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Abstract: Vortex-like pattern formation is observed in a wide range of biological systems. In 

previous work we used artificial potential fields to model weak long-range attraction and 

strong short-range repulsion in a swarm of interacting particles. A dissipation function was 

defined which minimised the total effective energy of the swarm by aligning neighbouring 

velocity vectors. Here we extend this work to demonstrate that such vortex-like patterns are 

stable. The effective energy of the swarm is used as a Lyapunov function to demonstrate that 

such a swarm of interacting particles will always collapse into a vortex-like state. 

 

Main Text: Swarming patterns have been observed and reported for various species in nature 

[1]. The coherent flock and the single-mill states are among the most common observed in 

biological swarms [2–3]. An example of a double-mill pattern, which is occasionally 

observed, has also been introduced [4]. Emerging vortex patterns among individuals that 

interact through pair-wise artificial potential fields have been discussed by various authors 

[5–9]. In particular, we have been shown that the total linear and angular momentum of the 

swarm are conserved with a pair-wise dissipation function [9]. The vortex pattern was then 

shown to be a constrained minimum of the total effective energy of the swarm. While it was 

shown that the vortex pattern was an extremum of the total effective energy, stability was not 

addressed. In the work reported here we use a Lyapunov function to demonstrate that the 

swarm will always relax into a vortex-like state. While this is an interesting contribution to 

the statistical physics of interacting particle systems, it has wider application to the 

construction of provable behaviours in swarms of interacting robotic agents.   

 We consider a swarm that consists of N identical particles of equal mass m with 

position and velocity  defining the state of the ith particle. Attraction amongst the 

particles in the swarm is defined through a weak long-range attractive potential 

( ii ,vx )

( )alijaij
a CU x−−= exp , while collisions between particles are prevented through a strong 

short-range repulsive potential ( )rijrij
r lexpCU x−=  [5–7]. The strengths of the attraction 

and repulsion potentials are denoted by Ca and Cr with ranges la and lr respectively. The 

particles attempt to align their motion with neighbours through a velocity dependent 

orientation force , which is defined as iΛ ( ) ( ) ij
j

oijijijoi lC xxxvΛ ˆ expˆ.∑ −= , where ( )⋅̂  

denotes a unit vector, Co is the strength of the orientation force and lo is the range of the 

orientation force. Parallel orientation of the particle velocity vectors then emerges due to the 

dissipative nature of the orientation force such that motion towards or away from neighbours 
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is weakly damped, proportional to the component of relative velocity along the vector 

connecting neighbouring particles, . This results in a local alignment of particle 

velocity vectors, as used extensively in rule-based approaches [10]. The exponential term in 

the orientation force ensures that the effect is locaised between neighbours while the pair-

wise interaction along   leads to conservation of angular momentum. 

ijij xv ˆ.

ijx̂

U∇−

 The evolution of the swarm of interacting particles is now defined through the 

interaction potential and orientation force such that 

 

ii vx =&          (1a) 

 

        (1b) ii
r

i
a

i Um Λv −−∇=&

 

where  and ∑=
j

iji UU ( ) ( ) ix⋅∂=⋅∇ ∂ . The three terms in Eq. (1b) are defined such that 

lr<lo<la. This arrangement is equivalent to the zone of repulsion, zone of orientation and zone 

of attraction which has been used successfully in both rule-based simulation [10] and 

laboratory experimentation with biological swarms [11]. The use of artificial potential fields 

to mediate interactions between particles provides a continuous representation of these rule-

based methods which, unlike rule-based heuristics, is amenable to analytic investigation and 

formal proof. 

