-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by University of Strathclyde Institutional Repository

I._‘.
Unlversltyﬂ@

Strathclyde

Glasgow

Strathprints Institutional Repository

Koop, G.M. and Potter, S. (2003) Bayesian analysis of endogenous delay threshold models. Journal
of Business and Economic Statistics, 21 (1). pp. 93-103. ISSN 0735-0015

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright © and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/


https://core.ac.uk/display/9019495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

. IH
I"-. MNIVERSITY OF
'\ 3 TRATHCLYDE

N GEASGORY

Koop, G.M.* and Potter, S. (2003) Bayesian analysis of endogenous delay threshold models.
Journal of Business and Economic Statistics, 21 (1). pp. 93-103. ISSN 0735-0015

http://eprints.cdlr.strath.ac.uk/6946/

This is an author-produced version of a paper published in Transnational Corporations, 13 (3).
pp. 21-52. ISSN 10149562. This version has been peer-reviewed, but
does not include the final publisher proof corrections, published layout, or pagination.

Strathprints is designed to allow users to access the research output of the University
of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained
by the individual authors and/or other copyright owners. You may not engage in
further distribution of the material for any profitmaking activities or any commercial
gain. You may freely distribute both the url (http://eprints.cdlr strath ac.uk) and the
content of this paper for research or study, educational, or not-for-profit purposes
without prior permission or charge. You may freely distribute the url
(http://eprints.cdlr.strath.ac.uk) of the Strathprints website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk


http://eprints.cdlr.strath.ac.uk/6946/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk

BAYESIAN ANALYSIS OF ENDOGENOUS DELAY THRESHOLD MODELS*

GARY KOOP
Department of Economics, University of Glasgow,
Glasgow, U.K. G12 8RT
E-mail: G.KoopQ@socsci.gla.ac.uk

SIMON M. POTTER *
Federal Reserve Bank of New York
New York, NY 10045-0001, U.S.A.

E-mail: Simon.Potter@ny.frb.org

September 2000
ABSTRACT
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toregressive models: Endogenous Delay Threshold. We apply our methods

to the commonly-used sunspot data set and find strong evidence in favor
of the EDTAR model over linear and traditional threshold autoregressions.

Keywords: Nonlinearity, Threshold Autoregression, Markov Chain Monte Carlo, Gibbs Sampler

*We are grateful for useful comments from referees, an associate editor and the editor Ruey Tsay.
tFinancial support from the Social Sciences and Humanities Research Council of Canada is gratefully acknowledged.
tFinancial support from the NSF under grant SES 9211726 and the Center for Computable Economics at UCLA is gratefully

acknowledged. The views expressed here are those of the authors and do not necessarily reflect the views of the Federal Reserve
Bank of New York or the Federal Reserve System.



1 Introduction

In recent years there has been a growing realization of the restrictiveness of linear models in
time series analysis. Accordingly, interest has increased in various nonlinear specifications. Tong
(1990) provides an introduction and discussion of many commonly-used nonlinear models. There

are two related problems with nonlinear models:

1. They can be very parameter rich, and thus be subject to the criticism that they are merely

mining the data.

2. Theory often does not tell us which nonlinear functional form is appropriate. That is, it
is easy to say that linear models are too restrictive, it is much harder to choose one of the

infinite number of departures from linearity that are possible.

In this paper we consider Bayesian estimation for a particular class of models called En-
dogenous Delay Threshold Autoregressive (EDTAR) models. The goal is to alleviate the two
problems mentioned above. In particular EDTAR models represent a highly flexible class of
nonlinear time series models yet the flexibility is not produced by over-parameterization. A re-
lated paper is Pesaran and Potter (1997) which uses classical econometric methods to analyze an
EDTAR model which is a special case of the one considered in the present paper. The present
approach allows for a more general and coherent treatment of a whole class of EDTAR models (as
opposed to a particular variant suitable for use in a specific application) and, as we shall argue
below, the adoption of a Bayesian approach simplifies some econometric problems and allows for
easy comparison of multiple, possibly non-nested, models.

The EDTAR class is included in the even more general class of threshold autoregressions
introduced by Tong (see Tong 1990 for a review). The threshold class is distinguished by the
use of piecewise linear autoregressive models. EDTAR models represent a new implementation
of the threshold approach. Most implementations of the threshold principle have used a simple
classification of the time series into two regimes based on a single lag of the time series (i.e.
self-exciting threshold autoregressive, or SETAR, models). This choice is convenient because,
when more general regime classification or multiple regimes are considered within the standard
approach, parsimony problems and estimation difficulties arise (see, e.g., Chen, 1990). EDTAR
models differ from the standard implementation by using previously unexploited information
about the length of time spent in regimes. This allows the construction of ‘sub-regimes’ within

‘major’ regimes. Parsimony is maintained by tightly restricting parameters across the sub-regimes.



In previous work (Koop and Potter, 1999a, 1999b), we have argued for the advantages
of Bayesian methods when working with nonlinear time series models. A chief advantage of
Bayesian methods is the mitigation of data-mining/overfitting problems through model averaging,.
Furthermore, Bayesian methods are particularly attractive for threshold models because they are
capable of producing information about parameter uncertainty for the regime-classifying and AR
parameters jointly. Classical techniques are only capable of producing measures of parameter
uncertainty across samples conditional on the regime classification because of the faster than T
convergence of the regime classification parameters (Chan, 1993).

In this paper we develop Bayesian methods of analysis for EDTAR models based on Markov
Chain Monte Carlo techniques. In addition we also describe a simple method for calculating Bayes
factors for EDTAR models versus linear models and SETAR models based on the work of Koop
and Potter (1999a). These methods are applied to the sunspot data series contained in the
appendix of Tong (1990). We find considerable posterior evidence in favor of the EDTAR model
over SETAR and linear models.

The remainder of the paper is organized as follows: Section 2 describes and motivates
EDTAR models. Section 3 develops the Bayesian statistical techniques used in this paper. Section
4 presents estimates of an EDTAR model for Wolfe’s sunspot data and comparisons to linear and
traditional threshold models based on marginal likelihoods. Section 5 concludes with a review of

the main results of the paper and a discussion of extensions.

2 EDTAR Models

The EDTAR model developed here, and used in our empirical work, can be written as:

Ve = ¢' Xy +0"Z(y) + (v, 0) Vi, (1)

where
X = (17 Yioa,... 71@—]9)/7 Zt(’Y) = (th(7)7 ZQt(7))I7

th(')/) = l[Imt('Y) > 0] (fm(Y;‘: ce 7K€75)+th(7)) s
hi(7y,0) = ool[loc(v) = 1] + o21[L14(7y) > 0] + 031 [I2(7) > 0].

