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Gas flow in microchannels — a lattice
Boltzmann method approach

Y.H. Zhang!, R.S. Qin, Y.H. Sun, R.W. Barber, and
D.R. Emerson

Centre for Microfluidics and Microsystems Modelling, CCLRC Daresbury
Laboratory, Warrington, WA4 JAD, UK

Abstract

Gas flow in microchannels can often encounter tangential slip motion at the solid
surface even under creeping flow conditions. To simulate low speed gas flows with
Knudsen numbers extending into the transition regime, alternative methods to both
the Navier-Stokes and direct simulation Monte Carlo approaches are needed that
balance computational efficiency and simulation accuracy. The lattice Boltzmann
method offers an approach that is particularly suitable for mesoscopic simulation
where details of the molecular motion are not required. In this paper, the lattice
Boltzmann method has been applied to gas flows with finite Knudsen number and
the tangential momentum accommodation coefficient has been implemented to de-
scribe the gas-surface interactions. For fully-developed channel flows, the results of
the present method are in excellent agreement with the analytical slip-flow solution
of the Navier-Stokes equations, which are valid for Knudsen numbers less than 0.1.
The present paper demonstrates that the lattice Boltzmann approach is a promising
alternative simulation tool for the design of microfluidic devices.

Key words: Lattice Boltzmann equation, accommodation coefficient, Knudsen
number, rarefied gas dynamics, microfluidics.
PACS: 05.10.-a, 47.45.-n, 47.60+].

1 Introduction

Miniaturization has revolutionized many scientific areas and associated

disciplines. Micron-sized systems, commonly referred to as Micro-Electro-
Mechanical Systems (MEMS) or Micro-Total Analysis Systems (uTAS), are of
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particular importance in chemical, biological and clinical analyses. Not only
can miniaturization significantly increase yields but it can also reduce process
time and reagent consumption. Microsystems can also introduce enhanced
functionality and enable new paradigms for high-throughput analyses.

Some surprising and curious physical effects occur in microflows that do not
happen, or are not important, under more conventional circumstances [1]. For
gas flows in microsystems, the continuum hypothesis, which underpins the
Navier-Stokes equations, may be inappropriate. This is because the mean free
path of the gas molecules may be comparable to the length scale of the device.
The Knudsen number, Kn, which is the ratio of the mean free path of the
gas molecules to the characteristic length scale of the device, is a convenient
measure of the degree of rarefaction of the flow. Free-molecular flow starts
when Kn > 10 whereas Navier-Stokes models are generally valid if Kn <
0.01, but can be extended into the slip-flow regime (0.01 < Kn < 0.1) by
appropriate treatment of the wall boundary. The transition-flow regime lies
between the slip-flow and free-molecular regimes (0.1 < Kn < 10). In practice,
gas flows in long microchannels may encounter a wide range of conditions
that include the continuum, slip and transition regimes. The direct simulation
Monte Carlo (DSMC) method could be used for low Knudsen number flows but
will be computationally expensive for low-speed problems. Hybrid algorithms,
that efficiently couple DSMC and Navier-Stokes methods, offer the potential
to model these mixed flow regimes [2]. However, large errors can arise from
inappropriate assumptions regarding, for example, the velocity distribution
of the gas molecules at the matching interface between the two solutions [3].
In addition, hybrid methods entail intensive computational effort for three-
dimensional flow simulations.

For practical microsystem design, computational efficiency and simulation ac-
curacy has to be balanced. Since Navier-Stokes solvers have been extensively
developed and are widely available, significant effort has been made to improve
slip models in order to extend the validity of the Navier-Stokes equations be-
yond Kn=0.1. Another possible continuum approach is based on Burnett-type
equations which involve terms of second-order, or higher, in Knudsen number.
The difficulty is how to construct complicated constitutive laws for higher-
order correlations. Our recent work comparing various analytical models for
the drag force acting on a microsphere has revealed that simulations using the
Navier-Stokes equations with a slip boundary condition start to differ signifi-
cantly against experimental measurements at Knudsen numbers as low as 0.05,
while kinetic models produce accurate predictions [4]. In engineering applica-
tions, macroscopic flow quantities such as shear stresses, wall slip-velocities,
and mass flow rates are the most important parameters to be determined. Con-
sequently, molecular simulations such as Molecular Dynamics (MD), DSMC,
or direct numerical simulation of the Boltzmann equation are often considered
too expensive in terms of computational cost for most practical engineering



applications where the microscopic details are not required.

