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ABSTRACT 
Designers, in the process of satisfying design requirements, generally encounter difficulties in, 
firstly, understanding the problem and secondly, finding a solution [Cross 1998]. Often the process of 
understanding the problem and developing a feasible solution are developed simultaneously by 
proposing a solution to gauge the extent to which the solution satisfies the specific requirements. 
Support for future design activities has long been recognised to exist in the form of past design cases, 
however the varying degrees of similarity and dissimilarity found between previous and current design 
requirements and solutions has restrained the effectiveness of utilising past design solutions. The 
knowledge embedded within past designs provides a source of experience with the potential to be 
utilised in future developments provided that the ability to structure and manipulate that knowledge 
can be made a reality. The importance of providing the ability to manipulate past design knowledge, 
allows the ranging viewpoints experienced by a designer, during a design process, to be reflected and 
supported. Data Mining systems are gaining acceptance in several domains but to date remain largely 
unrecognised in terms of the potential to support design activities. It is the focus of this paper to 
introduce the functionality possessed within the realm of Data Mining tools, and to evaluate the level 
of support that may be achieved in manipulating and utilising experiential knowledge to satisfy 
designers’ ranging perspectives throughout a product’s development.  
 

1 INTRODUCTION  
Knowledge is a valuable commodity which designers both utilise in order to progress the 
development of a design artefact and generate as a result of the design activity. The process of 
designing draws knowledge from various sources and accumulates and modifies the available 
knowledge to reflect in, and progress, a design’s development. 
The utilisation of traditional Computer Aided Design (CAD) tools has allowed designers to edit and 
manipulate past designs to the point where it is possible to modify successfully developed previous 
designs to satisfy design requirements. However, the simple regurgitation of past designs and their 
associated knowledge is limited in its application as it necessitates the previous requirements of a 
solution to mirror the current design requirements [Oxman 1990]. Experiential knowledge refers to 
design knowledge associated with the product(s) within a domain and the specific processes used to 
develop the design(s). However, the focus of this paper will be on the utility of specific and domain 
design knowledge. Past experiences possess the potential to be utilised to support future design 
activities. Past design solutions involves research into applicable domains to ensure the conformity 
of a design to domain specific heuristics or conditions. Such heuristics or conditions can detail 
domain specific principles that may have been developed through experienced domain experts 
recognising trends or patterns within a domain. However, a restraining factor involves limitations 
imposed by a human’s inability to reason with a significant amount of data.  Ways in which past design 
cases may be manipulated to reflect current situations is a key aspect in maximising the effective 
utilisation of past design knowledge to support designers during decision making processes. Not only 
can domain specific past design cases be used, but also within specific design domains, more generic 
domain knowledge may exist. However, the ability to manipulate experiential knowledge is limited by 
a designer or domain expert, through an inability to fully analyse a domain and extract implicit 
knowledge. Until recently, computer systems were unable to support domain experts in effectively 
analysing large repositories of data. In order to discuss how experiential knowledge can be 



 

manipulated to reflect present requirements, it remains pertinent to discuss firstly the nature of the 
design activity, and secondly the practical implications of utilising experiential knowledge.   
 

2 THE NATURE OF DESIGN  
The activity of designing has been described as one that is an ill-structured problem solving process 
[Simon 1973] requiring a pragmatic approach to be taken in overcoming immediate problems [Li 
1994]. Gero distinguishes technological design from other similarly titled activities through not only 
the domain but also from the very nature of exploration involving goal variables, decision variables 
and exploring appropriate attribute variables [Gero 1990]. As Li cites, those aspects that distinguish 
design from general problem solving processes, namely the ill structured, explorative and pragmatic 
nature of design [Li 1994], have restrained the development of computational design support systems. 

2.1  Ill structured  
At the initiation of a design task, designers are often  presented with incomplete and sometimes 
ambiguous design specifications (requirement descriptions) thus restraining a designer from 
recognising the immediate direction(s) necessary to satisfy the requirement(s). As the attributes 
reflected in a design are interrelated and dependent on values allocated to other associated attributes, 
the tendencies of attributes to interact exemplifies the problem of missing information. In addition to 
missing attributes and constraints, at the outset of a design activity, Li also attributes the ill-structured 
nature of design to the goal of the activity that is ill-defined [Li 1994]. As both Dasgupta and Gero 
state, the goal itself is the product of the design activity which is poorly understood to start with 
[Dasgupta 1989, Gero 1990]. 

