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1 Introduction 

Generalising knowledge and matching patterns is a basic human trait in re-using past 
experiences. We often cluster (group) knowledge of similar attributes as a process of learning 
and or aid to manage the complexity and re-use of experiential knowledge [1, 2]. In 
conceptual design, an ill-defined shape may be recognised as more than one type. Resulting in 
shapes possibly being classified differently when different criteria are applied. This paper 
outlines the work being carried out to develop a new technique for shape clustering. It 
highlights the current methods for analysing shapes found in computer aided sketching 
systems, before a method is proposed that addresses shape clustering and pattern matching. 
Clustering for vague geometric models and multiple viewpoint support are explored. 

2 Analysing Vague Shape 

To pattern match and cluster vague shapes we must firstly identify the types of vagueness that 
may occur during geometric sketching. Then the criteria for identifying a cluster must be 
defined. Various methods address the problem of shape analysis as summarised in Tables 1 
and 2. However, these methods consider precise shapes and are not appropriate for vague 
geometry. The following types of vagueness in conceptual geometric shapes cones in a 
variety of ways, as identified below [3].  

• Vague position of a line segment – In figure 1, because the line positions are not clearly 
expressed, we encounter two types of vagueness. Firstly, the open/closed status of the 
shape type is vague. It also includes the uncertainty of whether the ends of two lines meet 
to form a vertex. Secondly, the size of each element (i.e. a line segment) is vague. For 
example, the size of the right vertical line of the sketch in figure 1 will be determined by 
whether the sketch represents a rectangle or polygon.  
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Figure 1. Vague position, size, and close/open 

• Vague convex/concave vertex – Without any guidelines or contrast between light and 
shade, recognising a vertex as a 3D convex or concave shape from 2D sketches can be 
difficult. This type of vagueness occurs frequently in 2-D sketches of 3-D objects because 
of an optical illusion as illustrated in Figure 2. 
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Figure 2. Vague convex/concave vertex 

• Vague shape type – The type of shape of an object is often vague giving rise to more than 
one feasible interpretation of the shape. For example a line element may be interpreted as 
a straight line or as an arc and can result in different shape types as shown in Figure 3. 
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Figure 3. Vague shape type 

• Vague relative spatial relation – If an ill-defined geometric object has a vague surface, the 
distance between this and another object is vague. Figure 4(a) shows the possible relative 
spatial relation whether the surfaces of the objects are vague or not. In this 2D example, 
the boundary of the object ‘a’ and ‘b’ are vague. Considering the minimum and maximum 
boundaries, the intersection status between two objects can be recognised as vague 
intersection, intersection and non-intersection. In addition, a sketch representing 3D 
spatial relationships can lead to some confusion. In the 3D example shown in Figure 4(b), 
although the object ‘a’ and ‘b’ have precise surfaces, their relative spatial relation can be 
recognised as three different types, as the example sketch implicates vague co-ordinates. 

 

Can be 
recognised 
as

or  

b 
b 

b 
b 

a a a a 

: maximum boundary : minimum boundary 

Vague-intersection 

b 

a 

Non-intersection  Intersection  

(a) 2D example 

z  

or  
b  

a  

y  

x  
‘a’ is above-behind ‘b’ (b) 3D example 

b  
a  

b  
a  

b  
a  

y  

x  x  

z  

‘a’ is behind ‘b’ ‘a’ is above ‘b’ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Vague relative spatial relation 

 

 

 



Table 1. Shape analysis methods (summarised from [4, 5]) 

Shape boundary  Boundary (external)  
algorithm Fourier transforms of the boundary  

Medial axis transform (MAT)  
Moment based approaches  

Shape 
boundary 

points Global (internal)  
algorithm 

Shape decomposition into other primitive shapes  
Various fourier  numeric or non-numeric Scalar  

transform technique Moment-based approaches  
Information preservation Allows an accurate reconstruction of a shape. 

Table 2. Summary of the existing visual perception methods (summarised on the basis of [5]) 

Theory Classification Note 
Gestalt theory A non-computational theory of visual form. 
Gibson’s theory  Concentrated around perceiving real three-dimensional objects as 

real objects, representations of real objects, and abstract (non-real) 
objects.  

Neuropsychological 
theory 

Mostly qualitative and not computational. 

Tr
ad
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Fractal geometry Appropriate for natural shape representation. 
High curvature points  Curve partitioning. 
Lowe’s system Three-dimensional object recognition from unknown viewpoints 

and single two-dimensional images. 
Marr’s paradigm 
(shape from x) 

Extended as Shape from shading, contour, texture, stereo, and 
fractal geometry. 