Exact details are given below, suffice it to note here that v is a vector of parameters used for

defining regimes, I,.(.) for m = 0,1,2 indicate three major regimes and o, for m = 0,1,2 are error



scalings for these regimes. Z.(v) and f,,(.) are defined below. The crucial ingredient in the EDTAR
model is Z;(v) which contains measures of overheating and cooling (e.g. fn(.) can be chosen so that
Z.(y) captures ceiling/floor effects as in Pesaran and Potter, 1997) of the sort that are thought
to exist in many time series. We show how such a model can be written as a threshold model
with the property that sub-regimes exist within three major regimes. However, the differences
across regimes and sub-regimes are restricted in a natural fashion. These restrictions allow us to
estimate models with a large number of regimes.

In the remainder of this section, we relate the EDTAR model to some implementations of
the threshold model which have appeared in the literature. We gradually motivate and build up
the components of the EDTAR model given in Equation 1. In other words, Equation 1 should
be treated as the ending point of our derivations, not the beginning. We present it here only to

provide a concrete view of where the following discussion is headed.

2.1 Background and Motivation

When one leaves the world of linear models, there are many nonlinear forms to choose from. For
many types of applications, it is natural to assume that different regimes exist and, within each
regime, it may make sense to assume a linear structure. For example, economic theory often
tells us that the dynamics of real GDP growth should be different in expansionary times than
contractionary times. Once the series is divided into regimes, the question arises as to what sort
of dynamics should apply in each regime. These two problems — regime classification and selection
of dynamics in each regime — lie at the heart of specification issues with threshold models.

In order to motivate the class of EDTAR models we start from the most general specifica-
tion of the TAR class first given in Tong and Lim (1980). Let {Y;:¢=0,1,...} be a time series and
let M, be an indicator random variable taking values in the set {1,2,...,M}. Then the canonical

threshold autoregression is defined by:

Y, = QiMe} —‘r(/){]wt}(L)}/t—l _A'_O-{]Vlt}‘/t, (2)

where V; is an IID sequence of standardized random errors with zero means and unit variances;
and for M; =m, o™ is a constant, o{"} are regime specific scalings of the errors and ¢{™}(L) is a
finite order polynomial in the lag operator L. In general, the order of the polynomial as well as

the coefficients can vary with the index M;.



Most applications of threshold autoregressions have simplified the problem of choice of the
index variable by choosing a lag of the observed time series d, known as the delay parameter, and

a collection of thresholds {r,,,m =1,..., M — 1} to construct M;. An example would be:

ar + ¢ (L)Y + 01 Vs if Vig <y,
az + p2(L)Yi 1 + 02V; ifr <Yi_qg<ry,

t= : : 3)
ag + ¢M(L)Y:t4 +oxV; ifYi g > ThI 1.

This model is known as a self-exciting threshold autoregressive model, or SETAR. Since the index

variable is constructed from the location of observable lags of the time series, the specification is

relatively easy to estimate, test and evaluate as exemplified in Tong (1990). A common alternative

class of models, based on one originally presented in Hamilton (1989), has M, determined by a

hidden Markov chain.

In this paper we develop a different version of the threshold model by introducing re-
strictions across regimes. These restrictions allow us to estimate models with a large number of
regimes. As an illustration, we give the form of the threshold model, equivalent to equation (1),
which we estimate later for the sunspot data:

a+ ¢p(L)Yi—1 +ooV; if ro <AY;_y <y,
a+ ¢p(L)Yi1 + 61 (Y1 —Yio — 1) + 01 Vi ifAYe 1 >r

at ¢p(L)Ye 1+ 60150 (Vi Yiegy — 1) +oVe if [P, LAY, > 7)) >0,

a+ ¢p(L)Ye1 +02(Yiq1 —Yi g —12) + 02V4 ifAY: 1 <1

a4 p(L)Yiy + 0257 (Viig—Yi_ay —1a) +02Vi if [[1_; 1(AY;_s < 13) > 0,

where AY; = Y; — Y; ;. Note that the number of regimes actually visited by the time series is
endogenous and depends on how many consecutive periods the change in the sunspot numbers
are above or below a threshold. Further, rather than adding p + 3 parameters for each extra
regime (as a SETAR would do), no extra parameters are added as the change in the sunspots
stays above or below the threshold for more than one consecutive period. Instead the conditional
expectation function adapts through the change in the number of lags of the difference in the
sunspots included.

To return to the two central problems of threshold modeling described above, it can be seen



that the standard SETAR model given above solves them in a very simple manner. Regimes are
classified on the basis of observable lags of the series, and the dynamics in each regime are allowed
to follow a totally different autoregressive process. However, this strategy can be unsatisfactory if
the number of regimes is large. In the example of real GDP dynamics, one might expect different
regimes to apply in the case where the economy has been in a recession, expansion or normal
times. Further, within each of these major regimes one might expect sub-regimes to exist. For
instance, if the economy has been in a recession a short time different dynamics might apply
relative to a case where a long recession has occurred. Hence, any time series model of the
business cycle could end up with a large number of regimes. If the dynamics in each regime are
left unrestricted, problems of parsimony quickly arise.

This tension between wanting flexible models with many regimes and the parsimony prob-
lems which result, is reflected in much of the recent literature. In our discussion of some of this
literature, we will let X; = the log of US real output and v; = X; — X;_;. Consider the paper
of Tiao and Tsay (1994), which uses a SETAR model in an application involving US real GNP
growth. The authors address the issue of regime classification by beginning with a model identical
to Equation 3 above with two regimes. They then search over possible values of d and r; and
select d = 2 and r; = 0, values which provide the most evidence of nonlinearity. They then retain

these values when they expand to a four regime model with regimes defined as:
e Regime I v;_; <Y¥;_» <0. (i.e., a worsening recession).
e Regime II: v,_, > Y; » but ;5 <0 (i.e., recovery from a recession).
e Regime III: v,_, <Y;_» but ¥;_ > 0 (i.e., slowdown in growth/beginning of a recession).
e Regime IV: V;_; > Y, 5 >0 (i.e., a strengthening economy).

Statistical evidence is provided on the desirable properties of this model. The Tiao and
Tsay paper illustrates some important issues which arise with SETAR modelling. First, a careful
statistical analysis of many macroeconomic time series (in their case, real GNP growth) indicates
evidence for many regimes (in their case, 4). Second, SETAR models tend to have many pa-
rameters in them. Tiao and Tsay keep the number of parameters manageable by sticking with
regimes based on d = 2 and threshold values of zero, but even their model has 13 parameters
(i.e. a different intercept and error variance for each regime plus they model three regimes as

AR(1) and the fourth AR(2)). Third, there are so many choices to be made in even a simple



model (e.g. number of regimes, definition of regimes, delay and threshold parameters in each
regime, lag lengths in each regime, etc.) that data mining can be a problem. Fourth, even with
a parameter-rich model such as Taio and Tsay’s there are always possible criticisms of particular
aspects of the model (e.g. why focus only on the selected threshold and delay parameters? Why
not consider other regime definitions?, etc.).

