

Strathprints Institutional Repository

Waters, T. and McInnes, C.R. (2007) *Periodic orbits high above the ecliptic plane in the solar sail 3-body problem.* In: AAS/AIAA Space Flight Mechanics Conference, 2007-01-28 - 2007-02-01, Sedona, Arizona.

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http:// strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator: mailto:strathprints@strath.ac.uk

Waters, T. and McInnes, C.R. (2007) Periodic orbits high above the ecliptic plane in the solar sail 3-body problem. In: AAS/AIAA Space Flight Mechanics Conference, 28 Jan - 1st Feb 2007, Sedona, Arizona.

http://eprints.cdlr.strath.ac.uk/6602/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http://eprints.cdlr.strath.ac.uk) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge. You may freely distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints website.

Any correspondence concerning this service should be sent to The Strathprints Administrator: eprints@cis.strath.ac.uk

Periodic orbits high above the ecliptic plane in the solar sail 3-body problem

Thomas Waters

Department of Mechanical Engineering, University of Strathclyde, Glasgow.

4th October 2006

In conjunction with Prof. C.R. McInnes.

Research funded by EPSRC grant EP/D003822/1 - "Dynamics, Stability and Control of Highly Non-Keplerian Orbits"

ESTEC Conference 2nd - 5th October

Applications

Overview

- Sail design
- 2 3 Body Equations and Equilibria
 - Classical equilibria the Lagrange points
 - Sail equilibria
- 3
 - **Periodic Solutions**
 - Lindstedt-Poincaré method
 - Families of periodic solutions

Applications

- Polesitter
- Invariant manifolds

Applications

Outline

- Sail design
- 2) 3 Body Equations and Equilibria
 - Classical equilibria the Lagrange points
 - Sail equilibria
- Periodic Solutions
 - Lindstedt-Poincaré method
 - Families of periodic solutions

- Polesitter
- Invariant manifolds

Applications

Outline

- Sail design
- 2 3 Body Equations and Equilibria
 - Classical equilibria the Lagrange points
 - Sail equilibria
- 3) Periodic Solutions
 - Lindstedt-Poincaré method
 - Families of periodic solutions

- Polesitter
- Invariant manifolds

Periodic Solutions

Applications

Sail design

- A solar sail is a spacecraft without an engine, and therefore needs no fuel. It is pushed along by the pressure of photons from the sun hitting the sail.
- Solar sails are typically large square sheets of a highly reflective film supported by booms, although other designs (discs, blades) are popular.
- The material of the sail must be very lightweight and thin, of the order of a couple of microns, and very large, the order of (50m)x(50m).

Solar radiation pressure

- Photons from the sun hitting the sail impart a small but constant radiation pressure.
- The acceleration on the sail due to this pressure is given by

$$\underline{a} = \beta \frac{M_s}{r_s^2} (\underline{\widehat{r}}_s . \underline{n})^2 \underline{n}.$$

 Here β is the "sail lightness number", the ratio of the radiation pressure acceleration to gravitational acceleration.

Periodic Solutions

Applications

Current designs

- Solar sails are currently being built with a lightness number $\beta \sim 0.2$.
- For the purpose of this presentation we only consider $\beta < 0.1$.

Periodic Solutions

Applications

Possible missions

Geosail and Heliopause missions

<ロ>
<日>
<日>
<日>
<日>
<10</p>
<10</p

Applications

Outline

Solar Sails

Sail design

2 3 Body Equations and Equilibria

- Classical equilibria the Lagrange points
- Sail equilibria

Periodic Solutions

- Lindstedt-Poincaré method
- Families of periodic solutions

- Polesitter
- Invariant manifolds

Periodic Solutions

Applications

Outline

Solar SailsSail design

- 2 3 Body Equations and Equilibria
 - Classical equilibria the Lagrange points
 - Sail equilibria

Periodic Solutions

- Lindstedt-Poincaré method
- Families of periodic solutions

- Polesitter
- Invariant manifolds

Applications

Classical equilibria - the Lagrange points

The CR3BP in a rotating coordinate frame:

Applications

Classical equilibria - the Lagrange points

 In the inertial frame, the equations of motion of the third body are:

$$\frac{d^2\underline{r}}{dt^2} = -\nabla V, \qquad V = -\left(\frac{1-\mu}{r_1} + \frac{\mu}{r_2}\right).$$

• However, in the rotating frame two additional forces are introduced: the Corioli force and the centrifugal force,

$$\frac{d^2\underline{r}}{dt^2} + \left\{ 2\underline{\theta} \times \frac{d\underline{r}}{dt} + \underline{\theta} \times (\underline{\theta} \times \underline{r}) \right\} = -\nabla V.$$

• Equilibrium points now exist in this coordinate system.