   The effective total energy of the swarm φ  is now defined through a summation to 

evaluate each pair-wise potential interaction and a summation of the kinetic energy of each 

particle. Therefore, the total effective energy of the swarm is defined as 

 

( )i∑
i

∑ ++= r
i

a

i
i UUm 2

2
1 vφ                  (2) 

 

Taking the time derivative of Eq. (2) it can be seen that 

 

( )∑ ∇+=
i

i
a

ii UUmvv && .φ ∇+ i
r                (3) 

 

Then, substituting from Eq. (1b) in Eq. (3), it can further be seen that 
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∑−=
i

ii Λv .φ&                    (4) 

 

and so 

 

( ) ( )∑ ∑
≠

−−=
i

ij
ij

oijijijoi lC xxxvv ˆ expˆ..φ&      (5) 

 

We now demonstrate that  by considering an arbitrary term in the summation as 0<φ&

 

( )( ) ( ) ( )( ) ( )ojijijijijoijijijijiij llS xxvxvxxvxv −+−= expˆ.ˆ.expˆ.ˆ.   (6) 

 

However, noting that  and ijji xx ˆˆ −= ijji vv −=  it can be seen that 

 

  ( )( ) ( ) ( )( ) ( )oijijijijjoijijijijiij llS xxvxvxxvxv −−−= expˆ.ˆ.expˆ.ˆ.   (7) 

 

and so using the identity  it can further be seen that jiij vvv −=

 

  ( ) ( )oijijijij lS xxv −= expˆ. 2        (8) 

 

The rate of change of the total effective energy of the swarm can therefore be written as 

 

  ( ) ( )∑ ∑
= ≠

−−=
1

2 expˆ.
2
1

i ij
oijijijo lC xxvφ&           (9) 

 

Since , the quadratic term in Eq. (9) ensures that  so that the total effective 

energy of the swarm is monotonically decreasing.  

0≥oC 0<φ&

In previous work we demonstrated that vortex-like patterns could be interpreted as a 

constrained minimum-energy state [9].  Considering the total effective energy of the swarm 
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( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++= ∑∑∑ Hvxλv

i
ii

i
i

r
i

a

i
i mUUmE .

2
1 2  and enforcing conservation of total 

angular momentum H through a Lagrange multiplier λ, it was shown that  

 

( ) 0=×−∇+∇=
∂
∂

ii
r

i
a

i
mUUE vλ

x
      (10a) 

 

( ) 0=×−=
∂
∂

ii
i

mE xλv
v

       (10b) 

 

so that the constrained minimum-energy state of the swarm corresponds to vortex-like 

rotation with the velocity vector of each particle normal to its position vector and the vector λ 

such that . The Lagrange multiplier λ was identified as the angular velocity vector 

of the swarm which is be directed along H. Therefore, it can be seen that in the constrained 

minimum-energy state  and so in Eq. (9) 

ii xλv ×=

ijij xλv ×= ( ) ijijijij xxλxv ˆ.ˆ. ×= . However, using 

the scalar triple product identity ( ) 0ˆ.ˆ. =×= ij 0=φ&

iΛ

ijijij xxλxv  and so  in the vortex-like 

state. It can therefore be concluded that with the orientation force , a swarm of particles in 

an initially random state will relax into a spatially coherent vortex-like pattern, as observed in 

a wide range of biological swarms [1, 3, 12] and in simulation [5, 7, 10, 13]. Again, we note 

that the use of artificial potential fields to mediate interactions between particles provides a 

continuous representation of rule-based methods with the length-scales lr<lo<la equivalent to 

the zone of repulsion, zone of orientation and zone of attraction used in rule-based simulation 

[10] and laboratory experimentation [11]. 

Finally, in order to illustrate the formation of vortex-like patterns using the mechanism 

discussed above, a planar swarm of N=50 particles is considered. The particles in the swarm 

are randomly distributed over a unit disk with a random distribution of initial velocities. The 

free parameters are selected such that lr<lo<la so that the swarm experiences weak long-range 

attraction, strong short range repulsion and local velocity alignment. It can be seen from Fig. 

1 that the swarm slowly relaxes into a vortex-like pattern. As the swarm relaxes, the time rate 

of change of the total effective energy of the swarm vanishes, as shown in Fig. 2.  
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Figure 1. Formation of a vortex-like pattern in a swarm of interacting particles (N=50) with 

Ca=1, Cr=2, Co=0.1, la =1, lr =0.2, lo=0.5 for non-dimensional time t=0 until t=7 (top left to 

bottom right).  

 
Figure 2. Time rate of change of the total effective energy of the swarm.  
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Figure 1 
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Figure 2 
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