2.2  Explorative 
The initial need to explore a domain, derives from the often ambiguous nature of a requirement 
description being weakly stated, incomplete, inconsistent and possessing dependant constraints 
[Smithers et al. 1989]. The exploration within design begins with the known attributes or specific 
requirements being used to define and refine an evolving solution. Through the exploration of known 
solution spaces, designers may begin to understand how the attributes are interrelated by exploring 
past cases. Designers use past design cases to guide and prompt their solution direction. This allows 
designers to initially classify their problem specification into similar solution spaces that reflect, at 
some level, previous cases with similar attributes or requirements. Thus a design space is considered 
as a space of possible designs which possess the knowledge applicable to support the evolution from 
a vague requirement description to a product description. In order to effectively utilise experiential 
knowledge, designers try to look beyond specific design cases in order to identify trends or 
relationships that may exist between attributes. Termed Domain Exploration [Duffy et al. 1995], this 
process enables the utility of experiential knowledge from within a domain, through identification and 
structuring, in order to re-use domain specific knowledge as opposed to specific design knowledge, 
to support a design activity.  

2.3 Pragmatic  
Li outlines three aspects that demand a pragmatic approach in design [Li 1994], detailing how 
predictions and associations may be used by a designer in making more grounded decisions. Firstly, 
the use of design experience allows designers to substitute and gauge values of various, initially 
unknown, attributes allowing the progression of the design to be maintained. Secondly, a major task in 
design is the satisfaction of many, often interrelated, objectives. This involves a designer balancing 
and manipulating these objectives, often sacrificing and compromising some to allow for a strongly 
desired objective to obtain its desired level. Thirdly, in most cases, several concepts will be 
generated, each providing strengths and weaknesses in certain aspects of the design and therefore, the 
designer must assess each from a practical perspective considering differing viewpoints such as, 
manufacturing, cost, customer expectations, etc. 
The varying aspects involved in design require a designer to attain an understanding of the design’s 
intended context in order to make decisions which will be considered acceptable by a majority (those 



 

involved in the design’s development and it’s identified market). This requires a pragmatic approach 
of weighting benefits against drawbacks in the quest for success.  
A designer’s concern is thus in satisfying the objectives of a product specification, through trade off 
decisions between product entities in order to progress the concept with the greatest potential of 
succeeding in the market place. The pragmatic nature of designing has substantial gains to be realised 
through the use of experiential knowledge, enabling designers to predict decision outcomes, based on 
domain experiential knowledge. The specific issues identified as being inherent in the design activity 
reflect the strength of support that may be achieved by utilising experiential knowledge. The ability 
however to utilise experiential knowledge in an efficient and effective manner remains a concern as 
repositories of data, information and knowledge expand far beyond human cognitive abilities.   
 

3 REQUIREMENTS OF UTILISING EXPERIENTIAL KNOWLEDGE 
The ability to utilise experiential knowledge remains conditional on among others, the ability to 
explore a domain, locating, comprehending and applying the relevant knowledge to support designers 
as and when required. The structuring of knowledge allows a designer’s cognitive abilities to support 
exploratory thinking, promoting economical search and adaptation [Oxman 1990], through the 
abstraction and generalisation of knowledge [Akin 1986], thus supporting the mechanisms of 
knowledge retrieval and utilisation. Experiential knowledge must be presented in a formalism which 
enables a designer to access, identify and manipulate knowledge that is specific and applicable to their 
needs. Thus the effective utility of knowledge requires the structuring of knowledge while 
maintaining a degree of flexibility in the formalism. 

3.1 Representation of knowledge 
The representation of knowledge serves several purposes in the utility of experiential knowledge. The 
representation enables the storage, indexing, accessing, retrieving, etc. of specific design knowledge. 
Several considerations must be addressed if a representation is to enable the manipulation of 
experiential knowledge and thus improve the effectiveness of reusing experiential knowledge.     
• Represent design cases and their abstractions. Initial design descriptions represent an abstract 

concept of the product to be developed. Through the evolution of a design’s development, a 
design description evolves from the abstract to the specific. Thus, in order to utilise experiential 
knowledge, the knowledge formalism must reflect the need for experiential knowledge to be 
abstracted to various degrees of abstraction in order to reflect and support the evolution of a 
design. Through abstraction, the process of generating a succinct design description with the 
omission of product specific features, designers begin to identify implicit knowledge held within 
the explicit knowledge of past designs in order to utilise a more widely applicable chunk of 
knowledge. As Oxman describes, designers assess and classify prior knowledge by abstracting the 
specifics of a design in order to match them to the situation of the present [Oxman 1990]. The 
process of generalising design cases, allows designers to explore a potential solution space more 
efficiently through the analysis of domain specific generalisations. 

• Represent qualitative and quantitative attribute value pairs. The nature of design draws 
many ranging forms of knowledge into a product design description, reflecting knowledge of 
function, behaviour, geometry, process and relations among others [Zhang et al. 1996]. The 
varying forms of knowledge can be categorised into two distinct forms - qualitative and 
quantitative. A system intended to support a design process must therefore represent and 
manipulate both forms of design knowledge. 

