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ABSTRACT 

Different heating system controllers for passive solar 
buildings are compared on two different buildings. 
The performance criterion combines energy 
performance and thermal comfort using the "cost 
function" paradigm. The experimental facilities did 
not allow a direct experimental comparison by using 
two identical buildings.  
The controllers were implemented alternatively in 
one building and a performance comparison was 
obtained in two ways: first by identifying short 
periods that have similar driving variables (weather 
conditions and building occupancy) and comparing 
the experimental results obtained in both cases. The 
second method mixes experiments and simulation 
using a well-tuned model of the building and its 
occupants.  
This paper discusses the results obtained using the 
above methods and shows that both methods give 
consistent estimates of the difference between 
controllers, while the second method allows to 
extrapolate useful information from the limited data 
available. 

INTRODUCTION 

The problem of heating control in passive solar 
buildings, or in modern, well-insulated buildings 
with substantial thermal mass (or heat capacity) and 
high internal and/or solar gains, is characterized by a 
need of anticipation and by the variety of time 
constants involved (Kummert, 2001). 

The need for anticipation arises in part from the well-
known optimal start problem, where the controller 
attempts to start heating as late as possible in order to 
save energy. This problem is reinforced by the high 
thermal inertia typically present in passive solar 
buildings.  

On the other hand, passive solar buildings are also 
subject to afternoon overheating: during the mid-
season, it is frequent to have a need for heating in the 
morning while the accumulation of solar energy 
throughout the day leads to overheating in the 
afternoon. An intelligent controller can prevent this 
by slightly under-heating the building in the 

morning. This usually requires a rather long 
anticipation horizon.  

Those observations formed the basis of a joint 
research project to develop advanced controllers 
especially designed for passive solar buildings. 
Different control algorithms were compared in 
simulation and during experimental tests on two 
different buildings (Christoffers et al., 2000). This 
paper is centered on the controllers that were tested 
for the longest periods in two experimental buildings. 

Experimental comparison of different controllers 

HVAC control studies that compare the performance 
of different controllers are usually performed in 
simulation (e.g. Zaheer-Uddin, 1992 and van 
Schijndel, 2002). When an experimental validation is 
part of the study, most authors have benefited from 
two identical buildings or two identical reference 
zones in a building (Nygard-Fergusson, 1990). 

The experimental facilities that were available for 
this project did not include identical reference zones 
or identical buildings. A method had to be developed 
in order to obtain a performance comparison between 
different control algorithms. 

Kolokotsa (2003) presents a study where 4 
controllers are compared in simulation and the best 
performer is implemented for experimental 
validation. While this is an interesting option, the 
results presented here below will show that a model 
validated with one control strategy might not be able 
to simulate the performance of very different 
controllers accurately. In (Oestreicher, 1996), the 
experimental results of two controllers rotated in the 
same building are compared based on their ability to 
use free gains to save heating energy. 

The optimal controller 

In most studies, the controller's performance is 
reduced to the energy consumption, in terms of 
Joules or in terms of money. The thermal comfort is 
either assumed to be maintained in de-coupled 
studies (e.g. Flake, 1998) or it is taken into account 
through "hard constraints" (e.g. Keeney and Braun, 
1996).   

- 563 -



The optimal controller that was compared to 
reference solutions in the present study allows to 
realize a real compromise between energy and 
comfort, thanks to a cost function that is a weighted 
sum of the energy consumption (again expressed in 
terms of Joules, money, or tons of CO2) and the 
discomfort in the building. This implies that the 
performance criterion used in the comparison must 
take those two aspects into account. A similar cost 
function is used in (Mozer et al, 1997) to assess the 
performance of an optimal controller based on an 
Artificial Neural Network.  

PERFORMANCE CRITERION 

The "cost function" 

The notion of cost function is used in the optimal 
controller. The cost function must be an expression 
of the trade-off between comfort and energy 
consumption.  