Recently, a lattice Boltzmann equation (LBE) approach has been used to sim-
ulate gas flows in microchannels [5-7]. He and Luo [8] and Abe [9] showed that
the lattice Boltzmann approach can be derived from the continuous Boltzmann
equation. The LBE technique on a regular lattice is a subset of the discrete
velocity method used to solve the Boltzmann equation with the Bhatnagar-
Gross-Krook (BGK) collision operator. It has been shown that the LBE ap-
proach is equivalent to solving a discrete Boltzmann equation with a specific
finite-difference scheme [10]. The intrinsic kinetic nature of the LBE method
makes it an ideal choice for microflows where both microscopic and macro-
scopic behavior are important. Although bulk gas velocities in microsystems
are usually very low, so that the flows are almost incompressible, the Knudsen
number often spans a wide range and can easily enter the transition regime.
LBE techniques could offer significant advantages over other high Kn solu-
tion methods because its efficiency is comparable to a Navier-Stokes solver yet
it has the potential of providing accurate results beyond the slip-flow regime.
The LBE approach has been proven to recover the Navier-Stokes and Burnett-
type equations [11] and may therefore be a suitable alternative for gas flows
in microdevices where slip motion at the wall surface is important.

Lattice Boltzmann methods have been used extensively to simulate incom-
pressible fluid flows with no-slip boundary conditions but little work has been
carried out on the simulation of gas flows through microchannels. Our previ-
ous work has briefly discussed the implementation of gas-slip motion at the
solid surface and the definition of the Knudsen number in terms of LBE pa-
rameters [12]. The simulation results, based on a diffusive reflection model,
accurately described flow in the slip regime and qualitatively captured the
Knudsen minimum phenomenon in the transition regime. The present work
discusses the tangential momentum accommodation coefficient (TMAC) and
its implementation into a LBE model. In addition, the correlation between
the nondimensional slip velocity, Knudsen number, and TMAC are numeri-
cally tested and compared to first- and second-order analytical solutions of
the Navier-Stokes equations.

2 Theory

Among the LBE methods reported in the literature, the most widely used is
the BGK model which utilises a single relaxation time approximation. For the
sake of simplicity, the lattice BGK model is given as an example [13]:

Fi(z+ et +8) — filw, ) = —%[fi(x,t) ) i= 0,1, (1)



where f;(x,t) is the density distribution function along the 7 direction at lattice
site z and time ¢, §; is the time step, ¢; is the discrete velocity, 7 is the
dimensionless LBE relaxation time given by A/d; where A is the relaxation
time, and f{? is the local Maxwellian distribution function expressed as a
Taylor expansion to second-order in fluid velocity. The density p and bulk
velocity u can be determined from Y1 f; and Y7, ¢; fi/p, respectively. The
LBE relaxation time 7 can be related to the kinematic viscosity v by ¢2d;(t —
0.5) for a square lattice, where ¢ is the so-called sound speed of the lattice
fluid. The term -0.5 is a correction to make the LBE technique a second-
order method for solving incompressible flows [14]. In the popular nine-velocity
square lattice model (D2Q9), the particle velocities, ¢;, are given by [13]:

60:0,
c; =cleos((i — 1)m/2), sin((i — 1) /2)],i = 1,2, 3,4,
¢; =V2c[cos((i — 5)n /2 +m/4), sin((i — 5)n/2 +7/4)],i = 5,6,7,8, (2)

where ¢ = §,/d;. The equilibrium distribution for the D2Q9 model is given by
[13]:
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The mean velocity of the gas molecules can be given by ¢ = /8kT /mm [15],
where k is the Boltzmann constant, m is the molecular mass, and 7' is the
temperature. The mean free path, [, is equal to the mean distance a molecule
travels between consecutive collisions, i.e. [ = ¢\ [16]. For uniform lattice
spacing, the channel height, H, is given by H = Ngd,, where Ng is the
number of lattice sites and ¢, is the lattice spacing. Since 7 = A/d;, and
¢ =0,/0; = V3RT for a D2Q9 model, where R is the universal gas constant,
it can be shown that

l cA 8 7T
K = — = — = - 4
"THTH 3Ny (4)

Introducing the correction factor of -0.5 from the discretization of the Boltz-
mann equation [14], leads to

_[8 (r-05)



Equation (5) is valid for uniform lattice models such as D2Q9 or D3Q27. Tt
should be noted that the collision interval takes no account of the persistence of
velocities after collisions in the BGK model [16], so that the mean free path has
to be defined using macroscopic properties for comparison with other results.
In previous work [12], Eq. (5) was derived using an approach that related
the mean free path to the dynamic viscosity, x4, and macroscopic pressure, p,
i.e. I = (u/p)/wkT /2m, and then considered scale effects due to the use of

properties based on this definition of the mean free path [15]. The present
model removes the need for a free parameter to tune the simulation results.
In order to solve the Boltzmann equation, the distribution function of the gas
molecules leaving the wall surface, f*, needs to be related to the incident
molecular distribution function, f~, which can be generally expressed by a
scattering kernel, R(r, v — v), where 7 is the position vector, v* is the incident,
velocity, and v is the reflected velocity. Further details are given by Cercignani
[17] and Cercignani et al. [18]. The most widely applied kernel is the diffusive
scattering model [15], which is given by

m2uy, mu?

