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Stability of multi-parameter solitons: Asymptotic approach

Dmitry V. Skryabin ∗

Department of Physics and Applied Physics, John Anderson Building,

University of Strathclyde, 107 Rottenrow, Glasgow, G4 0NG, Scotland, UK

(December 23, 1998)

General asymptotic approach to the stability problem of multi-parameter solitons in Hamiltonian
systems i∂En/∂z = δH/δE∗

n has been developed. It has been shown that asymptotic study of the
soliton stability can be reduced to the calculation of a certain sequence of the determinants, where
the famous determinant of the matrix consisting from the derivatives of the system invariants with
respect to the soliton parameters is just the first in the series. The presented approach gives first
analytical criterion for the oscillatory instability and also predicts novel stationary instability. Higher
order approximations allow to calculate corresponding eigenvalues with arbitrary accuracy.

PACS: 05.45.Yv,47.20.Ky,42.65.Tg,52.35.-g
Key words: soliton stability, Hamiltonian systems, codimension-2 bifurcation

I. INTRODUCTION

Solitary waves (’solitons’) can appear when an initial excitation applied to a medium is strong enough to cause
nonlinear response. Formally solitons are solutions of some nonlinear partial differential equations and their dynamics
generally is a complex phenomenon, which can be described exactly only in the very special integrable situations
[1]. The problems of soliton stability and instability induced dynamics in nonintegrable Hamiltonian models have
paramount importance for understanding of a wide range of physical phenomena covering such fields as propagation of
electromagnetic, water and plasma waves, condensed matter physics and classical field theory [2–6]. Several analytical
approaches to the stability problem are known. For instance, in the nearly integrable situations the perturbation theory
based on the inverse scattering transform can be used [1,2]. Far from the integrable limit variety of methods can be
applied. Among them asymptotic stability theory [7,8], method of adiabatically varying soliton parameters [1,8–13],
Lyapunov [5] and Evans [6] methods.

Generally, stability of a solitary wave in a Hamiltonian model can be lost due to bifurcations involving appearance
of a positive eigenvalue (stationary instability) in the soliton spectrum or a pair of complex conjugate eigenvalues
with positive real parts (oscillatory instability) [14]. Both types of these instabilities have been extensively studied in
the different solitonic contexts proving their ubiquitousness and fundamental importance, see Refs. [6–10,15,16] and
Refs. [6,11,16,17], respectively, for the stationary and oscillatory instabilities. In the most of the known cases the loss
of stability is associated with the collisions of the purely imaginary eigenvalues corresponding to the so called internal
modes [20] of the soliton spectrum (see [6] for interesting exceptions).

Applying the above mentioned methods it was shown that in many cases a threshold of stationary instability of
multi-parameter solitons is given by the zero of the determinant of the Jacobi matrix Jij = ∂κj

Qi, where κj are the
soliton parameters and Qi are the associated motion integrals [3–11,15]. The condition det(Jij) = 0 is, in fact, the
compatibility condition of the problem arising in the leading (zero) order of the asymptotic solution of the eigenvalue
problem governing stability of the soliton [8,10,15]. To find expressions for the eigenvalues it is necessary to proceed
further and solve problems arising in higher (at least first) orders. Up to now this was done only for the specific
class of model equations having single parameter soliton families [7,8]. For stationary bifurcations of two-parameter
solitons adiabatic method has been applied in Refs. [10,11,13]. Linear approximation of this method actually gives
an expression for eigenvalues, for more details see Section IV. However, all known developments of this method fail
to give criterion indicating transition to the oscillatory instability, i.e. instability with complex eigenvalues. It is also
difficult to extend this method beyond its first order because of the rather involved calculations.

The purpose of this work is to formulate a general asymptotic approach to stability of multi-parameter solitons in

Hamiltonian models, to show how it can be used to find expressions for the instability growth rates with arbitrary

accuracy and to formulate criterion for the oscillatory instability of solitons.

