

Strathprints Institutional Repository

Freund, S. and Kummert, M. (2003) *New TRNSYS types to simulate air-to-air energy recovery.* In: TRNSYS Users day and Training, 2003-03-24 - 2003-03-26, Sophia-Antipolis, France.

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http:// strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator: mailto:strathprints@strath.ac.uk

Freund, S. and Kummert, M.* (2003) New TRNSYS types to simulate air-to-air energy recovery. In: TRNSYS Users day and Training, 24-26 March 2003, Sophia-Antipolis, France.

http://eprints.cdlr.strath.ac.uk/6589/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http://eprints.cdlr.strath.ac.uk) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge. You may freely distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints website.

Any correspondence concerning this service should be sent to The Strathprints Administrator: eprints@cis.strath.ac.uk

Sebastian Freund, Michaël Kummert

- Why Air-To-Air Energy Recovery?
 - Heat recovery
 - Humidity Recovery
- 2 different approaches
 - Enthalpy Exchanger
 - Runaround Loop
- New Types
 - Modeling
 - Integrated Controls
- Application Example

- Modern buildings:
 - Well insulated
 - IAQ becomes more important
 - Strict ventilation standards
 - Often more than 30 m³ h⁻¹ pers⁻¹
 - Comfort → Temperature AND humidity
 - → Ventilation is responsible for a large fraction of HVAC energy use
- Solution: Energy recovery
 - Heat exchanger between inlet air and exhaust air
 - Humidity and Temperature: Enthalpy exchanger

- Enthalpy exchanger
 - Rotary heat and mass exchanger (regenerative)
 - Requires exhaust and inlet flows to cross each other
 - Well adapted to new buildings
 - "Total solution": Heat and mass transfer
- Runaround loop
 - Two air/water heat exchangers + water loop
 - Well adapted to existing building where ventilation ducts cannot be modified
 - No "humidity recovery"
 - No cross-contamination is possible

- Cylindrical Wheel
 - Numerous parallel channels
 - Each half works intermittently in each flow (regenerative)

Matrix:

- Desiccant coated Aluminum foil
- Polymer membrane with desiccant substance (e.g. silicagel or molecular sieve)

 corrugated aluminum coated with a molecular sieve Polystyrene membrane coated with silicagel

Some psychrometric charts

An interesting problem: freezing

- Solutions
 - Lower rotation speed (lower effetiveness)
 - Preheat outside air (preferred option)
- Usually happens
 for Tamb < -10°C

Effectiveness (Heat and Mass transfer)

 Counter-flow Heat exchanger with a correction factor

$$\epsilon = c \; \frac{1 - e^{\left(-\mathsf{NTU}\;(1 - C_r)\right)}}{1 - C_r \; e^{\left(-\mathsf{NTU}\;(1 - C_r)\right)}}$$

c: correction factor

Note: one effectiveness for Temperature, one for humidity

- What do you need?
 - 2 experimental data points
 - catalog data
 - ARI tests (Air Conditioning and Refrigeration Institute)
 - Not "just" a curve fit (c is adapted for unbalanced flows)
- Limitations
 - Not usable to design an enthalpy exchanger
 - Flow rates close to experimental data range
 - Implicit assumption that UA is constant (laminar flow rate at all times)
 - Sufficient rotation speed
 - Recommended rotation speed for enthalpy exchangers
 - Lower speed would significantly decrease ε

- 2 problems
 - When cooling is required with Tamb < Tbldg
 - "Economizer" mode (bypass the enthalpy exchanger)
 - Take humidity into account!
 - Freezing
 - Preheating or reduced effectiveness (choice in the model)
- Extra inputs for economizer mode
 - Building "heating point"
 - Building "balance point"
 - (see manual and proforma for details!)
- Other output: pressure drop
 - based on 2 data points

Economizer operation

-

- Heat exchange only
 - Preheating (wintertime)
 - Precooling (summertime)
 - Reheat (summertime)
- Replaces long air ducts by long water pipes (more efficient)
- 2 Heating / Cooling coils
- Control variables
 - Water flow rate (pump or bypass)
 - Air bypass

Runaround Loop Model

Effectiveness approach

- E1, E2: effectiveness of each coil
- Model data:
 - Geometrical coil data
 - Design conditions
- The model
 - Computes heat exchange coefficients (air / liquid)
 - Takes condensation into account: wet coil operation
 - Computes Pump and fan power (needs 1 data point)

Integrated controls

- Economizer mode and frost protection
 - Similar to Enthalpy exchanger controls

Set. Application example

Madison zoo

- High ventilation rate
- 4 zones
- Unusual internal gains (sensible and latent)

Enthalpy Ex vs. Runaround Loop

- 2 Types are included in TRNLIB
 - Available on the website: <u>http://sel.me.wisc.edu/trnsys</u> (Go to TRNLIB)
 - Code, Manual + IISiBat Proforma

- More details?
 - Sebastian Freund's MS (available on the SEL website) http://sel.me.wisc.edu/ (Go to "Publications")