• Represent incomplete or missing data. When a designer is presented with a set of 
requirements that a proposed product should attain, the requirements often purvey minimal detail, 
with missing and incomplete information. The missing information is often concerned with the 
context of the design from two standpoints. Firstly, the constraints imposed due to the context of 
the product development process, and secondly, the specific context produced by the product 
during it’s operation in the physical world [Finger & Rinderle 1990, Gero 1990]. Thus the 
designer is not only concerned with missing information but must also visualise and predict 
expected constraints that are imposed on the design during development and use. 



 

• Represent relations between design attributes. At each decision point encountered by a 
designer during a design process, the designer is relied upon to make judgements that best reflect 
the needs of the developing product. The relationships that exist between attributes, entities, 
abstractions and designs provide a valuable source of knowledge. The relationships may be used 
to support future developments by recognising how, based on experience, the allocation of one 
attribute’s value propagates and determines related attribute value pairs. 

3.2 Utilisation of knowledge 
The recognition of the relationship between supporting the design process through supporting the 
utilisation of experiential knowledge has long been recognised [Smithers et al. 1989]. Some 
identified issues are:  

• Recall experiential knowledge. The effectiveness of informal approaches to identify and recall 
experiential knowledge to support a newly encountered design problem is determined by the 
number of design cases in the repository and the thoroughness of the indexing scheme [Maher & 
Garza 1997]. The recall of specific design cases and their abstractions may be computationally 
supported in various ways. Specific designs may be recalled based on attribute value pairs being 
matched from the current design requirement to those in the knowledge base, detailing all designs 
which are comparable to the requirement. In addition, based on a lack of known attributes, values 
and relations existing between attributes in the initial stages of the design process, the need to 
recall experiential knowledge based on the degree of commonality of attributes between present 
requirements and stored cases is considered fundamental in maintaining the progression of a 
design activity.   

• Reflecting the designers viewpoint. In order for experiential knowledge to be utilised to 
support a designer, the knowledge must be sufficiently flexible to be customised (in terms of 
restructuring) to reflect the viewpoint of the designer. The Customised Viewpoint (CV) approach 
[Duffy & Kerr 1993], recognises the need for designers to be supported with experiential 
knowledge that reflects the varying perspectives encountered during a design development 
activity. Through the ability to manipulate domain knowledge, a designer may be supported in 
making decisions based on past experiences of the domain, thus reducing the pragmatic nature of 
the design process.  

 
4 MAKING IMPLICIT KNOWLEDGE EXPLICIT 
The existence of implicit knowledge embedded within the explicit knowledge of past design cases, 
provides the opportunity to extract generalised knowledge of a domain. The process of identifying and 
extracting implicit knowledge, explicates the knowledge into domain generalisations. As a designer’s 
experience evolves within a domain, a designer may begin to identify trends and relationships within 
and across designs, based on a degree of similarity, which may be more generally applicable and 
representative of a domain. Certain knowledge transformations that designers carry out in order to 
make knowledge of past designs more flexible and more widely applicable are discussed [Duffy & 
Kerr 1993, Sim & Duffy 2000]. For example, designers not only utilise specific past designs but also 
learn and understand the salient features in order to: 
• generalise their knowledge;  
• develop heuristics; 
• make generalisations to varying levels of abstraction; and, 
• evolve and develop relationships between entities and solutions in order to improve the flexibility 

of the application of knowledge and to support prediction. 
A designer with experience of a particular domain has capabilities in recognising how a past design 
can be manipulated to aid another design activity. This can be seen from the distinction made between 
novice and expert designers, where a novice generally relies on rule-based reasoning to solve 
problems while the expert can base judgements from higher level similarities between examples 
[Hampton 1993]. The aim of supporting designers with the utility of experiential knowledge, 
necessitates the need to assist designers in bringing the relevant past to the present in a format that 



 

reflects a designer’s various viewpoints. The following methods of knowledge transformation show 
how the modification and generation of knowledge [Persidis & Duffy 1991] may be achieved to 
explicate implicit knowledge increasing the efficiency of utilising domain experiential knowledge. 
Abstraction/detailing. Abstraction is a necessary step in generalisation. An abstraction is involved 

with the generation of a new version of a concept with less detail than the original. The 
abstraction of a concept dispenses the knowledge that is superfluous to the requirements while 
maintaining what is relevant. Detailing promotes the inclusion of specific knowledge. 

Association/disassociation. Association is the discovery of relationships or correlations among 
given entities or descriptions based on logical, casual or statistical relationships. The relation 
may be expressed as a taxonomic relationship (kind-of) or a compositional relationship (part-of). 
The relationships can also be expressed by rules and equations showing attribute value conditions 
that occur frequently together in a group of similar designs. Disassociation reflects a lack of 
dependency between entities. 

Classification/unification. Classification determines a specific index description that may be used 
to classify a design or associated entity into one of several predefined classes. Each group 
member is based on a level of similarity in some predetermined perspective, while remaining 
distinct from other groups. Unification groups all data without the use of a description or 
criteria.   

