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Sail design

A solar sail is a spacecraft without an
engine, and therefore needs no fuel. It
is pushed along by the pressure of
photons from the sun hitting the sail.
Solar sails are typically large square
sheets of a highly reflective film
supported by booms, although other
designs (discs, blades) are popular.
The material of the sail must be very
lightweight and thin, of the order of a
couple of microns, and very large, the
order of (50m)x(50m).
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Solar radiation pressure

r1

n

Photons from the sun hitting the sail
impart a small but constant radiation
pressure.
The acceleration on the sail due to this
pressure is given by

a = β
Ms

r2
s

(̂rs.n)2n.

Here β is the “sail lightness number”,
the ratio of the radiation pressure
acceleration to gravitational
acceleration.
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Current designs

Solar sails are currently being built with a lightness number
β ∼ 0.2.
For the purpose of this presentation we only consider
β < 0.1.
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Possible missions

Geosail and Heliopause missions
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Classical equilibria - the Lagrange points

The CR3BP in a rotating coordinate frame:

µ
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Classical equilibria - the Lagrange points

In the inertial frame, the equations of motion of the third
body are:

d2r
dt2 = −∇V, V = −

(
1− µ

r1
+

µ

r2

)
.

However, in the rotating frame two additional forces are
introduced: the Corioli force and the centrifugal force,

d2r
dt2 +

{
2θ × dr

dt
+ θ × (θ × r)

}
= −∇V.

Equilibrium points now exist in this coordinate system.
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Classical equilibria - the Lagrange points

There are five equilibrium points in the rotating coordinate
frame, called Lagrange points. All are in the plane of the
primaries’ mutual orbit.
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Classical equilibria - the Lagrange points

There are five equilibrium points in the rotating coordinate
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Sail equilibria

In the rotating coordinate frame the equations of motion of
the solar sail are

d2r
dt2 + 2θ × dr

dt
= a− θ × (θ × r)−∇V ≡ F,

where

a = β
1− µ

r2
1

(̂r1.n)2n.

At equilibrium, ṙ and r̈ vanish, so an equilibrium point is a
zero of F.
We seek equilibria in the x-z plane, thus we let

n = cos(γ)x̂ + sin(γ)̂z.
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Sail equilibria

We find continuous surfaces of equilibria:
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Periodic solutions

We use the Lindstedt-Poincaré method to find periodic
solutions.
We Taylor expand around an equilibrium point




ẍ− 2ẏ
ÿ + 2ẋ

z̈



 = δra(∂aF)|e + 1
2δraδrb(∂a∂bF)|e

+1
6δraδrbδrc(∂a∂b∂cF)|e + O(δr4)

At linear order
ẍ− 2ẏ = ax + bz
ÿ + 2ẋ = cy

z̈ = dx + ez
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Periodic solutions

There are two distinct regions,
depending on the eigenvalues of the
linear system.
In region I, the linear spectrum is

I :
{
± λ1i,±λ2i,±λr

}
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Thus periodic solutions exist at linear order, by suppressing
unwanted modes:

x, y, z = A cos(λ1t)+B sin(λ1t)+C cos(λ2t)+D sin(λ2t)+Eeλrt+Fe−λrt
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Lindstedt-Poincaré method

We let ε be a small parameter (typically the amplitude of a
periodic orbit), and we let

ω = 1 + εω1 + ε2ω2 + ε3ω3 + O(ε4).

The idea is, if the frequency of a periodic solution in the
linear system is λ, then this method lets you find
approximations to periodic solutions in the nonlinear
system with frequency ωλ.
We define a new time coordinate, τ = ωt, and let xn = xn(τ)
etc. Then the following statements are equivalent:

The periodic solution has
frequency ωλ in t-seconds ⇔ The periodic solution has

frequency λ in τ -seconds
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Lindstedt-Poincaré method

We find the solutions for x and z are trigonometric cosine
series and y is a sine series. For example when n is odd

xn = pn3 cos(3T) + . . . + pnn cos(nT),

and when n is even

xn = pn0 + pn2 cos(2T) + . . . + pnn cos(nT).

The problem reduces to solving systems of algebraic
equations for the coefficients pni and ωi.
For large amplitude periodic solutions high above the
ecliptic plane, we need to include up to the 7th term in the
series (7th order approximation).
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Families of periodic solutions
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0.001 The Lindstedt-Poincaré series
provides our first guess for the
initial data of a periodic
solution of the full nonlinear
system.
We then use a differential
corrector to fine tune the initial
data.

The picture on the left shows some
of the periodic orbits possible for a
solar sail with β = 0.03.
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Stability - Control

The orbital stability of these periodic
solutions is found by calculating the
eigenvalues of the monodromy
matrix.
The spectrum is typically{

1, 1,λr, 1/λr,λc, λ̄c
}

However, we can easily control to
the nominal orbit with variations in
the orientation of the sail normal.
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Polesitter

We may use these orbits to provide a constant view of one
of the poles.

Wintertime, Northern Hemisphere Summertime, Northern Hemisphere

t = 0

t = π
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View from the pole

By timing the orbit well we can narrow the angle subtended by
the sail:
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Invariant manifolds
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Associated with each periodic
orbit are a set of invariant
manifolds.
We find these by integrating in
the direction of the stable and
unstable eigenvectors of the
monodromy matrix.
These manifolds provide us
with a mechanism to transfer
between various periodic
orbits.
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Unusual orbits
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Unexpected families of periodic solutions arise.
Interestingly, this particular orbit has monodromy matrix
with spectrum

{1, 1,λr1, 1/λr1,λr2, 1/λr2}