Applications

Classical equilibria - the Lagrange points

 In the inertial frame, the equations of motion of the third body are:

$$\frac{d^2\underline{r}}{dt^2} = -\nabla V, \qquad V = -\left(\frac{1-\mu}{r_1} + \frac{\mu}{r_2}\right)$$

 However, in the rotating frame two additional forces are introduced: the Corioli force and the centrifugal force,

$$\frac{d^2\underline{r}}{dt^2} + \left\{ 2\underline{\theta} \times \frac{d\underline{r}}{dt} + \underline{\theta} \times (\underline{\theta} \times \underline{r}) \right\} = -\nabla V.$$

• Equilibrium points now exist in this coordinate system.

Applications

Classical equilibria - the Lagrange points

There are five equilibrium points in the rotating coordinate frame, called Lagrange points. All are in the plane of the primaries' mutual orbit.

Applications

Classical equilibria - the Lagrange points

There are five equilibrium points in the rotating coordinate frame, called Lagrange points. All are in the plane of the primaries' mutual orbit.

Applications

Outline

Solar Sails

Sail design

2 3 Body Equations and Equilibria

Classical equilibria - the Lagrange points

Sail equilibria

Periodic Solutions

- Lindstedt-Poincaré method
- Families of periodic solutions

- Polesitter
- Invariant manifolds

Applications

Sail equilibria

 In the rotating coordinate frame the equations of motion of the solar sail are

$$\frac{d^2\underline{r}}{dt^2} + 2\underline{\theta} \times \frac{d\underline{r}}{dt} = \underline{a} - \underline{\theta} \times (\underline{\theta} \times \underline{r}) - \nabla V \equiv \underline{F},$$

where

$$\underline{a} = \beta \frac{1-\mu}{r_1^2} (\widehat{\underline{r}}_1 \cdot \underline{n})^2 \underline{n}.$$

- At equilibrium, *r* and *r* vanish, so an equilibrium point is a zero of <u>F</u>.
- We seek equilibria in the x-z plane, thus we let

$$\underline{n} = \cos(\gamma)\underline{\widehat{x}} + \sin(\gamma)\underline{\widehat{z}}.$$

Applications

Sail equilibria

We find continuous surfaces of equilibria:

Applications

Outline

Solar Sails

- Sail design
- 2 3 Body Equations and Equilibria
 - Classical equilibria the Lagrange points
 - Sail equilibria

3

Periodic Solutions

- Lindstedt-Poincaré method
- Families of periodic solutions

- Polesitter
- Invariant manifolds

Applications

Outline

Solar Sails

- Sail design
- 2 3 Body Equations and Equilibria
 - Classical equilibria the Lagrange points
 - Sail equilibria

3 Periodic Solutions

- Lindstedt-Poincaré method
- Families of periodic solutions

- Polesitter
- Invariant manifolds

Periodic solutions

- We use the Lindstedt-Poincaré method to find periodic solutions.
- We Taylor expand around an equilibrium point

$$\begin{pmatrix} \ddot{x} - 2\dot{y} \\ \ddot{y} + 2\dot{x} \\ \ddot{z} \end{pmatrix} = \delta r^{a} (\partial_{a} \underline{F})|_{e} + \frac{1}{2} \delta r^{a} \delta r^{b} (\partial_{a} \partial_{b} \underline{F})|_{e} + \frac{1}{6} \delta r^{a} \delta r^{b} \delta r^{c} (\partial_{a} \partial_{b} \partial_{c} \underline{F})|_{e} + O(\delta \underline{r}^{4})$$

• At linear order

$$\ddot{x} - 2\dot{y} = ax + bz$$
$$\ddot{y} + 2\dot{x} = cy$$
$$\ddot{z} = dx + ez$$

Periodic Solutions

Periodic solutions

- There are two distinct regions, depending on the eigenvalues of the linear system.
- In region *I*, the linear spectrum is

 $I:\left\{\pm\lambda_1 i,\pm\lambda_2 i,\pm\lambda_r\right\}$

• Thus periodic solutions exist at linear order, by suppressing unwanted modes:

 $x, y, z = A\cos(\lambda_1 t) + B\sin(\lambda_1 t) + C\cos(\lambda_2 t) + D\sin(\lambda_2 t) + Ee^{\lambda_r t} + Fe^{-\lambda_r t}$

Periodic solutions

- There are two distinct regions, depending on the eigenvalues of the linear system.
- In region *I*, the linear spectrum is

$$I:\left\{\pm\lambda_{1}i,\pm\lambda_{2}i,\pm\lambda_{r}
ight\}$$

• Thus periodic solutions exist at linear order, by suppressing unwanted modes:

 $x, y, z = A\cos(\lambda_1 t) + B\sin(\lambda_1 t) + C\cos(\lambda_2 t) + D\sin(\lambda_2 t) + Ee^{\lambda_r t} + Fe^{-\lambda_r t}$