∗URL: http://cnqo.phys.strath.ac.uk/∼dmitry
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II. MODEL EQUATIONS AND SYMMETRIES

We will consider Hamiltonian equations in the form

i
∂En

∂z
=

δH

δE∗
n

, n = 1, 2 . . .N, (1)

which describes a wide range of physical phenomena related with self-action and interaction of slowly varying wave
envelopes in a variety of nonlinear media [3,9–12,15–17], for general review of the Hamiltonian formalism see [18].
Here En are complex fields, z the propagation direction of the interacting waves, x the coordinate characterizing
dispersion or diffraction, H = H(∂xEn, En, ∂xE∗

n, E∗
n) is the Hamiltonian and ∗ means complex conjugation. We will

assume that H is invariant with respect to a set of (L − 1) phase transformations:

En → En exp(iγnlφl), l = 1, 2, . . . (L − 1), (2)

φl are arbitrary real phases and γnl are some constants. Because H does not depend on x explicitly, Eqs. (1) are also
invariant with respect to arbitrary translations along x:

En(x, z) → En(x − x0, z). (3)

Symmetry properties (2), (3) together with Hamiltonian nature of our problem imply presence of L conserved
quantities, see, e.g., [19], which are the (L − 1) energy invariants

Ql =

∫

dx

N
∑

n=1

γnl|En|
2, l = 1, 2, . . . (L − 1), (4)

and the momentum

QL =
1

2i

∫

dx
N

∑

n=1

(E∗
n∂xEn − En∂xE∗

n). (5)

Another important consequence of the invariances (2), (3) is that a certain class of solutions of Eqs. (1) can be
sought in a form when x0 and φl are linear functions of z, i.e. x0 = κLz and φl = κlz, then

En(x, z) = an(x − κLz) exp(i

L−1
∑

l=1

γnlκlz), (6)

where {κl}
L−1
l=1 and κL are real parameters characterizing, respectively, phase velocities of the interacting waves and

the soliton group velocity. Functions an(τ) obey a system of the ordinary differential equations

(iκL∂τ + αn)an = −
δHa

δa∗
n

, (7)

where Ha ≡ H(∂τan, an, ∂τa∗
n, a∗

n), τ = x − κLz and αn =
∑L−1

l=1 γnlκl. We assume now that in a certain domain of
the parameter space (κ1, κ2, . . . κL) Eqs. (7) have a family of the solitary solutions such that |an| → 0 for τ → ±∞.

III. ASYMPTOTIC STABILITY ANALYSIS

To study stability of the solitons we seek solutions of Eqs. (1) in the form

En = (an(τ) + εn(τ, z)) exp(i

L−1
∑

l=1

γnlκlz), (8)

where εn(τ, z) are small complex perturbations. Linearizing Eqs. (1) and assuming that εn(τ, z) = ξn(τ)eλz , ε∗n(τ, z) =
ξn+N (τ)eλz we get the following nonselfadjoint eigenvalue problem (EVP)

2



iλ~ξ = L̂~ξ ≡

(

Ŝ R̂

−R̂∗ −Ŝ∗

)

~ξ, (9)

where ~ξ = (ξ1, . . . ξN , ξN+1 . . . ξ2N )T , and R̂, Ŝ are N × N matrix operators with elements given by

ŝnl = δnl(αn + iκL∂τ ) +
δ2Ha

δa∗
nδal

, r̂nl =
δ2Ha

δa∗
nδa∗

l

,

here δnl is the Kroneker symbol. Note, that the operator Ŝ is a selfadjoint one, i.e. Ŝ = Ŝ†, and R̂ is a symmetric
operator, i.e. R̂ = R̂T .