R(v' — v) = Wew(_ﬁ)’ (6)

where T, is the surface temperature, and v, is the normal component of
the incident velocity. This can be interpreted from the perspective of the gas
molecules losing all information about their state before their collisions; they
are therefore reflected in a state obeying the Maxwellian distribution function.
Maxwell [19] expanded this diffusive kernel to a partly diffusive a and partly
specular (1-«) kernel, which has been extensively applied and tested for solving
the Boltzmann equation.

To implement a gas-surface interaction model within the lattice Boltzmann
method, it is not necessary to know the scattering kernel. The degree of free-
dom in the momentum space is very limited in the LBE approach; for example,
a D2Q9 model only has nine discrete velocities. The gas-solid wall collisions
need to be approximated by a combination of these velocities. Therefore, a co-
efficient representing the average gas-surface interaction may be sufficient. For
gas-phase microfluidic flow, the TMAC is the most important accommodation
coefficient, and can be interpreted as [20]:

Mi_Mr

_ 7
T M, - M, (M

where M is the tangential momentum of the molecules and the subscripts
1,7, w refer to the incident, reflected and wall molecules, respectively. If the
wall is stationary, M, is zero. The TMAC, o, will be unity for diffuse reflection
and zero for specular reflection. It can be shown that o is the same as «



in the Maxwellian kernel [15]. With information for the TMAC available in
the literature, a gas-surface interaction model for the LBE method can be
established with some confidence. Recent work has revealed that the reflections
are not always fully diffuse and the accommodation coefficient o < 1.0 [20].
In the present paper, a Maxwellian approach has been used to describe the
collision characteristics in the LBE model. A representative particle collides
with the wall as shown in Fig. 1. The post collision direction usually lies
between the normal direction, n, and the specular reflection direction, s. On
a uniform lattice with spacing ¢, the TMAC boundary condition at the upper
wall can be implemented in a LBE (D2Q9) model as follows

(1 - O')f5(.’.E - (S,y,t),
(1 — O')fe(.’lf + (5,y,t),
O'f5(.fL'—(5,y,t)+O'f6($+(5,y,t)+f2(l',y,t). (8)
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f7($: y;t+ 6t)
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The lower wall boundary condition can be derived in an analogous manner. For
diffuse reflection, it can be seen from Eq. (8) that the average tangential mo-
mentum is zero, as expected. The implementation of diffuse kinetic boundary
conditions can be realised by discretizing the discrete velocity set, as reported
in Refs. [7,21]. In the LBE method, the degree of freedom of the velocity vec-
tors is very limited and a fictitious particle represents a large number of gas
molecules. Therefore, at the mesoscopic level, molecules reflected diffusely will
exhibit an ensemble behavior such that the average tangential momentum is
zero. The boundary condition given by Eq. (8) is proposed in a spirit similar
to the combination of the bounce back rule and specular reflection reported by
Succi [22]. Previous studies of slip flow in gas microsystems have investigated
bounce-back [5] and specular bounce-back [6] boundary conditions but did not
take into account the effect of the accommodation coefficient. The boundary
condition given by Eq. (8) can be generalized to various geometric conditions
and lattice models.

3 Results and discussion

In this section, the numerical results of the LBE model (D2Q9) are presented
for 2-D fully-developed channel flow. The effect of Kn and TMAC on the flow
can be clearly distinguished in Fig. 2. For the same Kn, decreasing the TMAC
leads to increased wall-slip but a lower maximum velocity at the center of the
channel. Conversely, if the TMAC is held constant, increasing the Knudsen
number will lead to increased wall-slip as expected. Figure 3 illustrates that
the simulation results are essentially independent of the lattice number. In Fig.
3a, the Knudsen number is 0.05 and the TMAC is 1.0 while in Fig. 3b, these



values are 0.025 and 0.7, respectively. The slip velocities in the two figures are
similar despite the fact that the Knudsen numbers are different. Therefore,
for fully-developed gas flows in a microchannel, the velocity profiles clearly
depend upon an interaction between the Knudsen number and the TMAC.
This observation is consistent with both theoretical results and experimental
data available in the literature [20].