In contrast to the SETAR tradition, there is another class of specifications which can be
illustrated using the model of Beaudry and Koop (1993). In an application involving US real
GNP, Beaudry and Koop add lags of a variable they call the current depth of recession (CDR) to
a standard ARMA (p,q) model. This variable is defined as the gap between the current level of

real GNP and its historical maximum including the current value. That is,
CDRt = Xt — m&X{Xt7 Xt—ly . X()}

They justified the inclusion of this variable on the grounds that it would allow for shocks to real
GNP to have asymmetric effects (e.g. since technical regress is unlikely negative shocks to real
GNP would not have a permanent effect, but positive shocks could have a permanent effect).
Beaudry and Koop present evidence that such CDR models were statistically superior to linear
ARMA models, at least for the case of US real GNP. Hess and Iwata (1997) find the CDR variable
to be significant in the case of US GDP, but not in the case of GDP for some other countries. In a
comparison involving several different nonlinear and linear specifications, Jansen and Oh (1999)
find the CDR model to be the best model for the case of US real GNP.

The CDR model has the advantages that it is quite parsimonious (i.e., it only adds ¢ extra
parameters to a linear AR specification, where ¢ is the number of lags of the CDR variable included
in the model), based in economic theory and seems to provide a good data description of some
macroeconomic variables such as real GNP. However, its disadvantage is that it was developed in
light of theories of behavior relating particularly to real output, and it is probably too restrictive
to be considered as a class of nonlinear models that is suitable for use with a wide variety of time
series.

Pesaran and Potter (1997) point out the relationship between the CDR model and TAR
class and show that the model of Beaudry and Koop (1993) is, in fact, somewhat similar to that
of Tiao and Tsay (1994). The model of Beaudry and Koop is:

Y; = a+ ¢p(L)Yi1 + 6CDR;_y + Vi (5)



It can be verified that an alternative way of writing the CDR variable is provided in the following

two equations (see Pesaran and Potter, 1997, for additional details):

F, = 1(CDR,1+Y,<0), t=1,2.., (6)
C-DRT = (CDRtfl +}/t)Fl‘7 t:1727"'7 (7)

where CDRy =0 and 1(-) is the indicator function equal to 1 if the statement inside the parenthesis
is true and 0 otherwise. F; is, thus, an indicator function for what Pesaran and Potter call the
“floor” regime.

The connection between the CDR and TAR models can be found by expanding out Equa-

tion 7 for j periods:
CDR, = (CDRy_1 +Y;) F,, CDR, = (CDRy_3 + Y;_1) Fs_1F, + Y, Fy,

and so on, until:
j i j
CDR; =Y Yy i [[ Fier + CDRij 1 [ Fier-
=0 T=0 7=0

By construction, it is possible for this recursion to continue into the infinite past. However, if the
time series {Y;} is stationary then the maximum lag will be finite (with probability one). In the
CDR model a sufficient condition for stationarity is that —1 < 6 < 0, and the polynomial 1—¢,(z) has
all its roots outside the unit circle. In this case the CDR; variable will have the effect of dampening
the (negative) fluctuations in output. Since Y; is the first difference of output, this dampening
effect is similar to a reflective barrier or a floor determined by the previous maximum level of
output. Thus, the index variable, F;, switches on when current output is below the maximum
level of output achieved (i.e., is in the floor regime).

Pesaran and Potter also show that the above recursion can be used to rewrite the model

in Equation 5 as a member of the TAR class:
a+ ¢p(L)Yir + Vi it F,_1 =0,
a+ ¢p(L)Yimq +0Yi 1 + V4 it FLi=1and F,_, =0,

v, = - o ®
o+ pr(L)Y;—l + GZizl Y;ﬁ—s + V;f 1f Hi:l Ft—s =1 and Ft—j—l =0

Note that Equation 8 implies that the C DR model has many sub-regimes within the floor regime.

In other words, dynamic properties can differ from the period when the economy just enters a



recession, to when it has been in a recession for 1 period, for 2 periods, etc. Hence, it is similar
(but not identical to) the multiple-regime model of Tiao and Tsay (1994). However, the CDR
model is much more parsimonious. The differences between dynamics in the sub-regimes depends
only on one parameter, §. In other words, problems of parsimony in the multiple-regime TAR
model are overcome by restricting the dynamics in the sub-regimes to be similar to one another.
The restrictions fall out naturally from an intuitively appealing concept: that the depth of a
recession should affect real output dynamics.

Pesaran and Potter (1997) extend the basic CDR variable to allow for an unknown threshold
parameter (i.e. instead of measuring accumulated drops in real GDP, it measures accumulated
drops below a threshold). Then they add a ceiling regime. The ceiling regime is defined as
the opposite of the floor regime. The variable on which it is based reflects overheating, OH,
and measures accumulated growth above a threshold. Pesaran and Potter (1997) derive classical
estimation and testing methods for the floor and ceiling model and find strong statistical evidence
in its support for the case of real US GDP.

The floor and ceiling model of Pesaran and Potter takes a threshold form where the number
of regimes is determined by the data. Hence, this model is sometimes referred to as an endogenous
delay threshold autoregressive or EDTAR model (a terminology which we adopt in the present
paper). Although it is quite flexible, the specification used by Pesaran and Potter was designed
particularly to model real GDP. There are several modelling choices (e.g. precise definitions of
CDR and OH and the decision to use only one lag of these variables) that may be questionable
in other empirical contexts. Hence, a chief aim of the present paper is to generalize the EDTAR
model used in Pesaran and Potter (1997) into a whole class of models with similar properties.
We believe that such generalizations might be useful in a wide range of fields of study. After
all, ideas relating to reflective barriers, dampening of shocks, overheating and undercooling, etc.
appear in many areas of science and social science. Hence, a general variant of the EDTAR model
is developed in the following sub-sections. In addition to using the floor and ceiling model to
provide intuition about the workings of our more general model we also discuss the model used

in the application to the sunspot data in Section 4.