The energy cost is considered to be proportional to 
the energy consumption. The multiplier can be time-
varying and can represent financial or environmental 
costs.  

The chosen indicator of thermal (dis)comfort is 
Fanger's PPD (Predictive Percentage of Dissatisfied 
– Fanger, 1972).  

Assessing the discomfort cost 

In the discomfort cost, PPD is computed with default 
parameters for non-measured aspects (air velocity, 
humidity and metabolic activity). Furthermore, it is 
assumed that occupants can adapt their clothing to 
the zone temperature. This method allows modeling a 
comfort range in which occupants are satisfied. With 
the chosen value for parameters, the comfort zone 
covers operative temperatures from 21°C to 24°C. 
The PPD is also shifted down by 5%, to give a 
minimum value of 0. This modified PPD index will 
be referred to as PPD'. This gives, respectively for 
discomfort cost and energy cost (Jd and Je):  

 ( )dJ PPD[%] 5= −∫  (1)

e bJ Q= ∫  (2)

The global cost (J) is a weighted sum of Jd and Je: 

d eJ J J= α +  (3)

The role of the α parameter is to give more or less 
importance to comfort with respect to energy. It can 
be seen as a "comfort setting" of the controller. If a 
user increases the value of α, she/he is actually 
saying that comfort should have more importance in 
the trade-off that is made to control the HVAC plant. 

If we assume that the energy cost is expressed in 
kWh, the units of α will be [kW %PPD'-1].  

In other words, α  is the energy quantity (expressed 
in kWh or in terms of environmental impact, 
financial cost, etc.) which may be used to reduce the 
Predicted Percentage of Dissatisfied occupants by 
1% during 1 hour. 

Performance comparison 

Each value of the weighting factor α will lead to a 
different solution of the optimization problem. If the 
performance over a given period (e.g. one month, or 
a full heating season) is considered, the performance 
of a controller can be represented by a total value of 
Jd and Je, or a point in the (Jd, Je) plane.  

The solutions obtained by the same controller for 
different settings (e.g. different weighting factors for 
an optimal controller based on the cost function 
described here above) is a trajectory in the (Jd, Je) 
plane.  

This is illustrated in Figure 1. While such a 
"controller trajectory" is easily obtained in 
simulation, it is important to realize that experimental 
results for the entire period that is selected will lead 
to one point in the (Jd, Je).plane 
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Figure 1: Typical controller performance for different 
settings. Costs are summed over a given period. 

Experimental data for that period would yield only 1 point 

Since a performance comparison for a given period 
will consist in comparing two points, conclusions can 
only be drawn if both cost components of an 
"advanced" controller are equal to or less than the 
cost components of the reference controller. 
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EXPERIMENTAL BUILDINGS 

The experimental tests were carried on two very 
different buildings: 

• The "Academic Building" of the Environmental 
sciences and Management campus of the 
University of Liège, in Belgium (Arlon). This 
occupied building has a heavy masonry structure 
and the South wall is protected by a glazed skin. 
Two administrative offices were selected as the 
reference zone. The building has a hydronic 
heating system with radiators and the optimal 
controller acts on the system through the water 
supply temperature. 

• The PASSYS test cell maintained by the National 
Observatory of Athens, in Greece (Van Dijk, 
1994). The unoccupied test cell has one fully 
instrumented reference zone. It has a lightweight 
wooden structure and an electric heating controlled 
through an ON/OFF switch. 

The contrasts between both buildings allowed to test 
the controllers in very different environments, as 
well as to validate the comparison methodology in 
different contexts. 

RESULTS IN AN OCCUPIED PASSIVE 
SOLAR BUILDING 

Controllers 

The Conventional controller (Conv), which was 
used in the building before this study, implements a 
conventional "heating curve + thermostatic valves" 
strategy. The water supply temperature is controlled 
by a heating curve varying according to a fixed 
schedule (Day-Night). The heating curve is designed 
to maintain 21°C during day and 15°C during night 
(or weekends). Each radiator is equipped with a 
thermostatic valve that can be adjusted by building 
occupants. 