Clustering (Group rationalisation)/ungroup (decomposition). Group rationalisation involves the 
grouping or clustering of similar past designs based on the similarity of some criteria or 
perspective [Duffy & Kerr 1993]. Decomposition or ungrouping removes the grouping. 

Derivation(reformulation)/randomisation. Derivation is the process of deriving a piece of 
knowledge that is based on another piece(s) of knowledge, through a level of dependency. 
Randomisation transfers one knowledge segment into another by making random changes.  

Generalisation/specialisation. Generalisation provides a concise and succinct description or model 
of a collection of data within a set of designs. Thus the description characterises all of the 
designs based on the specialisation of the concepts. Specialisation increases the specificity of 
the description. 

Transforming knowledge on such basis, aids in Domain Exploration and in turn, brings experiential 
knowledge to support designers in making more grounded pragmatic decisions. In order for a design 
to be classified into a cluster, the level of similarity/dissimilarity is assessed to determine the 
appropriate cluster which is representative of a design. A domain expert can effectively reason and 
identify underlying similarities or structure within a limited amount of data and information. 
However, while design information and data repositories continue to expand, techniques to improve 
the utility of experiential knowledge continue to evolve, attempting to decrease the gap between 
quantity and analysis capabilities. The simple regurgitation of knowledge limits the applicability of 
utilising past design knowledge and approaches which store and to a degree manipulate its data, 
information and knowledge content, are briefly discussed.  
 

5 COMPUTER BASED MODELLING   
The introduction of computer systems into the design process enables design data and information to 
be stored electronically as opposed to the paper format of design documents. What transpired from 
its introduction was the ability to store data and information in a format which enables the indexing 
and retrieval, to various degrees of ability, of information and data. The next sections discuss some 
approaches which recognise the need to store, extract and manipulate data, information and 
knowledge, discussing their ability to support utilising experiential knowledge.       

5.1 Databases 
Database systems offer a rigid method of structuring and indexing data and information. Such systems 
require data to be structured and follow a pattern of consistency in their structure. Their ability to 
support a design process is limited due to the evolutionary nature of the design process, where, at the 
outset, the structure and quantity of attributes and entities remain unknown, only being known at the 



 

completion of the design activity. The lack of ability of databases to manipulate and reason with its 
content, restrains its applicability in supporting the design process [Duffy et al. 1996].      

5.2 Knowledge Based Systems 
Knowledge Based Systems are computer systems which can enact the role of a human expert, having 
domain knowledge which it can apply to solve problems, advise and communicate knowledge to 
others. Knowledge Based Systems provide a domain with a structured source of knowledge, 
representing both specific design cases and their associated knowledge [Coyne et al. 1987]. However, 
based on their inability to learn from new experiences and the very nature of their development, 
several limitations are evident [Kerr & Duffy 1992].  

• Their structure is predetermined based on the perception and understanding of the system 
developer or knowledge engineer. 

• The rigidity of their structure, being pre-determined during development, disables them 
from manipulating and evolving their content to reflect the differing viewpoints 
experienced by designers. 

• Abstractions of specific design cases are not possible. The knowledge, i.e. heuristics, 
associated with each design may only be inherited from parent classes.  

5.3 Case Based Reasoning 
Based on analogical reasoning, Case-Based Reasoning utilises abstract forms of past design cases to 
maintain and support the evolution of a design process [ Maher & Garza 1997]. Recognising some 
level of similarity between abstractions or specific designs, a designer may be supported with 
abstracted, experiential knowledge which maps between the known attributes of a stored design or 
abstraction and the current design problem. The utilisation of analogical techniques remains 
restrictive in their ability to manipulate specific design cases to suit a newly encountered one. Only 
specific design cases and abstractions are manipulated based on a degree of similarity between design 
attributes. No induction techniques exist to identify and extract implicit knowledge from within a 
domain.      

5.4 Knowledge Data Discovery 
Knowledge Data Discovery (KDD) involves the analysis of repositories of data and information for 
the purpose of identifying and extracting implicit or unseen knowledge which may be submersed in a 
data set. KDD represents a process of explicating implicit knowledge, through data preparation, data 
transformation, data analysis and data interpretation among others [Fayyad et al. 1996]. Data Mining, 
the analysis step in the KDD process involves the identification of patterns or implicit knowledge 
from within a design data set. The ability to explicate implicit knowledge may be provided through 
various techniques, such as those mentioned in section 4, enabling the system to present concise 
domain generalisations. The techniques presented in section 4, are utilised to transform specific 
design cases into domain generalisations through a data mining system’s ability to structure and 
restructure domain knowledge. 
The ability of KDD, in particular data mining, to extract and present generalised domain knowledge 
from within specific design cases will be discussed further, considering the goals of KDD and data 
mining, the methods of knowledge transformation and the specific knowledge representations 
utilised.  
 