2.2 Endogenous Delay Index Variables

The first issue we address is how to define the different regimes in a flexible way. Consider the

manner in which the TAR model in Equation 3 generates regimes for a fixed delay variable. It



uses the value of Y; ;4 to split up the time series up into separate regimes. One weakness of this
approach is that there is no good reason to isolate one particular lag of the time series to define
the regimes. One natural way of avoiding the need to fix a delay variable is to allow information
from previous values of the time series to feed back into the construction of the variable used to
define a particular regime. For example, consider a regime which is activated by large values of
the time series (e.g. an expansionary regime where fast growth is occurring). Instead of choosing
one lag to measure large values, one could switch on an index variable when the time series crosses
a particular threshold and then measure how long the time series spent within this regime. The
activation of the ‘major’ (e.g. expansionary) regime leads to sub-regimes indexed by the time
spent in that regime (e.g. z quarters spent in an expansion). The idea being that the behavior
of the time series will be different if, for example, it has only spent 1 period in the regime versus
10 periods.

In order to formally develop these ideas we concentrate on the case of three major regimes.
As discussed above this is a reasonable choice in many circumstances (e.g. the idea of floor and
ceiling reflective barriers is sensible in many cases), but more major regimes could be added at
little cost. The index variables required to produce three major regimes, which we call endogenous
delay variables {I,,;,m = 0,1,2}, are generated by a feedback relationship amongst past values of
the time series. The feedback relationship has a particular recursive ordering controlled by a
parameter, ¢, that takes on the value 0 or 1. The role of this parameter is to ensure that two
regimes cannot occur at the same time. In the context of real GNP work, it is probably reasonable
for the researcher to set ¢ = 0. This would ensure that “rapid recovery from a recession” is not
labelled “overheating”. However, in other applications it may not be more sensible to set ¢ at 0
or 1 based on some a priori knowledge. Accordingly, in the present case we treat ¢ as an unknown

parameter which is estimated from the data.

t J

Ly = (1= UL = 0] +) Y [[ 1AV —ss-- s Vi i) > 0], 9)
j=J1 s=1

Ly = ([ =01+ (1-¢)) > f[ 1fo(Yies, - Yimsmr,) < 0., (10)
T It = 1[It + Io¢ = O] + Tot—1 (11)



where the functions f,,,m =1,2 are given by

Y s —7m lf K,,=0

fm(YVt—s; cee 7K—S—K,”) = { Yt,sflié‘,’;s,hf —r, lf Km >0 (12)

where K,,,m = 1,2 are nonnegative integers, J,,,m = 1,2 is an integer greater than or equal to 1.

The endogenous delay index variable indicates the major regime and sub-regimes (i.e. if
I, > 0 we say major regime m is occurring, and I,,, = 1,2,3, ... indicates various sub-regimes). To
simplify the exposition we assume that ¢ > max,,(J,, + Ky,).

Note that we now have three major regimes and index variables (I,,;) which count the
number of periods the time series has been in each regime. However, the precise definition of the
regimes depends on the parameters K,,, J,, and r,,. It is worthwhile to provide additional intuition
for the precise role that these parameters play in defining the regimes. In the models discussed
above for real output, the major regimes were defined based on lags of the time series. Since Y;
was real output growth this was sensible. That is, regimes were defined using concepts like “real
output is falling” or “real output is growing fast”. But, in other applications, it might make sense
for regimes to be defined in other ways. In the present general class of EDTAR models, we allow
for regimes to be defined in the traditional manner, based on past levels of the series (K, =0) or
on past changes on the series (K,, = 1) and past average changes over the last K,, periods (K,, > 2).
We treat K,, as an unknown parameter which can be estimated from the data. Hence, we let the
data determine which the most appropriate regime definitions are.

The parameters J,, allow a further degree of flexibility in defining the regimes. This
allows for delays in regime activation. For instance, the floor and ceiling model of Pesaran and
Potter (1997) implied that the series entered the floor regime the period after a recession hit. But
(especially given the d = 2 findings of Potter, 1995 and Tiao and Tsay, 1994 using SETAR models)
it might be more sensible to allow the regime switch to occur two periods after the recession hits.
By treating J,, as an unknown parameter to be estimated, we let the data decide how long a delay
must occur before a regime switch is activated.

To preview our empirical findings, consider the sunspot model with the most posterior
support from Section 4. This has J,, = K,, = 1,m = 1,2. Thus, the two major regimes 1,2 are
entered on the first activation of the indicator function: (Y, ; —Y; 5) > ry, or (Y, — Y o) < 7o.
For the sunspot data, these regimes are mutually exclusive and the parameter ¢ is redundant
The time series stays in each major regime for as long as the change in the number of sunspots

exceeds the threshold. As soon as the change in the number of sunspots falls within [re,7] the

10



model returns to regime 0.

2.3 Parameter restrictions across sub-regimes

Now that we have defined all the major regimes and sub-regimes, we must decide how to use this
information. In Pesaran and Potter (1997), one lag of the CDR and OH variables are added to an
AR(p) specification. In the present paper, we do something similar but more general.

If all the sub-regime information is used to construct a conventional TAR model as in
Equation 3 the number of parameters would be enormous. In order to reduce the number of
parameters, we start by restricting the error variance to change only across major regimes. Next,
for the major regime defined by I, > 0, we assume that the coefficients do not change across the
sub-regimes. In other words, in “normal times” dynamics do not change. Hence, we model this

major regime in a conventional manner with an autoregression of order p. We have
Y, = a+ ¢p(L)Ye 1 + ooV, if Ig > 0.

Now consider the activation of one of the other two major regimes. In these cases, we include the
functions, f,,(.) given in equation (12) as additional explanatory variables.

Consider first the case where K,, = 0. For the j** period of activation of major regime m,
we use the following specification which allows the first j lags of the time series and intercept to
change:

J
Yi=a+ d)p(L)}/t—l + ZEWLS(}/t—s - TW’L) + O—WLV;fy if Ly = j (13)

s=1
To return to the real GDP example, when the economy leaves normal times and enters an expan-
sion, at first (e.g. I;, = 1) the dynamics only change slightly (i.e. only the intercept and AR(1)
coefficient change). As the expansion continues longer, the dynamics can differ more and more.
If the expansion were to continue for p periods, then the AR representation would be totally
unrestricted relative to that in normal times.

In the case where K,, >0, the dynamic model if regime m is activated (m =1,2) is:
L Yie—Yiex
Y, = a+dp(L)Y, 1+ Z;fﬂj; —Ti) + O Ve, i Ly = j. (14)

This completely defines the most general EDTAR model discussed in this paper. Note
that, if we knew what K,,, J,, and r,, were, then we could calculate I,,; and the model would be

in the form of a linear regression model with heteroskedasticity (i.e. the error variance changes

11



across the major regimes). This indicates that the model is relatively simple to interpret and
work with (see discussion of estimation and inference below).