The "Reference" controller (Ref) is a PID acting on 
the water supply temperature to maintain the desired 
setpoint in the reference zone, where thermostatic 
valves are removed. Other rooms are still equipped 
with thermostatic valves. Compared with the 
reference controller, this one has a better 
thermostatic control in the reference zone and a more 
efficient night setback.  

The optimal controller (Opt) is a model-based 
predictive controller (Kummert, 2001). The 
optimization algorithm uses an internal simplified 
model of the building and the hydronic heating 
system to simulate future control sequences with a 
forecasting horizon that ranges from 6 to 24 hours. 
Occupancy is forecast based on a fixed schedule and 
the weather forecasts are obtained via email from the 

national weather institute. The optimal control 
sequence is selected to minimize a performance 
criterion which is a linear-quadratic approximation of 
(3). The controller uses a receding horizon, i.e. the 
optimization is repeated with a period shorter than 
the forecasting horizon (Typically 1 to 3 hours). The 
model parameters are identified online in order to 
compensate for modeling errors and system changes 
(e.g. windows opened by occupants). The control 
algorithm is described in more details in another 
paper presented at this conference (Kummert and 
André, 2005).  

Available data sets 

The available data cover 2 heating seasons, and 170 
days are available after removing missing and 
dubious data. The 3 controllers were implemented 
alternatively but their historical succession causes 
significant discrepancies in the weather data, as 
shown in Table 1. The building has a very high 
thermal mass, so one full week of "transition" was 
allowed once a new controller was implemented. 

Table 1: Weather data statistics for the data sets 
 

Variable Conv Ref Opt 
Tamb,min [°C] -4.1 -4.1 -8.3 
Tamb,max [°C] 18.7 9.3 17.2 
Tamb,avg [°C] 5.4 2.1 3.8 
ATavg [°C] 6.6 4.1 5.2 
HSmin [MJ m-2] 0.7 0.1 0.1 
HSmax [MJ m-2] 18.6 9.5 14.4 
HSavg [MJ m-2] 7.4 2.0 3.5 

This table shows slightly different characteristics for 
the temperature, but a significant difference in mean 
solar radiation between the 3 periods: the sunshine 
was higher when the Conventional controller was 
tested. In a passive solar building, this has a string 
effect on the heating load, but more importantly a 
dramatic effect on comfort cost since the most 
significant uncomfortable episodes are actually due 
to afternoon overheating (underheating can be 
reduced by changing the settings of the controller, 
such as thermostatic valves setpoint or heating start 
time). 

Comparison on short periods 

A first method to obtain a performance comparison is 
to select short periods (e.g. 2 weeks) with similar 
weather data and occupancy patterns in each of the 
data sets. This is illustrated in Table 2 for the 
Conventional and Optimal controllers. Note that the 
data time step is 15 min for all experiments and 
simulations. The discomfort cost is only integrated 
when the building is supposed to be occupied (8h-
17h  weekdays). 
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Table 2: Weather data statistics and measured 
controller performance for 2 short periods 

 

Variable Conv Opt 
Tamb,min [°C] 2.0 3.5 
Tamb,max [°C] 18.7 17.2 
Tamb,avg [°C] 10.0 9.3 
HSavg [MJ m-2] 81 75 
Je [MJ] 212 184 
Jd,max [%PPD'] 67 62 
Jd,avg [%PPD'] 3.8 2.4 
PMVmin [-] 0.25 0.07 
PMVmax [-] -0.13 -0.34 
PMVavg [-] 0.43 0 

The Conventional controller uses a fixed schedule. 
During relatively warm periods, this schedule is too 
conservative, which leads to wasted energy to pre-
heat the building too long in advance. Furthermore, 
such a warm building is more subject to overheating. 
This last point is still reinforced by the proportional 
band of the thermostatic valves, which reduce the 
power when the temperature reaches the setpoint but 
do not really stop heating until the temperature is 
about 0.5 °C above this setpoint.  