6 DATA MINING IN A DESIGN CONTEXT 
Despite receiving relatively little attention in design to date, data mining has been successfully 
utilised in areas such as fraud detection, identifying consumer trends and maximising the efficiency 
of production processes. Drawing from distinct research areas, such as machine learning, knowledge 
representation and statistics, such data mining systems can be used to identify, modify and extract 
knowledge. The complex nature of the design process, has to date restrained the development of 
computer programs to support and aid a designer during product development. Data mining tools 
currently provide the core functionalities required to support designers through: the identification and 
exploration of relevant design spaces, supporting the use of experiential knowledge to reduce the 



 

pragmatic extent of decision making; the structuring of experiential knowledge through their ability to 
generalise, abstract, cluster and associate within design domains; and, possessing the ability to learn 
from new experiences. Such tools may be utilised to structure and manipulate experiential knowledge 
in order to map between previous design solution principles and current design perspectives.  

6.1 Data Mining Goals 
Data mining is the process of discovering new knowledge or knowledge of interest such as patterns, 
associations, changes, anomalies, structures, principles, etc., from data or information repositories. 
An integral part of the Knowledge Data Discovery (KDD) process [Adriaans & Zantinge 1996, Fayyad 
et al. 1996], data mining capabilities realise the achievement of the knowledge discovery goals of 
KDD. Such primary goals may be distinguished based on the intended use of the system as: 
• verification - systems used to verify or discount an hypothesis; 
• discovery - systems autonomously search for new patterns and present discoveries to the users. 

Discovery can be further broken down to: 
- prediction - where the system discovers patterns for use in predicting the future behaviour of 

some entities; and, 
- description - system finds patterns for the purpose of presenting them to the user in an 

interpretable form. 
The distinction between the prediction and description goals is useful for understanding the overall 
discovery goal, but the boundaries between the two often overlap (description models may be 
representative of the domain while providing prediction, and vice versa). 

6.2 Knowledge Transformation Techniques 
Data mining tools have a wide range of techniques which, depending on the goal or reason for 
implementation, determine the specific or suite of techniques to be utilised. Many such techniques 
have been in use for more than a decade, being utilised in specialised analysis tools, whose only 
prominent constraint was their inability to analyse large volumes of data. A range of specific 
techniques [Fayyad et al. 1996, Shapiro & Frawley 1991] used in data mining systems are presented in 
order to illustrate how the goals of a KDD process may be realised and introduce the functionality 
that can now be harnessed from such computational techniques.  
Abstraction - generation of an entity’s description with less detail and specificity.  
Association - discovery of associative relations among a given set of entities which satisfy a given 

set of criteria.  
Classification - determines a specific criteria that may be used to classify a design or associated 

entity into one of several predefined classes. 
Clustering - segregate through (dis)similarity of a data set into a finite set of categories.  
Derivation - generates new knowledge as derived from another piece of knowledge. 
Generalisation - determines a domain description that is representative of a complete domain or 

grouping of design cases. 

6.3 Knowledge Representation Techniques 
The utilisation of various knowledge formalisms, provides several benefits to various concerns in 
design. The ability to represent the same knowledge through various representation techniques 
supports designers at differing times in a design process. For example, through the use of domain 
specific equations a designer may determine attribute values based on known values or the use of a 
dependency network to support the design development process. In addition, various formalisms 
support user’s in understanding the results and in turn applying the knowledge to their design 
viewpoint. Data Mining systems utilise specific knowledge formalisms to support the structuring of 
data, information and knowledge within a domain’s ranging viewpoints. 
Dependency Networks - enables the generation of models based on identified significant 

dependencies between variables. Figure 1 details a basic dependency network presenting the 
relational strengths between entities. The figure details how the independent attribute ‘CUBIC’ 
possesses a strong relationship with ‘CARGO DWT’. The information displayed in the network 
provides designers with the ability to make decisions while determining and recognising those 
related ‘trade-off’ attributes. 



 

 

 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1: Dependency Network showing the Utilisation of Weighted Relationships 
Decision Trees - enable an activity or process to be modelled in terms of specific decision points. 

The tree like structure, as shown in Figure 2, represents a set of decision points with all possible 
outcomes represented. Such a representation of knowledge is similar, in knowledge content, to 
the rule-based formalism. The generation of a decision tree based on a user’s contextual needs 
enables designers to procedularise an activity, based on past experiences, to ensure the 
satisfaction of all considerations. 

Equations - Another formalism for the dependencies between attributes is in the form of an equation 
(1). The quantified dependencies of attributes extracted from a source of past design examples 
may be represented as:  
Cb = 0.968 – (0.269 x Vs / (√ L / 0.3048))                                                                     (1)  

where the attribute Block Coefficient (Cb) may be determined based on known values for the 
attributes Length (L) and Speed (Vs). 