In order to provide some additional intuition, we now focus on the best sunspot model
where J,, = K,, = 1,m = 1,2. Extensions to other values are straightforward. We can write the
EDTAR model as:

a+ ¢p(L)Yi—1 + ooV @f Iot > 0,
a+ ¢p(L)Yi1 + &1 (Yeer — Yio — 1) + 01 Vs it ;=1

at (L)Y, 1 +57_ 6.V~ Ye oy —m)+onVy if I, =7,
a+¢p(L)Ye 1+ &1 (Vi1 —Yi2 —12) + 02V if I, =1

a4 dp(L)Yiin + 3 &0u(Viig = Yieo1 — 7o) + 0oV if Iy, = j,

Equation (15) illustrates that the EDTAR model still belongs in the general TAR class.

In practice this general EDTAR model is over-parameterized. Hence, we consider a tight
restriction on the ¢, coefficients for each regime which we have found to be reasonable and which
relates to the floor and ceiling model of Pesaran and Potter. To motivate this restriction, consider
how the dynamics change as the time series leaves the base regime 0. For the case K,, =1, the

total change in the conditional mean from Ip;—; >0 to I,,; = j due to the threshold structure is:

J
Zjnt = ngs(n—s - Y;‘—s—l - 7"7n)-

s=1

In other words, if the series has spent j periods in regime m, the deviation from the basic AR(p)
model is given by Z7,.

For a given 1,.:, Z,, is a moving average of the past values of the time series, {Y;_s— Y;_s_1—
rm}. The floor and ceiling model of Pesaran and Potter implicitly imposed the restriction that
each term in this moving average receives equal weight. In other words, it is the simple sum that
matters (e.g. the accumulated drops in the sunspots below a threshold). We also impose this

restriction in our modelling. That is, we let

J
Z;knt = 0771 (Y:‘,fs - Y;‘,fsfl - T7n)7

s=1
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le, &ui = &ua = -+ = &us = ---.This restricts the formulation of equation (15) to that found
in equation (4) of Section 2.1. Further, it means that one can write the Z,, variables in the

convenient recursive form:
ZWLt = 1(Imt > 0) {f7n(Y;5: cee }/t—s) + th—l} .

Hence, in the following material we work with the EDTAR model set out previously but
restrict equations (13) and (14) to:

Yi=a+ d)p(L)Y:‘,fl + 0 Zmi + o Vi if Iy = J- (16)

With the sunspot data, we find most empirical support for J,, = K,, = 1,m = 1,2, which implies
Lt = gzl(n—s Y o1 — TW’L)‘

For future reference, note that linearity in the conditional mean is present if §; = 6 = 0.

Homoskedasticity is present if o9 = oy = 0.

3 Estimation and Inference

Bayesian techniques for analyzing SETAR models are given in Geweke and Terui (1993) and Chen
and Lee (1995). Geweke and Terui derive the posterior density of the parameters and suggest the
use of Monte Carlo integration for drawing posterior and predictive inferences. Unfortunately,
similar Monte Carlo integration techniques do not extend to the EDTAR case because of the
parameter restrictions across regimes and the presence of the threshold value in the construction
of Z,.;. Instead we use Markov Chain Monte Carlo (MCMC) techniques in a similar manner to
Chen and Lee (1995). A major difference to the traditional threshold autoregression case analyzed
by those authors is that rather than only having to sort the data once for each different value
of the delay d, in the EDTAR model different values of the delay parameters, K,,,J,,,c and the

thresholds requiring sorting the data anew for each iteration of the posterior sampler.

3.1 Notation

For estimation it is convenient to write the EDTAR model in a more compact form and make

explicit the dependence on the parameters (r,, K, Jm : m = 1,2).

Y = ¢'Xy + 0'Zi(y) + he(v,0)Ve = BWi(7) + (v, )V, (17)
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where
X = (17Y2—17 s 7Y75—P)/7 Zt(’Y) = (th(’Y)v ZQt(’Y))/th(7) = (Xz/‘7 Zt(’Y)/)/7

he(7,0) = 00l[Loe(v) = 1] + 021 [I1¢(7) > 0] + 031 [I2(7) > 0],

and
Ym = (T7n7 Hm) (’Yla V25 g)l
Km = (K )/7 K= (’417 ’42)/7 0= (017 92)/7
o = (09,01,02)
B = (9,0,
- (a7¢17' 7¢p)'
In addition we will also use the notation Y = (¥1,Ys,...,Yy), for the observed sample of observations

and ¢ to refer to all the parameters in the model, i.e. ( 3,v,0). Further we will assume that v € T,

a compact set.

3.2 Priors

We assume that J;,J; are uniformly distributed, independently of each other, over the inte-
gers 1,2,...,J and Kj, K, are uniformly distributed independently of each other over the integers
0,1,...,K. Further K, J;, Ko, J> are mutually independent.

Conditional on the values of K;,J; and assuming ¢ =1 we construct prior distributions for
r1,72 such that at least 15% of the data is in each of the three major regimes. Ideally, one would
like to generate the 15% in each major regime using the properties of all parameters. However,
since there is no closed form for the stationary distribution, this is not possible. Instead, we
use the observed data. For the threshold r,, we assume a prior density that is uniform from the
smallest value that implies that 70% of the data is in major regime 1 and the largest value that
implies 15% of the data is in major regime 1. Conditional on the values of ry, Ky, J; and K, J3, the
prior distribution of r; is uniform from the smallest value that implies 15% of the data is in regime
2, to that which would imply 15% of the data in regime 0 given the values of I;;. We denote the
joint distribution by f(ra|k,r1)f(r1|x). Notice that the prior is constructed imposing a particular
value of ¢, hence it is possible that for some parameter configurations less than 15% of the data

are in regime 1 or 2. For ¢ we assume a Bernoulli prior with prior hyperparameter ¢.
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The previous priors do not require any serious subjective prior input. In our empirical
exercise, we are interested in comparing hypotheses about the presence of nonlinearity and het-
eroskedasticity. Hence, informative priors over all the remaining parameters are required. For g
we use a N(dg, Dg) prior. We assume the error variances are, a priori, independent of each other
and that o, is inverted Gamma with hyperparameters yx,, and v,, (we adopt the notation for the
inverted-Gamma given in Judge, Griffiths, Hill, Lutkepohl and Lee (1985), pages 106-107). Prior

degrees of freedom are given by v,, and the prior mode of o, is 1/D_’I;_11u .We assume 3, o and «

are all a priori independent of each other.
In our empirical analysis of the sunspot data, we set dy to zero, and Dy = .451. For the error
variances we set v, =3 and p,, =10. We set ¢ =0.5 and K = J = p. All these values are relatively

noninformative.