In this kind of situation, the optimal controller is able 
to reduce the energy consumption while reducing 
discomfort. Energy savings on the considered period 
reach 13%, for a significantly reduced discomfort 
("optimal" discomfort cost is 28% from 
"conventional" cost). 

Another example is given in Table 3, where data sets 
for the Reference controller and the Optimal 
controller. 

Table 3: Weather data statistics and measured 
controller performance for 2 short periods(2) 

 

Variable Ref Opt 
Tamb,min [°C] -4.1 -8.3 
Tamb,max [°C] 9.1 8.2 
Tamb,avg [°C] 1.1 1.3 
HSavg [MJ m-2] 32 31 
Je [MJ] 487 431 
Jd,max [%PPD'] 6.1 3.1 
Jd,avg [%PPD'] 0.25 0.14 
PMVmin [-] -0.55 -0.39 
PMVmax [-] 0 0 
PMVavg [-] -0.04 -0.03 

During this cold period, the fixed schedule leads to 
energy waste on some days because the pre-heating 
time is too long, but to high discomfort on other days 
because the pre-heating time is too short. The 
optimal controller sometimes underestimates the pre-
heating time as well, leading to relatively high 

discomfort, but it adapts this pre-heating time to the 
building state. Over the whole period, once again this 
allows to reduce the discomfort while saving energy 
(about 12% energy savings with 44% discomfort cost 
reduction). 

Comparison using simulation: principle 

The results from comparisons on short periods show 
that the relative performance of different controllers 
is strongly affected by the weather. A comparison 
entirely based on experimental results would 
therefore need to include the different typical 
conditions (cold and cloudy, cold and sunny, etc.) 
and use the appropriate weighting factors.  

Another approach to obtain a performance 
comparison on a typical year is outlined here below: 

• During a first period, the controller one is tested on 
the building 

• During a second period, the controller two is tested 
on the building 

• The experimental results are used to tune and 
validate a building model adapted to the 
experimental circumstances, which can be checked 
by the simulated performance of controller one on 
the first period and the simulated performance of 
controller two during the second period 

• Finally, the performance of controller one during 
the second period and the performance of 
controller two during the first period are simulated. 
A virtual comparison can then be performed over 
the same periods 

Tuning the building model 

Parameter identification on a detailed building is a 
complex problem, due to the large number of 
parameters and to the possibility of achieving the 
same result through different actions (e.g. increase 
the infiltration rate or increase the thermal 
conductivity of a low-mass wall or window).  

In the case of an occupied building where occupants 
can take actions (e.g. open windows), the model also 
needs to reproduce the occupants’ behavior rather 
than its effects.  

This is illustrated in Figure 2, which represents two 
typical sunny mid-season days when the 
conventional controller was implemented. First, the 
estimated occupancy start (left side of the grey 
rectangle) seem to correspond with a change in the 
temperature profile (lighting and computers are 
turned on). On both days, the occupants open 
windows almost exactly when the temperature 
exceeds the estimated comfort range, which is clearly 
shown by the sudden change in the temperature 
profile. In such a case, if the infiltration rate was 
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identified and used when simulating a different 
controller, the results would most likely be incorrect 
because a different controller would induce a 
different temperature in the room, hence a different 
action from the occupants. It is the reaction of 
occupants to temperature that must be fitted. 
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Figure 2: Typical sunny mid-season days, conventional 
controller 

A first attempt was made to tune a detailed TRNSYS 
(Klein et al., 2000) model of the building. However, 
the very large number of parameters in the building 
model makes parameter identification a complex 
problem. The desired level of accuracy is also quite 
high, since performance differences of less than 10% 
must be reproduced.  