   
 
 
 
 
 
 
 
 

 

Figure 2: Outlining the graphical representation of rule induction 

Neural Network’s (NN’s) - most prominent feature is their ability to learn. An NN may be trained to 
map a set of input patterns onto a corresponding set of output patterns, through the exposure of 
past examples. Training is performed through the gradual adoption of the internal weights of the 
network, to reduce the difference between actual network outputs and the desired network outputs 
(based on a given set of inputs). A major drawback of an NN, is its ‘black box’ approach to 
detailing their rationale used, upon which it has based decisions [Lu et al. 1996]. 

Production rules - involve the extraction of IF condition THEN action rules from data sets. Thus, if 
a condition is satisfied then a logical conclusion may be drawn. For example: 
     IF (attribute) draught < (value)12.92 
   AND (attribute) lob > (value) 6.18 
   AND (attribute) engwt > (value) 350.5 
  THEN (conclusion) ENGL = (result) 12.13  

This rule derives the attribute ‘ENGL’ based on statistics that draught, lob and engwt all have a strong 
positive correlation with ENGL. If…. Then rules are particularly helpful in the development of 

Key 

 
 Independent Characteristic 

 
 

                 Dependent Characteristic 
 

 Relationship (to dependent            
characteristic) 

 
Dependency weight:  
(ranging from 1.0 - high  
dependency, to  
0.1 - minimal dependency) 

0.7 
0.6 

0.98 DISPLACEMENT 

SPECIFIC 
GRAVITY 

DEPTH 

BEAM/ 
DEPTH 

BEAM 

CUBIC 
NUMBER 

CARGO 
DWT 

DWT 

1.0 

1.0 

0.7 
0.9 

0.97 

0.7 

CUBIC 

<10.6 

 >=14.179 
<118 

<3.578 
ENGL 

FCP= 34.15 

>10.6 

 <14.179 

>=118

>=3.578 

FCP= 3.71 

FCP 

Power 

Power 

Draught 

ENGL 

Depth 

Depth 

FCP= 29.3 



 

traditional rule based expert systems [Winston 1984].   
The knowledge transformation and representation techniques, discussed in sections 6.2 and 6.3 
respectively, are not a comprehensive list but serve to show, not only a range of tasks that data mining 
can accomplish but in aiding the process of KDD to ensure that the goals are identified and matched 
onto the above approaches. However, it is considered here that the above forms of knowledge 
representations and techniques, all have specific roles to play in a design process, depending on the 
stage and viewpoint of the designer.   
In order to evaluate the degree of support that may be gained through the utilisation of data mining 
techniques, an evaluation was initiated to assess the functionality that data mining tools can provide to 
a technological design domain. Based on the differing considerations discussed in sections 2 and 3, 
five knowledge discovery/data mining systems were obtained and utilised to assess their potential 
ability to address the ill structured, explorative and pragmatic nature of a design activity. The 
selection of the five systems from the range of commercial and research systems, though not all 
encompassing, the intent was in utilising and evaluating a functionally representative cross section of 
systems. Brief overviews of five systems are presented, followed by a discussion that encapsulates 
how the functionality of the systems may be used to support design activities. 
 

7 DATA MINING SYSTEMS   
Data mining systems may be initially categorised as either mono-strategy systems presenting a single 
technique such as clustering, or multi-strategy systems which incorporate a suite of techniques. Of 
the five systems utilised two systems, BRUTE and CN2, reflected the mono-strategy approach, and 
two systems, CLEMENTINE and MOBAL, reflected the multi-strategy approach. An additional 
Customised Viewpoint tool, PERSPECT is introduced. 
Mono-Strategy Sysems 
BRUTE, an experimental research system, was developed by Segal, to exhaustively search a data set 
with the goal of inducing rules. The system is directed mainly for use in fields were qualitative 
attributes are common, but through the process of making values discrete, the system may manipulate 
quantitative data [Segal 1992].  
CN2, developed by Clark and Niblett, is a rule induction program that takes a set of examples, in the 
form of attribute values pairs, and generates a set of rules from which to generalise examples. [Clark 
and Matwin 1993]. As in BRUTE, the CN2 system can, unsupervised (autonomously), generate rules 
using quantitative attributes, but remains restrictive in its inability to predict the value of a quantitative 
attribute, unless previously made discrete 
Both BRUTE and CN2 are distinctly restrained in terms of their functionality and graphical 
representation of knowledge within a domain, both present easily interpretable results, in the form of 
production rules. 
Multi-Strategy Systems 
Two multi-strategy systems follow in the discussion, namely CLEMENTINE and MOBAL, that 
realise the needs of designers requiring different functions, manipulations and representations to 
allow experiential knowledge to be effectively utilised.  
CLEMENTINE [SPSS] allows users to extract and manipulate data, and visualise trends and 
relationships. This system provides neural network and decision tree techniques through 
classification and discovery methods. The very nature of the manipulation of data, allows the user to 
not only control rule generation but the system also displays the information and knowledge in such a 
way that the user is supported in identifying patterns and relationships, thus reflecting both supervised 
and unsupervised learning. This functionality is brought to the system through a user interface which 
represents the flow of data through a serious of transformational and representational processes.  
MOBAL [ILP ESPRIT] was developed for the purpose of developing, validating and maintaining 
domain knowledge models of an application domain. MOBAL allows the incremental evolution of a 
domain model to be generated through both supervised and unsupervised learning. Being iterative in 
nature, the system allows the user to incrementally develop a model drawing on the user’s knowledge 
of the domain to guide and develop models. The output or knowledge representation is presented to 