To solve EVP (9) we apply the asymptotic approach, which relies on expansion of the unknown eigenvector ~ξ into

an asymptotic series near either neutral eigenmodes [7,8], i.e. zero-eigenvalue modes, of the operator L̂, or modes
of continuum [20], or both of them [12]. The neutral modes can be generated by infinitesimal variations of the free
parameters of the soliton and thus always be presented as explicit functions of the soliton solution. At the same time
continuum eigenmodes are explicitly known in the very rare, normally in integrable, situations [12,20]. This is an
important fact which makes the asymptotic expansion near the neutral modes by the very practical tool of the stability
theory. However, as any approximate method, it has a certain limitation. Namely, it describes only eigenvalues λ
corresponding to a specific class of the perturbations which in the zero approximation can be expressed as a linear
superposition of the neutral eigenmodes. Thus, generally speaking, on the basis of this approach one can get only
sufficient conditions for soliton instability or, in other words, necessary conditions for soliton stability. Therefore
presence of other instabilities which can be captured only numerically can always be expected [16].

By infinitesimal variation of φl and x0 it can be shown that

~ul = (γ1la1, . . . γNlaN ,−γ1la
∗
1, . . . − γNla

∗
N )T , ~uL =

∂~a

∂τ
,

~a ≡ (a1, . . . aN , a∗
1, . . . a

∗
N )T , l = 1, . . . (L − 1)

are neutral modes of L̂, i.e. L̂~ul = 0 (l = 1, . . . L). L̂ also has L associated vectors ~Ul = ∂~a/∂κl such that

L̂~Ul = −~ul, l = 1, . . . L.
It is straightforward to see that any solution of EVP (9) must obey L solvability conditions

〈~wl|λ~ξ〉 = 0, l = 1, . . . L, (10)

where 〈~y|~z〉 =
∑2N

i=1

∫

dxy∗
i zi and ~wl are the neutral modes of the operator L̂†, L̂† ~wl = 0,

~wl = (γ1la1, . . . γNlaN , γ1la
∗
1, . . . γNla

∗
N )T , ~wL = i

∂~b

∂τ
,

~b = (−a1, . . . − aN , a∗
1, . . . a

∗
N )T , l = 1, . . . (L − 1).

Associated vectors of L̂† are ~Wl = ∂~b/∂κl and they obey L̂† ~Wl = −~wl, l = 1, . . . L.
Close to instability threshold it is naturally to assume that |λ| ∼ ǫ ≪ 1. As it was already discussed above we

will consider a special class of the perturbations which in the leading approximation can be presented as a linear
combination of the neutral modes. Therefore we seek an asymptotic solution of EVP (9) in the following form

~ξ =
∞
∑

m=0

ǫm~ξm(x), ~ξ0 =
L

∑

l=1

Cl~ul (11)

where constants Cl and vector-functions ~ξm>0 have to be defined. Here and below l = 1, 2, . . . L. Substitution (11)

into EVP (9) gives a recurrent system of equations for ~ξm

~ξm>0 =

[

iλ

ǫ
L̂−1

]m

~ξ0. (12)

Substituting (11), (12) into conditions (10) one will find the homogeneous system of the L linear algebraic equations

λ2
〈

~wl

∣

∣

∣

∞
∑

m=0

(−λ2)mL̂−2m

L
∑

l=1

Cl
~Ul

〉

= 0 (13)
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for L unknown constants Cl. System (13) has a nontrivial solution providing that the corresponding determinant is
equal to zero. This determinant is an infinite-order polynomial with respect to λ2, which, in fact, is the asymptotic
expansion of Evans function [6]. Zeros of this polynomial define the spectrum of the solitary wave linked with the
chosen class of the perturbations. Thus the equation specifying eigenvalues λ is

λ2L

∞
∑

j=0

(−λ2)jDj = 0, (14)

where Dj are the real constants. Eq. (14) always has zero root of the 2L-order. It indicates that each of the zero
eigenvalues corresponding to the neutral modes ~ul is doubly degenerate one. This degeneracy originates from the

presence of the associated vectors ~Ul.

To write the explicit expressions for Dj it will be convenient to introduce vectors ~M
(m)
l = (M

(m)
l1 . . .M

(m)
lL ), where,

M
(m)

ll
′ = 〈~wl|L̂

−2m ~Ul
′ 〉, m = 0, 1, . . .∞.