Morphogenesis A procedure for morphogenesis based on multiple levels of 
resolution has been developed.  

Polygonal 
approximation  
of shape 

Applied as 
- Combination of high curvature points and line segment 
approximations.  
- Measurement methods of the curvature of 3D surfaces. 

Symmetry-Curvature 
theorem 
 

For a hierarchical deformation of the object. 
- The inference of the shape history from a single shape. 
- The inference of shape evolution between two shapes. 

M
od

er
n 

The principle  
of transversality 

When two arbitrarily shaped convex objects interpenetrate each 
other, the meeting point is a boundary point of concave 
discontinuity of their tangent planes. 

3 Clustering and Customised Viewpoints 

Computational clustering is performed using machine learning techniques. According to 
Reich [1], machine learning can be considered as explanation-based learning (EBL) or 
similarity-based learning (SBL). Because the ill-structured nature of design often precludes 
formalised theories of synthesis it has been suggested that SBL is more suitable for 
conceptual design [1]. There are two primary classes of machine learning techniques in the 
SBL approach: supervised concept learning and unsupervised concept learning. Supervised 
requires the user to support the learning process whereas learning is automatic in 
unsupervised.  

As Gordon [6] argued, markedly different results can be obtained when the same data set is 
analysed using a different clustering strategy. It is thus important to give thought to the 



problem of selecting criteria for clustering that are appropriate for analysing the data being 
investigated.  

Manfaat [2] presented an approach, Customised Viewpoint-Spatial (CV-S), to support the 
effective utilisation of spatial layout design experience by generalising past spatial layout 
design cases and abstracting a single case into hierarchical levels of abstractions according to 
the designer’s needs. He argued that the layouts of a space can be hierarchically clustered into 
groups based on the measures of similarities between the layouts. An example of different 
views is shown in Figure 5. 

Figure 5. An illustration of abstraction of a spatial layout in four different viewpoints (adopted from [2]) 

Thus, pattern matching plays a key role in machine learning. It can be defined simply as the 
activity of matching patterns with the aim of finding similarities between them for the purpose 
of recognition and/or retrieval of similar patterns [7]. Patterns are matched for their similarity, 
grouped (clustered) together, and induction techniques used to generalise knowledge form the 
group members to reflect knowledge common to all in the group. 

4 Multiple Clustering of Shapes 

4.1 Clustering Vague Shape 

A vague geometric shape can be identified by a hierarchy of shape probabilities ([3]). A child-
element can be a straight line, curve, or a closed geometric shape such as a circle, rectangle, 
or triangle. One possible way of representing the shape vagueness of a child-element is 
through using probability. Consider an object in a sketch that has n elements (see [8]). The 
various possible alternative interpretations for each child-element can be represented in a 
hierarchical structure, with the lowest level populated by the ‘primitives’ of the element type. 



The probability of the element being a particular geometric primitive can be obtained by 
mutiplying the probability of the element belonging to the appropriate group at each level 
leading down to the primitive in question. For example, in Figure 6, the (n)th element of 
object A has a 0.2016 probability to be a Closed-Polygon-Triangle derived from its 
probability of being a closed shape (0.64), a polygon (0.7) and a triangle (0.43), i.e. 0.64 * 0.7 
* 0.45 = 0.2016. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

has-part 

• Has-part relations are employed to link
concepts of the type from more general
levels to more detailed levels with respect to
the whole design.  

• Has-kind relations are employed to link
concepts of the type from higher abstraction
levels to lower abstraction levels.  

has-kind 
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Figure 6. Hierarchical structure of vague information [3] 

The hierarchical levels and the class list in each level can be changed or extended. For 
example, if a designer needs to analyse a sketch stroke as abstracted symbols, rather than a 
geometric shape element, they could change or add some levels and specific classes. Also, the 
level of the hierarchical structure could be extended to represent a compound object that is 
made from more than one object. A distinct advantage of working in this way is that the 
complex task of analysing the shape type is reduced to a relatively simple and manageable 
one through determining the probability at each level, regardless of how complicated the 
object, and, ultimately the whole sketch, is. 

This classification hierarchy may provide clustering criteria of a vague geometric model as 
shown in Table 3. However, this requires further investigation. 

 

 



Table 3. Classification Criteria for Clustering 

Criteria 
Main Sub 

Definition Description of Criteria 

Ca  := has child elements Classify an object by a presence of child elements. If an 
object does not have any child element, the object is most 
likely a primitive shape. 

 Ca-1 := has a number of 
child elements 

Classify an object by a number of child elements if the 
object has any children.  