A simplified model similar to the internal model of 
the controller was used (linear state-space model). It 
allows easier identification of some varying 
parameters (e.g. infiltration rate) and other poorly 
known influences (e.g. unmeasured heat gains).  

While such a model is not as well adapted to design 
studies as a detailed model such as TRNSYS Type 
56, it was found to offer more flexibility in parameter 
identification. The building model is combined with 
a model of the occupant's reaction to the comfort 
conditions to account for window opening, as 
described here above. 

Table 4 and Table 5 illustrate results obtained when 
comparing the conventional controller and the 
optimal controller on two 1-month periods presenting 
different meteorological characteristics and using the 
identified model to extrapolate the performance 
comparison. The first part of each table sums up the 
meteorological parameters of the considered period. 
Comfort and energy parameters are given: 

• as measured on the real building (with 
conventional controller for period 1, with optimal 
controller for period 2) 

• as simulated for the controller that was actually 
used (model validation) 

• as simulated for the other controller 

Table 4: Weather data statistics, measured and 
simulated controller performance – Period 1 

 

Variable Conv, 
(Meas.) 

Conv 
(Simul.) 

Opt 
(Simul.) 

Tamb,min [°C]  -1.4  
Tamb,max [°C]  18.7  
Tamb,avg [°C]  7.0  
HSavg [MJ m-2]  9.6  
Je [MJ] 470 486 402 
Jd,max [%PPD'] 13 10.2 5.4 
Jd [%PPD' h] 280 263 215 

Table 5: Weather data statistics, measured and 
simulated controller performance – Period 2 

 

Variable Opt, 
(Meas.) 

Opt 
(Simul.) 

Conv 
(Simul.) 

Tamb,min [°C]  -7.3  
Tamb,max [°C]  17.2  
Tamb,avg [°C]  4.6  
HSavg [MJ m-2]  4.4  
Je [MJ] 686 708 760 
Jd,max [%PPD'] 6.7 4.9 3.0 
Jd [%PPD' h] 200 194 190 

The results show a very good agreement between 
simulation and experiments: the energy performance 
is reproduced within 3.5%. The larger error on the 
discomfort cost (6% on total, 27% maximum during 
0.25 h) is due to the non-linear shape of the cost 
function (Based on Fanger's PPD), which amplifies 
the error on operative temperature.  

The comparison shows that energy savings of 20% 
can be achieved during the first period (sunny mid 
season) while improving the thermal comfort by 
18%. During the cold period 2, energy savings of 7% 
can be achieved with a maintained thermal comfort 
(small increase of discomfort: 2%). 

Simulations on the entire heating season show 
significant energy savings (15-20%) for an improved 
thermal comfort. Furthermore, energy savings in the 
range of 10% can be achieved in comparison to the 
"reference controller", with a similar thermal 
comfort. 
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RESULTS ON THE PASSYS TEST CELL 

Controllers 

The reference controller (Ref) is an ON/OFF 
differential controller with hysteresis. It compares the 
zone temperature (Tz) with a setpoint (Tz,set) and starts 
or stops the electrical heater according to the 
comparison of these two temperatures with two dead 
band temperatures (∆TLow and ∆THigh) and the 
previous state of the control signal. The controller 
also implements some rules of thumb to prevent 
unnecessary heating at night (a larger tolerance is 
allowed on the setpoint). ∆TLow and ∆THigh are 
respectively equal to -0.5 and 0.7. This controller 
uses a fixed schedule to start the heating some time 
steps prior to (fictitious) occupancy start. 

The optimal controller (Opt) is described in 
(Kummert, 2001). It is based on a simplified state-
space model of the test cell and realizes a forecasting 
of the weather data with a 12-h horizon. The 
optimization process simulates possible control 
sequences for the next 12 hours, and finds the 
optimal one according to a performance criterion 
which is a linear-quadratic approximation of (3). The 
value of the α parameter was selected in order to 
obtain results that were comparable to those of the 
reference controller. 

