ω

ω ωω

ω ωω

ψ ω ψ ω ω

ω
µ β

ω

λ ω σ

−

−

−−

+ = − −

   +   − −   + +−     

+ +

 

(61) 
 
Expressing ( )1cos mn o mnT Tω σ+  in complex form, we get, 

 

1

1
2 2

1 1 2

33

2 2

3
2

,

mn o

o mn

mn o

mn mn
i T

mn mn mn i Tmn
mn

i T
mn

i D B i B
D e

B B pe
D

B e cc

ω
σ

ω

ω µω
ψ ω ψ λβ

β

− − 
 + =
 − +
  

− +

   

       (62) 
 
where cc denotes the complex conjugate of the preceding 
terms. Any particular solution of Eq. (62) can have secular 

terms containing the factor oi T
oT e ω  unless 1 0D B = . To 

eliminate the secular terms from Eq. (62), we must put,  

 
12

12 2 3 0.
2

mni Tmn
mn mn mni D B i B B B pe

D
σλω µω β− − − + =  (63) 

 
In solving Eq. (63), it is convenient to write the complex 

amplitude B  in the polar form, 
1

2
iB be α= ,                       (64)      

 
where b  and α  are real amplitude and phase functions of 1T  

respectively. Substituting Eq. (64) into Eq. (63), we get, 
 
 3

1 1

3

8

[cos( ) sin( )] 0,
2

mn
mn mn mn

mn
mn mn

b i b i b b

p T i T
D

βω α ω ω µ

λ σ α σ α

′ ′− − −

+ − + − =
 (65) 

 
where the prime denotes the derivative with respect to 1T . 

Now, separating the result into real and imaginary parts, we 
obtain,   
 

1sin( ),
2

mn
mn

mn

b b p T
D

λµ σ α
ω

′ = − + −  (66) 

 
 3

1
3

cos( ).
8 2

mn mn
mn

mn mn

b
b p T

D

β λα σ α
ω ω

′ = − −  (67) 

 
Equations (66) and (67) can be transformed into an 
autonomous system i.e. one in which 1T  does not appear 

explicitly, by letting,  1 .mnTκ σ α= −                                   (68)  

 
Substituting Eq. (68) into Eqs. (66) and (67), we get, 
 
 

sin ,
2

mn

mn

b b p
D

λµ κ
ω

′ = − +  (69) 

 
 33

cos .
8 2

mn mn
mn

mn mn

b
b b p

D

β λκ σ κ
ω ω

′ = − +  (70) 

 
In the case of steady-state motion 0b κ′ ′= ≈ , and this 
corresponds to the singular points of Eqs. (69) and (70); that 
is,  
 
 

sin ,
2

mn

mn

b p
D

λµ κ
ω

=  (71) 

 
 33

cos .
8 2

mn mn
mn

mn mn

b
b p

D

β λσ κ
ω ω

− + = −  (72) 

                  
Squaring and adding these equations, we obtain, 
 
 2 22

2 2 2
2 2

3
.

8 4
mnmn

mn
mn mn

b
b p

D

λβµ σ
ω ω

  
 + − =     

 (73) 
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a [m] 

ω
m

n 
 [r

ad
/s

] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is then possible to rearrange Eq. (73) to give the amplitude 
of the response b  as a function of the detuning parameter 

mnσ  and the amplitude of the excitationop and this is the 
frequency-response equation, as follows, 
 
 22

2 2
2 2 2

3
.

8 4
mnmn

mn
mn mn

b
p

b D

λβσ µ
ω ω

= ± −  (74) 

 
Numerical Results and Discussion 

In this section the results are presented as functions of 
frequency, half-crack length and plate thickness. Figure 3 
shows the plot of amplitude, b  as a function of mnσ  for given 

µ  and p  in the form of a frequency-response curve. Each 

point on this curve corresponds to a singular point. To draw 
such a curve, one solves for mnσ  in terms of b . The material 

properties of aluminium have been considered for different 
cases of half-crack length i.e. E = 7.03 x 1010 N/m2,                 
ρ = 2660 kg/m3, ν = 0.33, and damping factor, µ  = 0.08 while 

the geometric values of the plate are l1 = 0.5 m, l2 = 1 m,         
h = 0.01 m and p = 10 N is the load acting upon the surface of 
the plate at different points. The effect of changing the 
position of the load is shown in Fig. 3. The natural frequencies 
without and with the crack for different boundary conditions 
and aspect ratios are tabulated in Table 1.  