Now each Dj can be presented as

Dj =
∑

m1+...mL=j

D( ~M
(m1)
1 , . . . ~M

(mL)
L ), (15)

where D( ~M
(m1)
1 , . . . ~M

(mL)
L ) is the determinant of the L × L matrix consisting of the rows ~M

(ml)
l and the sum is

taken over all such combinations of (m1, . . . mL) that
∑L

l=1 ml = j. M
(0)

ll
′ can be readily expressed via derivatives of

the conserved quantities with respect to the soliton parameters:

M
(0)

ll
′ =

∂Ql

∂κl
′

, (16)

and practical calculation of M
(m)

ll
′ for m > 0 can be simplified: M

(m)

ll
′ = −〈 ~Wl|L̂

(1−2m)~Ul
′ 〉. Note, that in most of the

cases solitary solution itself can be found only numerically using any of the well established methods for solving the

nonlinear ode’s. Recurrent calculations of L̂(1−2m)~Ul can be readily reduced to the numerically even simpler problem
of solving of the linear inhomogeneous ode’s.

Because |λ| was assumed to be small, Eq. (14) has an asymptotic character. Therefore to make it work some
additional assumptions must be made about orders of Dj . If these assumptions are satisfied then Eq. (14) describes
correctly the soliton spectrum and predicts bifurcations of the soliton. The corresponding eigenvalues can be found
using Eq. (14) with any degree of accuracy. For example, let us assume that D0 ∼ ǫ2 and Dj>0 ∼ O(1). Then,
presenting λ2 as

λ2 = ǫ2
∞
∑

j=0

ζj , ζj ∼ ǫ2j , (17)

in the first order Eq. (14) gives a linear equation for ζ0,

D0 − ǫ2ζ0D1 = 0, (18)

which indicates a threshold of the stationary bifurcation at D0 = 0. This is precisely the condition det(Jij) = 0
discussed in the introduction. Continuing to the next order one obtains

λ2 =
D0

D1

(

1 −
D0D2

D2
1

+ O(ǫ4)

)

. (19)

If D1 ∼ ǫ2 then the asymptotic expression (19) fails. To have a balanced equation for ζ0, we must now assume that
D0 ∼ ǫ4. However, in such a case the Eq. 18 for ζ0 changes from linear to quadratic:

D0 − ǫ2ζ0D1 + ǫ4ζ2
0D2 = 0. (20)

Eq. (20) gives two threshold conditions D0 = 0 and D2
1 = 4D0D2, see Fig. 1. The latter condition indicates onset of

the oscillatory instability for
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D2
1 < 4D0D2. (21)

Thus we have formulated analytic criterion for the oscillatory instability. It is also clear that the point D0,1 = 0 is a
source for the novel stationary instability, see rightmost region D2

1 > 4D0D2, D1 > 0 in Fig. 1, where an eigenvalue
which is positive throughout this region can not be predicted by Eq. (19).

It follows by recurrence that if Dj
′
>0 ∼ ǫ2 then to have a balanced equation for ζ0 we must assume that Dj<j

′ ∼

ǫ2(1+j
′

). In other words asymptotic expansion near the neutral modes can only describe the soliton spectrum in
regions of the parameter space which are close to codimension-(j

′

+ 1) bifurcation. If j
′

= 0 then only one condition
must be satisfied and our asymptotic approach predicts presence of either two purely imaginary or two purely real
eigenvalues, which can collide at zero. If j

′

= 1 then two conditions must be satisfied and the asymptotic approach
predicts presence of two pairs of eigenvalues which can be real, imaginary or complex. In this situation the soliton
becomes oscillation unstable providing that two pairs of imaginary eigenvalues collided. For each further j

′

two new
eigenvalues come into play.