 

the user in the form of logical facts and rules. At any point in the generation of a model, the user can 
control, direct and inspect the knowledge input, transformation and output through graphical (i.e. 
graphs) or textual (i.e. rules,) representations.  
The PERSPECT system [Duffy & Duffy 1996] goes beyond the previous systems discussed, by 
providing users with an interactive design support system. Developed to assess the utility of the 
Customised Viewpoint (CV) approach, the system provides a suite of software which not only draws 
knowledge directly from past designs held within CAD software, manipulating, generating and 
modelling knowledge specific to requirements, but closes the cycle by drawing the new knowledge 
back into design systems to continue the design activity with supporting knowledge. The PERSPECT 
system was designed to, during preliminary design activities, retrieve and present knowledge to 
support a designer in making decisions without delaying the design’s progress. PERSPECT supports, 
at the highest level, the design process by supporting designers in the following design tasks. 
• Preparation of a domain model – supports designers in creating a new or checking and evolving 

existing models to reflect the implicit knowledge within a domain. 
• Initiation of a design model – supports designers in utilising the model with the intent of 

progressing an existing design solution through (a) predicting unknown values through utilising 
specific design cases or identifying relevant (sub)equations which reflect the designers 
circumstances or viewpoint, or (b) generalising existing domain models to reduce the complexity 
or number of unknown attributes which may be required, reflecting the knowledge available and 
required within the designer’s viewpoint. 

Of the systems discussed, the ability to generate, modify and evolve models and equations were 
discussed. PERSPECT however, extended the functionalities by facilitating the initiation and 
utilisation of  the models. PERSPECT’s ability to extend the utilisation of generated models stems 
from the systems architecture and interfacing subsystems. 
 

8 EVALUATION OF DATA MINING IN DESIGN 
The evaluation of the five data mining/knowledge discovery systems is not presented as an exhaustive 
critique of the systems, but rather one that is indicative of the nature of a technological design 
environment. Sections 2, 3 and 4 will each be discussed in context of the five systems as follows. 
Firstly, the aspects which address the nature of the design activity will be discussed, namely: provide 
structure; support exploration; and, support the pragmatic nature of design. Secondly, the systems’ 
abilities to represent knowledge from various considerations are discussed followed by an analysis of 
the level of knowledge utility obtained by the systems. Lastly, the systems will be discussed in terms 
of the knowledge transformation techniques which enable the explication of implicit knowledge to be 
achieved. Table 1 presents an evaluation of the knowledge discovery and data mining systems within a 
design environment. In deriving the table, the following observations could be reached.    
Provide Structure - Through the structuring of domain and design knowledge all of the systems 
possess the abilities to identify trends and patterns and present explicated implicit domain knowledge 
as models. The restraining ability of the systems to support the recognition of the relations within and 
between design cases and abstracted design concepts, is considered to restrain the user’s 
understanding of a domain.   
Support Exploration - The importance of identifying and utilising applicable design spaces ensures 
that any explicated knowledge reflects the requirements of a designer and not just a representation of 
a domain (you get what you inspect and not what you expect). CLEMENTINE can determine relevant 
design spaces based on the attributes in a designer’s viewpoint. The determination of a design space in 
the MOBAL system is presented in the form of positive and negative examples with the intent of 
disclosing the past cases which support and provide parameters respectively to the user. PERSPECT 
however, effectively supports the exploration of a domain while maintaining the relationship of 
supervised learning, as the user interactively refines and directs the focus or viewpoint of the system. 
Both BRUTE and CN2 provide limited support in the exploration of a domain, being limited to 
explorations based on attribute value pairs. 



 