 

 
 
 

 

Fig. 3 The amplitude of the response as a function of the 
detuning parameter [rad/s] and the point load at different 
locations [m] of the plate element.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
It may be seen from Table 1 that the presence of the 

(shown here as a deliberately large) crack at the centre of the 
plate significantly influences the natural frequency of the first 
mode of the plate, in all three cases. In the subsequent section 
attention will be focused on the case for which two adjacent 
edges are clamped while the other two edges are free (CCFF), 
and the results are shown for the first mode only.  Although it 
cannot be easily shown in Fig. 3 due to the necessary scaling 
of the plot, increasing the half-crack length from 0.05 m to 
0.125 m introduces small changes to the degree of nonlinear 
overhang in the softening direction, with some attendant 
change in the modal natural frequency. It has also been 
observed that changing the location of the load on the plate 
slightly affects the global nonlinearity of the system, as shown 
in Fig. 3 and evidenced by the increasingly wide nonlinear 
region as the excitation location moves closer to the 
unsupported corner.  
 
 

 
     

 

Fig. 4 Plate first mode natural frequency as a function of 
half-crack length   

Figure 4 shows the decrease in the natural frequency as we 
go on to increase the half-crack length for the same parameters 
as considered earlier. These changes are very small for small 
half-crack lengths, as one would expect. Moreover, the natural 
frequency is also influenced if the geometry of the plate is 
changed, in particular its length and thickness, in addition to 
the effect of the half-crack length. Similarly, it may be seen 
from Fig. 5 that by increasing the thickness of the plate the 
natural frequency of the first mode also increases for different 
values of half-crack length. This means that this natural 
frequency is directly related to the thickness of the plate. The 
theory presented in this paper currently holds only for a plate 

     Table 1. Natural frequencies of cracked plate model for different boundary conditions and aspect ratios  

Lengths of the  sides 
of the plate 

Two adjacent edges clamped, the 
other two free (CCFF) 

Two adjacent edges clamped, the other 
two simply supported (CCSS) 

All edges simply supported 
(SSSS) 

First mode natural frequency, ωmn [rad/s] for a half crack length, a = 0.05 [m] 
l1 [m] l2 [m] 

un-cracked cracked un-cracked cracked un-cracked cracked 

1 1 80.462 70.559 445.666 403.779 77.580 71.119 

0.5 1 231.061 227.611 1161.770 1138.530 193.951 189.581 

0.5 0.5 321.849 282.237 1782.660 1615.120 310.322 284.475 

 

       ( ox , oy ) = (0.375, 0.375) 

- - - ( ox , oy ) = (0.375, 0.50) 

---- ( ox , oy ) = (0.375, 0.75) 

σmn  [rad/s] 

b
 [m

]  
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h [m] 

ω
m

n
  [r

ad
/s

] 
b N

L
/b

L
  

σmn  [rad/s] 

with a crack at the centre and defined by a continuous line 
model. Results of this sort could equally be obtained for the 
cases of CCSS and SSSS, but space limitations currently 
preclude that. 
 
 

 
 
 

Fig. 5 Plate first mode natural frequency as a function of 
the thickness of the plate for the half-crack length 0.05 m     

It is also instructive to note that if the cubic nonlinearity 

mnβ  is set to zero then the problem is linearized, but in the 

case of the nonlinear problem the significant effect of 
including this term is apparent from the numerical results 
depicted in Fig. 6. It can be seen in Fig. 6 that the ratio of the 
nonlinear solution amplitude (wheremnβ is set to zero) is very 

large for negative detuning. This exactly emulates the 
softening nonlinear characteristic shown in Fig. 4. It can be 
seen that this ratio reduces close to unity for zero and positive 
detuning, again fully in line with the softening characteristic 
observable in Fig. 3. In the Figure bNL is the nonlinear 
amplitude and bL is the corresponding linear amplitude. 
 
 

 
 
 

Fig. 6 Comparison between linear and nonlinear model of 
the cracked rectangular plate     

 
Orientation of the crack at some angle will change the 

model because there will be more than two components of the 
crack geometry, one for tensile loading and one for bending 
along the plate element. Here it is assumed that the crack is 
parallel to the x-direction of the plate.  
 
 

Conclusions  
This research presents a new analytical model for the 

vibration analysis of cracked plates subjected to transverse 
loading at some specified position with different sets of 
boundary conditions. Berger’s formulation is effectively 
applied to make the governing equation for vibration of a 
cracked plate nonlinear and in the form of a Duffing equation. 
It has been found that for a square plate with the CCFF 
boundary conditions there is an approximately 12% reduction 
in natural frequency in the presence of a large centrally 
located crack of length 0.1 m. However, the reduction in the 
value of natural frequency is lower for other plate aspect ratios 
and linear and nonlinear results tend to coalesce for very low 
amplitude ratios. 

Finally, it is concluded that the decrease in the natural 
frequency when there is a crack present may substantiate use 
of the model in constructing a vibration based analysis 
methodology for plate structures and for further development 
of vibration based health monitoring. Further work is under 
way to extend the theory of this paper to cracks in arbitrary 
locations and orientations. 
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