3.3 Markov Chain Monte Carlo

If v were known, the model reduces to a heteroskedastic linear regression model. Hence, condi-
tional on ~, a posterior simulator can be set up in a straightforward manner. The posterior for ~,
unfortunately, is of a more complicated form and, hence, we use a Metropolis-Hastings algorithm.

The analysis is conducted in terms of the conditional likelihood with the first max(p, K + J)
values of ¥; assumed fixed. Further, the pre-sample values of I.;,I; are set to zero. The log

posterior density of v is given by:

lnP[MY] :lnP[ﬂ,(r T177’27K17K27J17J27§‘Y} X

~ " Inh(y,0) 1/22ﬁ—wt))_

ht 77

- Z(%ﬂ = 1) ln(0,,) = | Do|"? = (8 = do) Dy (8 — do) + In(f(ra|,m1) f(r1]K)) + < In(€) + (1 = <) In(1 =€), (18)

on the support of I.
The MCMC algorithm can be set up in terms of the following conditional densities:

1. Conditional on (o,7,Y) the distribution of g is multivariate normal with mean:

ElBlo,y, Y] = {Do +ZW* YW (v )}{Daldo+zwf(v)1@*(v)}

where
—Wt(’Y) + 1[I1-1(7) > O] —Wt(’Y) + 1[Izi—1(7) > O] —Wt(y),

0o 01 02

Wi () = 1oe-1(y) =1
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V() = 1o 1(7) = 12 + 1[Iy 1(7) > 02 + 1Dy 1(7) > 02,
00 g1 09
and covariance:
i oSN Zuaa(NXe 037 N Zoea ()X N
Dyt + | oSl Zua(nXE o, 2 () 0 : (19)
032 Yoty Zoe1 (1) X 0 032 Y01 23 4()

with the (p+ 1) x (p+ 1) sub-matrix,

N N

N
211 = (762 Z 1[[0,#],1(’)/) = 1}XtX; + (7;2 Z 1[[11,,1(’)/) > O}XfX; + 052 Z 1[[21,,1(’}/) > O]XfXQ
t=1 t=1 t=1

Thus standard algorithms for generating draws from a multivariate normal can be used.

. Conditional on ({0 : ¢ # i},v, 3,x,Y) the distribution of ,, is inverted Gamma with parameters
7, and 7,,. The posterior degrees of freedom and mean can be obtained using 7,, = v,, +
SN ULw(y) > 0] and 72, = % where e,,; = 1[Ln:(y) > 0](Y — 8/'W7). Thus standard

algorithms for generating draws from an inverted Gamma distribution can be used.

. Conditional on (3, 7,Y) we split v into three main groups, (r1,72), (k) and ¢ and use the notation

v_,. to indicate the vector v with r,, omitted.

(a) In order to draw the thresholds we use a Metropolis algorithm as in Chen and Lee
(1995). Of course such a simple algorithm will introduce a great deal of dependence
in the draws from the posterior but this drawback is compensated for by its speed of
calculation compared to other methods. Two threshold draws are required, hence first
we condition on r,. The proposed threshold value r is drawn from a uniform with lower
support fixed by the value of r, and the requirement that at least 15% of the data be in
major regime 0 and upper support by the requirement that at least 15% of the data be

in major regime 1. If

N

[ iln he(ry, Y—r,,0) — 1/22 (Yz — W (], v—r, ))2] -

—1 ht(rllalyfmo-)Q

N

[ Zlnht(rlaf)/frl,(f) _ 1/22 (}/t - B/Wt(T17fyTl))2‘|

=1 ht(rh Y—r 0)2

is larger than the logarithm of a draw from a standard uniform then the value of the r,
is changed to r{, otherwise the present value is retained. This process is then repeated

for 7, conditioning on r;.
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(b) Since, Ki,Ji,Ks,J; only take on a discrete number of values, we can evaluate the con-
ditional posterior density at all possibilities to produce a discrete distribution to draw
from. However, this requires J? x (1 + K)? evaluations of the likelihood function. Each
evaluation requiring the creation of the {I,,;, Z,.;, m = 1,2} variables. Thus, in practice it is
computationally much faster to use a Metropolis algorithm. Hence we draw a proposed

quadruple «' = (K{,Jj,K},J5) from the joint prior distribution over these parameters.

Again if
N
[—zmhthw, 1/22 — +1n<f<w’,n>f<m|n’>>]—
=1 ®
N ol t /Wt s f—K 2
ltht(Kﬁ_ma)l/zZ(Y }5(% 7("10)”2 ) +1n(f(r2m,r1)f(r1n))]
t=1 t=1 AT TR

is larger than the logarithm of a draw from a standard uniform then the value of the «

is updated to «’, otherwise the present value is retained.

(c) For ¢ we evaluate the posterior density at the two possible values to construct a Bernoulli

distribution to draw from.

For all data sets and models, we take 20,000 MCMC replications and discard the initial

2,000 to minimize start-up effects.

3.4 Bayes Factors

Koop and Potter (1999a) discuss the use of Bayes factors in nonlinear time series models and the
reader is referred to that paper for a detailed discussion. Here, we briefly note that a common
criticism of nonlinear time series models is that they are parameter rich. In linear time series
analysis a standard means of penalizing over-parameterization is to use information measures
that mimic the Occam’s razor property of Bayes factors. In the nonlinear time series case, there
is less justification for information measures approximating Bayes factors because of the potential
for multiple peaks in the likelihood function and because of difficulties in deciding the penalty
for the regime classification parameters given their fast convergence. Thus, in this paper we rely
directly on Bayes factors to penalize parameter rich models. The general formula for the Bayes
factor for model 1 parameterized by ¢ versus model 2 parameterized by v is given by the ratio of

the marginal likelihoods:



where p(¢),p(1) are the (proper) prior distributions over ¢ and ¢ respectively and ¢(¢) and ¢(y) are
likelihood functions.

In order to calculate Bayes factors for the EDTAR model versus linear models from the
output of the Markov Chain Monte Carlo algorithm we use the approach of Koop and Potter
(1999a). Note that, under the restriction 6, = 6, = 0, the nonlinearity in the conditional mean of

the EDTAR model disappears and one is left with a conditionally heteroskedastic linear model:
Y = ¢'Xy + hy(,0) V.

We will call this the LEDTAR model. The LEDTAR model is nested within the EDTAR model
and under the additional assumption that the priors of the two models over shared parameters
are equal at 6, = 6, = 0, one can calculate the Bayes factor using the Savage-Dickey density ratio:

(61 = 0,65 = 0]Y)
p(el = 0792 = 0) .