Support Pragmatic Nature of Design - In the determination of attribute value pairs, both the 
MOBAL and PERSPECT systems may use a case based approach, thus presenting designers with 
specific design case values. The CLEMENTINE system predicts attribute values based on designers’ 
needs and the explicated relations between attributes and entities within the domain, in addition 
detailing the maximum and minimum attribute values found within the domain. Through predicting and 
presenting attribute values and the underlying relations, the MOBAL and PERSPECT systems enable 
the progression of the design activity to be maintained by generating domain specific dependency 
networks to aid in the assessment of trade-off decisions between attributes. However, what appears to 
reduce a dependency network’s ability to support a design activity, is the lack of knowledge 
concerning relative weights between dependants, reflected only in the PERSPECT system. In addition, 
a parametric type network which details maximum and minimum ranges, may present boundary 
conditions, beyond which a designer will recognise to act with awareness.  
Representation of Knowledge -  The ability of the systems, CN2 and BRUTE, to represent explicated 
knowledge in various formalisms was a restraining factor in terms of diversity of the systems and also 
in the understanding of the generated knowledge. The multi-strategy systems, through a range of 
knowledge representations, supported the process of instilling a level of understanding of the 
explicated knowledge in the user. Considered a major strength, the ability of the systems to represent 
the knowledge in differing formalisms allows the knowledge to reflect the specific nature of support 
required, such as predicting an attribute’s value through a production rule or decision list, or the 
effect of the allocation of an attribute on the attributes within a design description through a trained 
Neural Network or equation. 
Utilisation of Knowledge - The incapability of the systems to utilise both qualitative and quantitative 
attribute value pairs represents a deficiency in terms of supporting the nature of design. In addition, 
the inability to provide information on specific design cases or abstracted concepts inhibits the 
recognition of utilising case based values as a means to progress an activity. While possessing the 
ability to utilise specific values, actual cases are not recovered by the systems. The analysis of a 
concept during preliminary design stages presents a valuable commodity and reflects an effective 
utility of available knowledge. As a designer makes judgements and decisions concerning a concept, 
the allocation of an attribute value may be ascertained by experiential knowledge to identify and 
highlight non-conforming values or those values which are considered to be beyond the experiences 
of past domain conforming designs.    
Manipulate Experiential Knowledge - The manipulation of knowledge reflects the goal of the KDD 
process. With the varying requirements related to the nature of the design activity, the requirement of 
a system to reflect a multi-strategy approach, incorporating a suite of knowledge transformation 
techniques, is considered vital.  
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     I n c o r p o r a t e  q u a l i t a t i v e  a t t r i b u t e  v a l u e  p a i r s u u u u

     I n c o r p o r a t e  q u a n t i t a t i v e  a t t r i b u t e  v a l u e  p a i r s u u u
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     G e n e r a l i s a t i o n u u u u u

S Y S T E M S

E V A L U A T I O N  C R I T I Q U E

 
Table 1:Evaluation of Knowledge Discovery and Data Mining systems (u  represents a degree of support)     

As experiential knowledge is manipulated and condensed into a domain, the degree of contextual 
knowledge needs to be assessed. Being presented with a model or heuristic without the detail 
knowledge of whether a model was extracted autonomously, generated by a domain expert (or 
novice), or pre-compiled as a recognised domain heuristic, may reduce the confidence of the user in 
its appropriateness to their viewpoint. In order to promote the user’s confidence in the process, 
adequate contextual knowledge must be presented through detailing: firstly, the quality of obtained 
results, such as number of missing fields encountered during analysis, number of cases used 
(disclosing concept or abstraction), the ratio between actual cases used and number of cases present, 
statistical results and obtained accuracy; and secondly, the recognition of attribute value pairs as being 
maximum/ minimum values, average values, predicted values or case based values.   
Within the process of knowledge discovery, a lack of integration between CAD systems and data 
mining systems, highlights an issue which introduces error susceptible activities such as information 
loss and disjointed fields between donor and knowledge discovery systems.  
A foreseeable issue in utilising data mining techniques within a technological design domain is with 
the vocabulary used to represent a product or entity. The very ‘mismatch’ between one designer’s 
interpretation and the allocation of an attribute name, may reflect a misrepresentation of knowledge 
within a domain, jeopardising the accuracy of results. 
 

9 CONCLUSION     
Past design cases possess the potential to provide support not only in the form of specific design 
knowledge, but also in generating design domain principles based on implicit knowledge. As design 
repositories expand, the activities of manually identifying, representing and utilising implicit 
knowledge from within domains becomes increasingly difficult. Therefore, these three quite distinct 



 

activities must be sufficiently and effectively supported if the activity of supporting future design 
developments, with implicit knowledge of past designs (e.g. in the form of design rules or principles) 
is to become a reality. The functionality delivered by data mining can realise these three activities. 
This paper has presented KDD as an approach in analysing large design repositories and interrogating 
data, enabling a controlled level of implicit knowledge to be identified. The ability of data mining 
systems to possess varying techniques of representing and utilising experiential knowledge through 
various knowledge representations has been discussed. In addition, the ability of a system to display 
the results through a range of techniques, enabling users to analyse generated patterns or models 
more effectively and also in assessing their relevancy to a specific domain, thus promoting a factor of 
confidence in the results, has been presented. This paper has shown that the functionality of data 
mining has a significant contribution to provide within technological design. However, due to the 
developments focusing upon practical applications, aside from the domain of technological design, 
the systems provide some of the core functionalities necessary but individually are functionally 
deficient regarding the effective utilisation of experiential design knowledge. The integration of 
knowledge discovery and data mining techniques into a design environment can provide a design 
support tool capable of not only creating new design knowledge, but that can evolve and learn from 
that knowledge to support future design scenarios.   
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