IV. DISCUSSION

General formulae (14),(15) giving soliton eigenvalues with any degree of accuracy and criterion for the oscillatory
instability (21) are main novel results of this work. At the same time expressions for the eigenvalues near the stationary
instability threshold, analogs of the formula λ2 = D0/D1 + ..., have been earlier obtained in a number of papers. It is
instructive now to give explicit expressions for Dj in the two simplest situations of one- and two-parameter solitons and

to compare them with previously reported results. For the one parameter solitons: D0 = ∂κ1
Q1, D1 = −〈 ~W1|L̂

−1 ~U1〉,

D2 = −〈 ~W1|L̂
−3~U1〉. Using these formulae one can show that in the case when D1 ∼ O(1) the first term in Eq. (19)

gives the same expression for λ2 which was obtained in Refs. [7–9], where generalised Nonlinear Shrödinger equation
[7,9] and equations describing propagation in quadratically nonlinear media [8] have been investigated. If D1D2 > 0
then it can be concluded that the second term in Eq. (19) indicates saturation of the growth rate when the distance
from the instability threshold, D0 = 0, growthes, which agrees with numerical results [8,16].

For the two-parameter solitons:

D0 =

∣

∣

∣

∣

∣

∂Q1

∂κ1

∂Q1

∂κ2

∂Q2

∂κ1

∂Q2

∂κ2

∣

∣

∣

∣

∣

, (22)

D1 =

∣

∣

∣

∣

∣

∂Q1

∂κ1

∂Q1

∂κ2

M
(1)
21 M

(1)
22

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

M
(1)
11 M

(1)
12

∂Q2

∂κ1

∂Q2

∂κ2

∣

∣

∣

∣

∣

, (23)

D2 =

∣

∣

∣

∣

∣

M
(1)
11 M

(1)
12

M
(1)
21 M

(1)
22

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∂Q1

∂κ1

∂Q1

∂κ2

M
(2)
21 M

(2)
22

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

M
(2)
11 M

(2)
12

∂Q2

∂κ1

∂Q2

∂κ2

∣

∣

∣

∣

∣

. (24)

The threshold condition D0 = 0 has been previously found for two-parameter solitons in different physical contexts
[10,11]. However derivation of an accurate expression for the soliton eigenvalues near this threshold has remained a
controvertial problem. Indeed, comparing eigenvalues given by Eqs. (19), (22), (23),(24) and eigenvalues which can
be calculated from the ordinary differential equations for soliton parameters presented in [10,11] one will discover that

results are slightly different [21]. It has also been argued [10] that the sign of (M
(1)
11 M

(1)
22 −M

(1)
12 M

(1)
21 ), which is the

first term in Eq. (24), plays an important role in stability of two-parameter solitons. However Eqs. (19),(22),(23),(24)
apparently conflict with this finding.

Among open problems I would like to mention derivation of finite-dimensional normal forms describing dynamical
evolution of the soliton parameters near the oscillatory instability threshold. A guideline for this work can be theory of
G. Iooss [22,23] for the normal forms of the reversible ordinary differential equations [23] in vicinity of the codimension-
2 bifurcation, wich is an equivalent of the our point D0 = D1 = 0. The simplest case of the codimension-1 stationary
instability, D0 = 0, has only one homoclinic orbit separating regions of the periodic oscillations from the spreading
or collapse [9,13]. The vicinity of the codimension-2 point can contain the very reach dynamics, including multiple
homoclinic orbits and stochastic regimes.

V. SUMMARY

General form of the asymptotic approach to stability problem of multi-parameter solitons in Hamiltonian systems
has been developed. It has been shown that the asymptotic study of the soliton stability reduces to the calculation
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of a certain sequence of determinants, where the famous determinant of the matrix consisting from the derivatives
of the system invariants with respect to the soliton parameters [4,5,10] is just the first in the series. Knowledge of
these determinants allows to calculate eigenvalues governing soliton instability with arbitrary accuracy. The most
important consequence is that the presented approach gives first analytic criterion for the oscillatory instability of
solitons in Hamiltonian systems.
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FIG. 1. Soliton bifurcation diagram in the neighbourhood of the point D0 = D1 = 0 for D2 > 0. Insets show
(Reλ, Imλ)-plane with horizontal/vertical axes corresponding to Reλ/Imλ and dots marking soliton eigenvalues described
by Eq. (20).
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