Bl inear vs EDTAR =

That is, the Bayes factor is given by the ratio of the height of the posterior density at 6; =6, =0
to the prior density height at this point. Under our normal prior assumption, the denominator
of this expression is easy to calculate. The numerator can be found by averaging the Normal
conditional density:

p(6y = 0,02 =0]v,0,Y),

across draws of v, from the MCMC algorithm.

Further, under the restriction that o; = 02 = 09, the nonlinearity in the conditional variance
is no longer relevant. Using the Savage-Dickey density ratio, again under the restriction on the
priors of the shared parameters, one can calculate the Bayes factor of a homoskedastic autore-
gressive model against the LEDTAR (see the appendix to Koop and Potter (1999a)). However,
in order to do this one must run a separate MCMC algorithm for the LEDTAR model.

Multiplying these two Bayes factors together produces a Bayes factor for the EDTAR model
against a linear AR model with same prior over shared parameters. It is also possible to calculate
a Bayes factor for a homoskedastic EDTAR model, i.e., og = 0, = 02, versus a heteroskedastic
EDTAR model during the MCMC run for the heteroskedastic EDTAR (i.e. simply use the same
technique as for the LEDTAR versus homoskedastic linear autoregressive model).

The estimates of the marginal likelihoods are all conditional on p, the number of autore-
gressive lags. Thus, by repeating the analysis for different values of p, one can obtain a posterior

distribution across p for each type of model.
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4 Empirical Illustrations
4.1 Sunspot Data

In this section we illustrate the use of the EDTAR model on sunspot data obtained from Tong
(1990). This data set includes annual observations on sunspot activity from 1700 to 1988. It
is widely thought that this series is nonlinear, but there is no consensus as to which nonlinear
model is appropriate. This data set has been analyzed using two regime SETAR models by many
authors such as Tong (1990), Geweke and Terui (1993) and Chen, McCulloch and Tsay (1996).
We work with demeaned data.

We compare three classes of models: the linear autoregression, LAR(p), the two regime
threshold model with delay variable defined off the level of the lag of the sunspot data, SETAR(p)
and the three regime EDTAR(p). With the two latter classes, we consider a homoskedastic and
heteroskedastic version where the heteroskedasticity is modeled as different error variances for
the major regimes. In all cases, the maximum value of p we consider is 11. This value is roughly
equal to the length of the cycle in the data. Previous work with this data have tended to find
p=3or 9 in LAR(p) or SETAR(p) models so a choice of p = 11 should nest all relevant models.
The delay parameter, d, in the SETAR model is treated as an unknown parameter and its prior
is flat over the integers 1,2,...,p. The prior for the threshold parameter for this model is Uniform
over values of the delay which imply at least 15% of the data in each regime. All models have an
intercept; for the SETAR(p) this intercept varies across regimes. For all models, we treat initial
conditions as fixed and all errors are Normally distributed.

For the autoregressive coefficients and error variance(s) in the LAR and TAR models, we
use the standard natural conjugate prior with prior hyperparameters selected so as to match the
EDTAR prior. That is, for the autoregressive coefficients in both models, we use a prior mean
of 0 and prior covariance of 457 and, for the error standard deviation(s), we set prior degrees
of freedom equal to 3 and the mean hyperparameter, n, = 10. Note that the priors used for
the LAR and SETAR are not identical to the EDTAR since the natural conjugate prior used in
the former models does not have prior independence between the autoregressive coefficients and
error variance(s). In order to compare the EDTAR to SETAR and LAR we need to calculate the
marginal likelihood for the LAR(p) model with independent Normal-Gamma prior. We do this
using the method of Chib (1995).

Under these assumptions, the LAR(p) model is in the form of a linear regression model
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with natural conjugate prior and textbook results can be used to calculate the marginal likelihood.
The SETAR(p) is defined in Equation (2). Calculation of marginal likelihoods is straightforward
since, conditional on knowing the threshold, the model breaks down into two linear regression
models. Hence, conditional on the threshold, standard results for the linear regression model with
natural conjugate priors can be used to calculate the marginal likelihood. To get an unconditional
marginal likelihood, the threshold is integrated out in the usual way. Since the threshold can be
treated as a discrete variable, this integration step is easy (see Koop and Potter, 1999b, for more
details).

Table 1 presents posterior model probabilities (to 4 decimal places) for all models for all
choices of p. Reading down a column reveals evidence regarding the choice of p for each model
type. For the LAR and SETAR models p =9 receives the highest probability. For the AR model,
if one were to restrict p to be relatively small (e.g. less than 6), p = 3 would be chosen. These
findings of evidence of p being 3 or 9 accords with previous studies. The SETAR outperforms the
LAR model, although there is little evidence of heteroskedasticity based on the delay variable used
by the SETAR. However, the key finding of this paper is that the EDTAR with p = 3 receives most
of the posterior probability. For the EDTAR there is strong evidence for heteroskedasticity. It is
interesting to note that the tightly parameterized three regime EDTAR(p = 3) with 15 parameters
does better than models such as the two regime SETAR(p =9) with 23 parameters.

Table 1: Estimated Posterior Model Probabilities
[ » [ LAR [SETAR-homo | SETAR-het | LEDTAR | EDTAR-hom | EDTARhet |
1.0000 || 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2.0000 | 0.0000 0.0000 0.0000 0.0042 0.0000 0.0007
3.0000 { 0.0000 0.0000 0.0000 0.1751 0.0000 0.7548
4.0000 | 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001
5.0000 { 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7.0000 [ 0.0000 0.0003 0.0000 0.0002 0.0000 0.0000
8.0000 | 0.0000 0.0007 0.0000 0.0000 0.0000 0.0000
9.0000 { 0.0000 0.0237 0.0000 0.0013 0.0000 0.0001
10.0000 || 0.0000 0.0228 0.0000 0.0011 0.0000 0.0005
11.0000 || 0.0000 0.0143 0.0000 0.0000 0.0000 0.0000

Table 2 presents the posterior distributions of the discrete variables for the EDTAR-het
model with p = 3. There is strong evidence that K, and K, are both one, indicating that last
year’s changes in sunspot activity trigger the changes in major regime. Our results indicate that

Ji and J, are 1, indicating that only one activation is required to trigger a regime shift. Thus,
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the regimes identified are of upswings and downswings in the sunspot numbers rather than from
the absolute level of the numbers as in the SETAR model. The parameter ¢ is 0 with probability
5. That is, its prior and posterior are the same. This occurs because, for this particular data set
and the realized posterior values of {K,,, J,,7m, m = 1,2}, there is never a time where both regime

1 and regime 2 could be simultaneously active.