In the slip-flow regime (Kn < 0.1), the Navier-Stokes equations, with first-
or second-order boundary conditions, are considered acceptable. Cercignani
[23] used a BGK approximation and obtained a second-order slip model for
rarefied gas flows. Subsequently, Hadjiconstantinou [24] rescaled and improved
the model for a hard sphere gas by considering Knudsen layer effects and
obtained

0%u

ou
w = 114661 = |yay —0.31>2— |wau, 9
“ on wal on? wat ©)

where [ is a viscosity-based mean free path given by (u/p)\/7kT /2m, as previ-
ously described. Other slip models differ slightly in the first-order coefficient,

e.g. Ohwada et al. [25] defined it as 1.11 instead of 1.1466. This difference
is well within acceptable bounds. Equation (9) assumes fully-diffuse reflec-
tion but the effect of the TMAC can be considered by introducing a factor of
(2 — o) /o to the first term of this equation. If a Maxwellian scattering model
is employed, the fully-developed velocity profile in a channel is given by

dp H*  y (2—0)

2 Y 2
- - [ (=L = 4+~ 71.1466 K 2 B1K 1
u(y) dw?u[ (H)+H+ - 66Kn + 2 x 0.31Kn?], (10)

where dp/dx is the pressure gradient in the streamwise direction. A symme-
try boundary condition has been employed at the channel centerline in the
derivation of Eq. (10). The velocity profile can be nondimensionalized by the
mean channel velocity, u, to give

Yy 4 (2-0) 2
i + ED11466Kn + 2 x 0.31Kn | 1)
(2=9) 1 1466 Kn + 2 x 0.31Kn?2

1
6 o

= 1)

The results from the LBE approach have been compared with the analytical
slip-flow solution of the Navier-Stokes equations, Eq. (11), and show that
the effect of the second-order correction for Kn < 0.1 is small. In Fig. 4,
the Knudsen number is varied from 0.025 to 0.1 while the TMAC ranges
between 0.6 and 0.9. As previously stated, the second-order correction term
is negligible when the Knudsen number is less than 0.1, so that the symbols
representing first- and second-order slip solutions cannot be distinguished. The
LBE results are in excellent agreement with the analytical solution for both



first- and second-order slip models. When the Knudsen number is increased to
0.1, where the Navier-Stokes equations are at the limit of their applicability,
the difference between the analytical solutions and the LBE results becomes
more noticeable.

In summary, the lattice Boltzmann method offers an alternative approach to
the Navier-Stokes equations for modeling low-speed gas flows in the slip-flow
regime. In particular, the LBE technique offers the potential to be successfully
extended into the transition flow regime due to its particle nature and origins
in kinetic theory. The extension of the LBE method into the transition regime,
where the Navier-Stokes equations are known to break down, needs further
investigation.
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List of figure captions

Fig. 1. Schematic diagram of gas surface interaction and velocity directions of
a 2-D (D2Q9) model, where v* is the incident velocity and v is the reflected
velocity of a molecule. Here, n is the normal direction and s refers to the
specular reflection direction.

Fig. 2. The effect of TMAC and Kn on the flow velocity profile (a) Kn=0.025
and (b) TMAC=0.8. Solid symbols represent the analytical solution of the
Navier-Stokes equation with Cercignani’s second-order slip boundary condi-
tion [23] while lines represent the present LBE results.

Fig. 3. The effect of the lattice number, Ng, across the channel height. Fully-
developed channel flow with (a) Kn=0.05, 0=1.0 and (b) Kn=0.025, 0=0.7.

Fig. 4. Nondimensional velocity profiles for fully-developed channel flows with

(a) Kn=0.025, 0=0.6; (b) Kn=0.05, 0=0.7; (¢) Kn=0.075, 0=0.8 and (d)
Kn=0.1, 6=0.9.
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Fig. 2. The effect of TMAC and Kn on the flow velocity profile (a) Kn=0.025 and
(b) TMAC=0.8. Solid symbols represent the analytical solution of the Navier-Stokes
equation with Cercignani’s second-order slip boundary condition [23] while lines
represent the present LBE results.

12



15 T T T T 15

— N385 — N, =35

H H

(a) (b)

Fig. 3. The effect of the lattice number, Npg, across the channel height.
Fully-developed channel flow with (a) Kn=0.05, 0=1.0 and (b) Kn=0.025, 0=0.7.
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Fig. 4. Nondimensional velocity profiles for fully-developed channel flows with (a)

Kn=0.025, 0=0.6; (b) Kn=0.05, 0=0.7; (¢) Kn=0.075, 0=0.8 and (d) Kn=0.1,
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