Cb  := has sub-objects Classify an object by a presence of sub-objects.  
 Cb-1 := has a number of 

sub-objects  
Classify an object by a number of sub-objects if the object 
has any sub-objects.  

 Cb-2 := has a hierarchical 
depth of sub-objects  

Classify by a hierarchical depth of sub-object.  

Cc  := is two-dimension Classify two-dimensional objects.  
 Cc-1 := has a number of 

vertices 
Classify an object by a number of vertices. 

Cd  := is three-dimension Classify three-dimensional objects.  
 Cd-1 := has a number of 

surfaces 
Classify an object by a number of surfaces if the object 
has three-dimension. A number of surfaces are analysed 
by the status of edges. 

Ce  := probability of a 
primitive. 

Classify an object by the probabilities of each primitive. 

 Ce-1 := 1st level primitives Classify an object by the probabilities of 1st level 
primitives such as “closed” and “open”. 

 Ce-2 := 2nd level 
primitives 

Classify an object by the probabilities of 2nd level 
primitives. 

 Ce-3 := 3rd level primitives Classify an object by the probabilities of 3rd level 
primitives. 

Cf  := has a relative 
spatial relationship 

Classify an object by the relative spatial relationships 
between sub-objects. 

4.2 Multiple viewpoint clustering 

Some investigations have been conducted addressing multiple viewpoints. Howard-Jones [9] 
carried out an experiment in which subjects looked at a geometrical shape and generated as 
many interpretations of the shape as possible based on a different viewpoint. Duffy and Kerr 
[10] pointed out the need to support ‘Customised Viewpoints (CV)’. Suwa et al. [11] insisted 
that ‘discovering hidden features in a representation without being fixated to a single 
perspective of viewing’ is one of the crucial acts in creative activities.  

Vague shapes may also be clustered differently depending on different viewpoints. Consider 
that objects A and B have various properties {A| Ca, Cb, Cc, Cd} and {B| Ca, Ce, Cf} 
respectively. If a designer considers that the property Ca is most important to cluster an object, 
then object A and B could be classified in the same cluster. In all other cases, they would be 
classified in a different cluster.  

4.3 Shape matching 

SPIDA matches topological patterns of layouts and the combined topological patterns and 
geometric shapes of layouts [2]. To illustrate the system’s functionality Figures 6 and 7 each 
show 4 past design layout (cases), the former for topological matching and the latter for 
combined topological and geometric shape matching.  On the right of each figure are 



“required” layouts to be matched against the past design cases.  Before proceeding the reader 
is invited to determine which cases best match the required layouts.  You should attempt to 
decide the order of similarity of the layouts by determining for topological matching the cases 
that most reflect the required layout, where space B is adjacent to space C which is adjacent to 
space D, etc. For the geometric shape matching you should consider the overall shapes of the 
spaces and how they are related.  

The results of the topological matching between each of the past design cases and the required 
layout are shown in Table 4.  In this table, for each case, the layouts are ordered from the 
most to the least similar.  This order is based on an analysis of corresponding spaces.  If there 
are more than one layout case that has the same number of corresponding spaces, they have 
the same ranking. 

 

Figure 7. Topological Pattern Matching                Figure 7. Geometric Shape Matching 
 
Table 5 shows the results of the combined topological and shape matching.  In this table the 
cases are first ordered on the corresponding spaces and then on a shape dissimilarity measure.  
In this table, the layout cases are first ordered based on the corresponding spaces. They are 
then ordered based on a shape dissimilarity measure. The lower the measure the more similar 
the layout case is to the required.  

Table 4. Results of Topological Pattern Matching            Table 5. Results of Geometric Shape Matching 

Ordered 
cases 

Number of 
corresponding  
spaces 

 Ordered 
cases 

Number of 
corresponding 
spaces 

Shape 
dissimilarity 
measure 

Case 1 7  1 4 0.00 
Case 4   2  0.47 
Case 3 6  3 0.23 
Case 2 4  4 

3 
0.29 

Given the ability to match the layouts they then can be clustered according to their similarity 
measures [2]. 

5 Conclusion 

Shape matching is a of key element in clustering geometric shapes. In this paper, we 
discussed about the clustering, customised viewpoints, and pattern matching regarding of 
shapes. Although there are various ways of representing vagueness, a hierarchical shape 



clustering with multiple aspects could be one way of doing this, particularly when it is desired 
to define the shape type of the geometric object. Work is on-going to develop the techniques 
presented in this paper and for a system to support the re-use of past design shape cases. 
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