Table 2: Posterior Distribution of &
[Lag | K1 | Ky Lo | |
0 0.001 | 0.000 [ n.a. n.a.
1 0.998 | 0.986 | 1.000 | 0.979
2 0.001 | 0.012 | 0.000 | 0.020
3 0.000 | 0.002 | 0.000 | 0.001

Table 3 presents posterior means and standard deviations for all of the continuous pa-
rameters of the EDTAR-het(p = 3) model. The posterior means of 6, and 6, are both negative
and are more than three standard deviations from zero. Hence, a strong dampening is observed,
especially for the downswing regime. For the upswing regime, there is strong evidence that the
error variance is much larger than the other regimes. These findings account for the strong results
in Table 1. The posterior means for the o/, s differ across regimes, which accounts for the evidence
of heteroskedasticity. The thresholds defining the major regimes are quite precisely estimated

with the upswing regime requiring a smaller change for its activation.

Table 3: Posterior Properties Of EDTAR-het
Parameter | Posterior Mean | Posterior Standard Deviation | Convergence Diagnostic

a -1.5 1.2 1.618
1 1.332 0.101 -1.204
b2 -0.410 0.109 0.374
b3 -0.247 0.049 -0.618
6, -0.103 0.030 0.732
0 -0.461 0.137 0.639
1 10.6 1.8 —

o -17.5 1.6 —

oo 12.4 0.1 -0.089
o1 25.7 2.3 1.374
o9 10.9 1.1 0.698

The last column of Table 3, presents the convergence diagnostic suggested by Geweke
(1992) for the continuous parameters of the model. It compares the difference in estimated

posterior means between the first and last 10% of the MCMC replications relative to the numerical
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standard error. As the number of MCMC replications increases, this diagnostic should have a
N(0,1) distribution. It can be seen that convergence does seem to have occurred. Informal
experimentation with different starting values and numbers of replications also indicate that
convergence is not a problem for our MCMC algorithm.

R? is the standard measure of fit used in regression models. Here we define a Bayesian

analogue as:

R2 —1— Zegt+ze%t+zegt

= b)

2(Ye - Y)?

where e;; has been defined previously as the errors in regime j. Using the MCMC parameter draws,

we can integrate over the parameter space and calculate E(R?). For the EDTAR-het with p =3
we find E(R?) = 0.828.

4.2 Artificial Data

To supplement empirical work with real data, it is always instructive to consider artificial data
in order to provide additional support for the contention that our Bayesian methods are working
well and can distinguish between relevant model classes. Given that Bayesian analysis of the
EDTAR model requires posterior simulation, it would be computationally burdensome to carry
out a full Monte Carlo study. Accordingly, we simulate three artificial data sets, one from a linear
AR, one from an EDTAR and one from another nonlinear time series model. In particular, we
generate T = 250 observations, assuming ITIDN(0,1) errors (i.e. no heteroskedasticity in any of the

models), from the following models:

e An AR(1) model with intercept = 0.4 and AR(1) coefficient = 0.4.

e An EDTAR model with AR(1) structure as above in the regime defined by I;; > 0. In addition,
weset K| =Ky, =0, J, =Jy =1, r, = 0.5, 1o = 0.5 and 6, = 6, = —0.25.

e A two regime SETAR model. If the lagged dependent variable is less than a threshold value
of 0.0, then an AR(1) model with intercept = 0.8 and AR(1) coefficient = 0.8 applies. Else,
an AR(1) model with intercept = 1.0 and AR(1) coeflicient = 0.0 applies.

For simplicity, we will focus on the EDTAR and AR models (homoskedastic and het-
eroskedastic versions) and restrict attention to the case p = 1. We use the same prior as for

the sunspot data, except for o,,. For these, the prior degrees of freedom remain at 3, but the
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prior mean parameters for the {o,,,m =0,1,2} are changed to 1.0. Assuming equal prior odds, we
can calculate the posterior model probabilities for each of our four models for the three different

artificial data sets. There are given in Table 4.

Table 4: Posterior Model Probabilities for Different Data Generating Processes

DGP\Model | LAR | LEDTAR | EDTAR-hom | EDTAR-het
AR(1) 0.8091 | 0.0497 0.1344 0.0068
EDTAR 0.0211 | 0.0025 0.8977 0.0787
TAR 0.3464 | 0.0295 0.5655 0.0586

It can be seen that the Bayes factors indicate the correct model with high probability.
When the true data generating process is AR(1), the correct LAR model receives 81% of the
posterior model probability. When the DGP is EDTAR, the correct EDTAR-hom model receives
90% of the posterior model probability. Note also that the Bayes factors correctly allocate little
weight to heteroskedastic models. The last row of Table 4 considers the interesting case where
the true DGP is a nonlinear time series process other than the EDTAR. This row provides some
evidence that nonlinearity is present, but the linear model also receives appreciable support. In
other words, the last row indicates, reasonably, a good deal of uncertainty over which model is
correct.

Using the unrestricted EDTAR model, posterior means (not reported here) are close to
the true values used to generate the data (relative to posterior standard deviations) for the first
two artificial data sets. Since the third artificial data set is not nested in the EDTAR, a similar

comparison of EDTAR posterior means to true values is not possible.

5 Conclusions

In this paper, we have developed Bayesian methods to examine the posterior properties of a
general class of EDTAR models which is more flexible than that previously used in the literature.
We argue that this class is valuable as parsimonious threshold models which capture the types of
behavior often observed in time series data. The empirical example indicates that, on the often
used sunspot data, the EDTAR outperforms both linear and traditional threshold models.

Two extensions of EDTAR models are of interest. First, in the development of parameter
restriction across sub-regimes in section 2.3, we imposed the very tight restriction that ¢,,, = 6,,.
Instead, one could consider approximating the moving average weights ¢,,s,s =0,1,... by ratios of

low order polynomials in the lag operator. The extension of the MCMC algorithm presented above
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to this case is straightforward and Bayes factors can be used to evaluate the value of relaxing the
restriction.

Second, EDTAR models and the Bayesian methods used here are particularly well-suited
to the major task of nonlinear modeling of multiple time series. A major difficulty with standard
SETAR modeling in this case is the vast number of autoregressive parameters that are required.
For example, in a four variable system with maximum autoregressive lag of 5 (a common situation
in economics) and three regimes the number of autoregressive parameters would be 240. In Koop,
Pesaran and Potter (1996), the EDTAR model is extended to the multiple time series case by
using endogenous delay variables defined by a single variable but generating different Z,,; variables
for each time series in the system. The collection of Z,,; variables for each regime are then allowed
to enter the equation for each variables. In a four variable system with p = 5 this requires the

estimation of only 112 autoregressive type parameters.
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