Lindstedt-Poincaré method

• We let ε be a small parameter (typically the amplitude of a periodic orbit), and we let

$$\omega = 1 + \varepsilon \omega_1 + \varepsilon^2 \omega_2 + \varepsilon^3 \omega_3 + O(\varepsilon^4).$$

- The idea is, if the frequency of a periodic solution in the linear system is λ , then this method lets you find approximations to periodic solutions in the nonlinear system with frequency $\omega\lambda$.
- We define a new time coordinate, $\tau = \omega t$, and let $x_n = x_n(\tau)$ etc. Then the following statements are equivalent:

The periodic solution has frequency $\omega\lambda$ in *t*-seconds

The periodic solution has frequency λ in τ -seconds

Lindstedt-Poincaré method

• We let ε be a small parameter (typically the amplitude of a periodic orbit), and we let

$$\omega = 1 + \varepsilon \omega_1 + \varepsilon^2 \omega_2 + \varepsilon^3 \omega_3 + O(\varepsilon^4).$$

- The idea is, if the frequency of a periodic solution in the linear system is λ, then this method lets you find approximations to periodic solutions in the nonlinear system with frequency ωλ.
- We define a new time coordinate, $\tau = \omega t$, and let $x_n = x_n(\tau)$ etc. Then the following statements are equivalent:

 \Leftrightarrow

The periodic solution has frequency $\omega \lambda$ in *t*-seconds

The periodic solution has frequency λ in τ -seconds

Lindstedt-Poincaré method

• We find the solutions for *x* and *z* are trigonometric cosine series and *y* is a sine series. For example when *n* is odd

$$x_n = p_{n3}\cos(3T) + \ldots + p_{nn}\cos(nT),$$

and when n is even

$$x_n = p_{n0} + p_{n2}\cos(2T) + \ldots + p_{nn}\cos(nT).$$

- The problem reduces to solving systems of algebraic equations for the coefficients p_{ni} and ω_i .
- For large amplitude periodic solutions high above the ecliptic plane, we need to include up to the 7th term in the series (7th order approximation).

Applications

Outline

3

Solar Sails

- Sail design
- 2 3 Body Equations and Equilibria
 - Classical equilibria the Lagrange points
 - Sail equilibria

Periodic Solutions

- Lindstedt-Poincaré method
- Families of periodic solutions

- Polesitter
- Invariant manifolds

Applications

Families of periodic solutions

- The Lindstedt-Poincaré series provides our first guess for the initial data of a periodic solution of the full nonlinear system.
- We then use a differential corrector to fine tune the initial data.

The picture on the left shows some of the periodic orbits possible for a solar sail with $\beta = 0.03$.

Applications

Families of periodic solutions

- The Lindstedt-Poincaré series provides our first guess for the initial data of a periodic solution of the full nonlinear system.
- We then use a differential corrector to fine tune the initial data.

The picture on the left shows some of the periodic orbits possible for a solar sail with $\beta = 0.03$.

Periodic Solutions ○○○○○○●

Applications

Stability - Control

- The orbital stability of these periodic solutions is found by calculating the eigenvalues of the monodromy matrix.
- The spectrum is typically $\{1, 1, \lambda_r, 1/\lambda_r, \lambda_c, \overline{\lambda}_c\}$
- However, we can easily control to the nominal orbit with variations in the orientation of the sail normal.

Applications

Outline

Solar Sails

- Sail design
- 2 3 Body Equations and Equilibria
 - Classical equilibria the Lagrange points
 - Sail equilibria

Periodic Solutions

- Lindstedt-Poincaré method
- Families of periodic solutions

- Polesitter
- Invariant manifolds

Outline

Solar Sails

Sail design

2 3 Body Equations and Equilibria

- Classical equilibria the Lagrange points
- Sail equilibria

Periodic Solutions

- Lindstedt-Poincaré method
- Families of periodic solutions

- Polesitter
- Invariant manifolds

 We may use these orbits to provide a constant view of one of the poles.

Wintertime, Northern Hemisphere

Summertime, Northern Hemisphere

Periodic Solutions

Applications

View from the pole

By timing the orbit well we can narrow the angle subtended by the sail:

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Outline

Solar Sails

- Sail design
- 2 3 Body Equations and Equilibria
 - Classical equilibria the Lagrange points
 - Sail equilibria

Periodic Solutions

- Lindstedt-Poincaré method
- Families of periodic solutions

- Polesitter
- Invariant manifolds

Periodic Solutions

Invariant manifolds

- Associated with each periodic orbit are a set of invariant manifolds.
- We find these by integrating in the direction of the stable and unstable eigenvectors of the monodromy matrix.
- These manifolds provide us with a mechanism to transfer between various periodic orbits.

Periodic Solutions

Applications

Unusual orbits

- Unexpected families of periodic solutions arise.
- Interestingly, this particular orbit has monodromy matrix with spectrum

$$\{1, 1, \lambda_{r1}, 1/\lambda_{r1}, \lambda_{r2}, 1/\lambda_{r2}\}$$