Available data sets 

Two 2-week periods of usable data were recorded 
during this short-term test. The weather data statistics 
are given in Table 6. Here again, significant 
differences between the two periods make a direct 
comparison impossible. The optimal controller was 
tested in much colder and cloudier conditions. 

Table 6: Weather data statistics for the data sets 
 

Variable Ref Opt 
Tamb,min [°C] 3.6 0.6 
Tamb,max [°C] 18.4 10.7 
Tamb,avg [°C] 10.3 3.9 
Havg [MJ m-2] 9.2 5.6 

Performance comparison using simulation 

Here again, a simplified linear state-space model was 
selected. It uses the structure of the optimal 
controller's internal model and allows efficient 
parameter identification. 

The parameters of this simplified model were 
identified using the whole data set (periods 1 and 2). 
Constant values were identified for all parameters 
except for air infiltration and solar transmittance. The 
configuration of the test cell during this study was 
found to be very sensitive to the wind speed, so the 

infiltration was allowed to vary between 1 and 10 
vol/h. The global solar transmittance (i.e. the ratio of 
solar radiation entering the test cell to total incident 
solar radiation) was allowed to vary in a range from 
0.12 to 0.6 to take into account the variation of glass 
transmittance with incidence angle and the effect of 
un-modeled shading. This attenuation factor 
corresponds to a transmittance ranging from 0.1 to 
0.5 for a 1.2 m² glazed area. 

Figure 3 shows the zone temperature during both 
periods, for simulation-based and experimental 
results. The low thermal capacitance of the building 
and the ON/OFF nature of the heating system lead to 
instantaneous discrepancies, but the behaviour of the 
entire system (building + controller) is very well 
reproduced by the simulation. 
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Figure 3: simulated and measured air temperature, 
PASSYS test cell 

Table 7 and Table 8 illustrate the results obtained 
when comparing the reference controller and the 
optimal controller on the two 2-week periods. 
Comfort and energy parameters are given: 

• as measured on the real building (with 
conventional controller for period 1, with optimal 
controller for period 2) 

• as simulated for the controller that was actually 
used (model validation) 

• as simulated for the other controller 

Table 7:Measured and simulated controller 
performance – Period 1 

 

Variable Ref, 
(Meas.) 

Ref 
(Simul.) 

Opt 
(Simul.) 

Je [MJ] 94 92 70 
Jd,max [%PPD'] 11.2 11.2 5.8 
Jd [%PPD' h] 0.9 0.7 0.36 
PMVmin -0.10 -0.11 -0.42 
PMVmax 0.76 0.77 0.54 
PMVavg 0.10 0.08 0.02 

Period 1, Ref controller 

Period 2, Opt controller 
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Table 8: Measured and simulated controller 
performance – Period 2 

 

Variable Opt, 
(Meas.) 

Opt 
(Simul.) 

Ref 
(Simul.) 

Je [MJ] 295 296 314 
Jd,max [%PPD'] 2.6 3.8 0.89 
Jd [%PPD' h] 0.20 0.23 0.03 
PMVmin -0.36 -0.43 -0.21 
PMVmax 0 0 0 
PMVavg -0.05 -0.06 -0.02 
 

The results show a very good agreement between 
simulation and experiments for the controllers that 
were actually implemented in the test cell. The 
energy consumption is reproduced within 2.6% in the 
worst case. The more important error for discomfort 
cost is mostly due to the non-linear shape of Jd: very 
small errors on maximum or minimum temperatures 
during the day have a large effect on the discomfort 
cost. However, the agreement is still very good. A 
more visual rendering of the comparison between 
different controllers for the same period (columns 
3and 4 of Tables 7 and 8) is presented in Figure 4. 
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Figure 4: performance comparison based on simulation 
results, PASSYS test cell 

When comparing the performance of both controllers 
for the same period, The comparison shows that 
important energy savings (25%) can be achieved 
with an improved comfort during period 1 (warm and 
sunny). Even if the implemented reference controller 
was not optimized for these conditions (it used a 
rather conservative fixed schedule), this confirms 
that most of the savings and comfort improvement 
can be achieved during mid-season. 

For the cold period, the optimal controller with 
implemented settings (mid-range comfort level) 
gives 6% energy savings, but at the cost of a higher 
discomfort. A look at Figure 3 (lower part) allows 
understanding why the discomfort cost is so high. On 
the second day, the temperature goes down to 19°C 
during the occupation period. However, the setpoint 

was reached before the start of the occupancy, so the 
problem is not caused by a poor anticipation of the 
building's behavior. The cause is that the ON/OFF 
control of heating is not well handled by the optimal 
controller, which was developed for hydronic 
systems.  

CONCLUSIONS 

The methodology of performance comparison by 
combining simulation and experiments has been 
applied successfully to an occupied passive solar 
building and to the PASSYS test cell.  

The experiments on the test cell were very valuable 
to the study, in spite of their short time span. First, 
they allowed to assess the performance of the 
developed optimal control algorithm in a very 
different context: ON/OFF control, very low thermal 
mass building. Secondly, the well-controlled 
environment offered an ideal test case to test the 
modeling and parameter identification methodology.  

That methodology was then adapted to the real 
building, where the influence of adjacent rooms and 
occupants had to be added. 

Adding simulation results to the experimental 
comparison allows to estimate yearly savings and to 
study the behavior of controllers with different 
weather or occupancy conditions, therefore adding 
useful information to the comparison.  

Considerable care must be taken when defining the 
structure of the building model (e.g. include a model 
of the occupants reaction rather than its effects) and 
identifying the parameters, to avoid the risk of over-
fitting. At the same time, the simulation should be 
able to reproduce performance differences that are in 
the range of 10%, which requires a very good 
accuracy. It is interesting to note that the ever-
increasing computational power has made possible to 
consider using detailed, physically-based, models for 
inclusion in the control algorithm itself (Clarke et al., 
2001). This study, however, has shown that 
parameter identification is a crucial point both for the 
controller's internal model and for models used in 
assessing the controller's performance. Detailed 
building models require thousands of parameters, 
which makes them unsuitable for classical parameter 
identification techniques. 

While a purely experimental comparison based on 
two identical buildings is probably still preferable if 
the resources are available, the "hybrid" comparison 
combining experiments and simulation allows to 
infer useful information . It is interesting to note that 
in such cases as windows that can be operated by 
occupants, making sure that two experimental 
buildings (including the occupants' behavior) are 
identical would also require a significant attention. 
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NOMENCLATURE 

Variable Units Description 
ATavg  [°C] Average Daily amplitude of the 

temperature 
Havg 
Hmin 
Hmax 

[MJ m-2] Daily horizontal solar radiation 
(average, minimum and 
maximum) 

HSavg 
HSmin 
HSmax 

[MJ m-2] Daily solar radiation on the South 
façade (average, minimum and 
maximum) 

Jd [PPD' h] Discomfort "cost" (see text) 
Jd,avg  [%PPD'] Discomfort "cost", average 
Jd,max  [%PPD'] Discomfort "cost", maximum 
Je  [MJ] Energy "cost" (see text) 
PMVmin  [-] Predicted Mean Vote, minimum 
PMVmax  [-] Predicted Mean Vote, maximum 
PMVavg  [-] Predicted Mean Vote, average 
PPD [%] Predicted percentage of 

Dissatisfied people 
Tamb [°C] Ambient temperature 
Tamb,avg 
Tamb,min 
Tamb,max  

[°C] Average, minimum and maximum 
ambient temperature 

Top [°C] Operative temperature (ref. zone) 
Tcomfort [°C] (Approximative) Comfort zone 
GSouth [W m-2] Radiation on South façade 
Tws [°C] water supply temperature 
Twr [°C] water return temperature 
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