

Strathprints Institutional Repository

Strachan, P.A. (2001) *Overview of building simulation in Europe*. In: Conference on Building Energy Simulation, 2001-06-13 - 2001-06-14, Ottawa.

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http:// strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator: mailto:strathprints@strath.ac.uk

Strachan, P.A.* (2001) Overview of building simulation in Europe - Invited Keynote Presentation. Proceedings of eSIM 2001 Conference on Building Energy Simulation, Ottawa.

http://eprints.cdlr.strath.ac.uk/6314/

This is an author-produced version of a paper published in Proceedings of eSIM 2001 Conference on Building Energy Simulation, Ottawa.

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http://eprints.cdlr.strath.ac.uk) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge. You may freely distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints website.

Any correspondence concerning this service should be sent to The Strathprints Administrator: eprints@cis.strath.ac.uk

Overview of Building Simulation in Europe

Paul Strachan Energy Systems Research Unit University of Strathclyde Glasgow, Scotland

Contents

- National and EU background
- Increased use of building simulation: drivers and barriers
- Relevant EC-funded projects
- Research themes
- · Technology transfer
- Conclusions

EU Policy

Following Kyoto agreement:

- All cost effective measures add up to a 5-10% CO₂ reduction over the period 2005-2010
- Aim is security of supply and competitiveness, with some environmental considerations added
- Funds redirected from fossil fuel and nuclear power programmes to renewable energy and energy efficiency

Selected EU Programmes

Joule - non-nuclear RD&D

Thermie – promotion and market introduction of energy efficient and environment-protecting technologies in industrial and private sectors

Altener – promoting the use of renewable energy by:

- Harmonised standards for RE products/equipment
- Improved information dissemination
- Save promoting rational use of energy

Growth - competitive and sustainable growth

EU 5th framework budget (Million Euros) 1998-2002

Competitive and sustainable growth Energy (non-nuclear)	2705 1042
Environment and sustainable development	1083
Horizontal programmes	2857
Framework total	13700

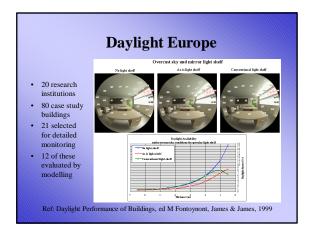
Other governmental factors - UK example

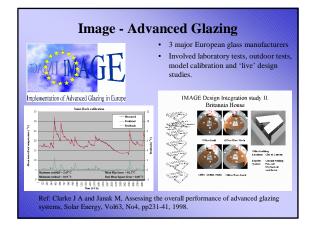
Kyoto Agreement (1997)	Heads of Government commitment to reduce key greenhouse gas emissions in EU by at least 8% by 2008- 2012 relative to 1990. This would result in 2010 emission levels that are -29% below what would have been in the absence of the protocol.
Local Agenda 21	Commitment to reduce CO ₂ emissions at the local level.
UK Home Energy Conservation Act (1995)	Local authorities responsible for preparing practical energy conservation plans to achieve 30% reduction over 10 year period.
UK SAP Ratings Initiative	Introduction to the Building Regulations of a Standard Assessment Procedure (SAP) for domestic buildings
UK Clean Technologies Programme	Promotion of waste minimisation, sustainable cities and new technologies (e.g. fuel cells, photovoltaics, efficiency measures).
Electricity market deregulation	Open market puts pressure on all sectors to change current practices, especially in relation to complementary demand- and supply-side partnerships.
Climate change levy	Pressure on industry to reduce energy consumption.
Energy Action Planning	Requires elaboration of a range of appropriate sustainability indicators.

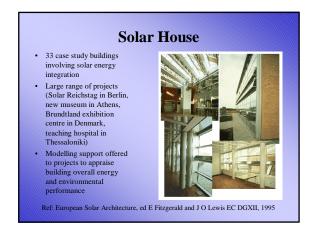
Drivers for increased use of building simulation

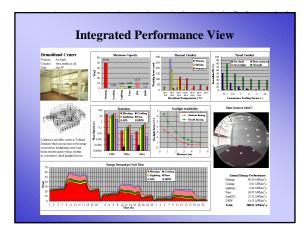
- Organisations (IBPSA and national affiliates, CIBSE Applications Manual)
- Software enhancements (interface and capabilities)
- "Green" clients
- Technology transfer initiatives
- Standards and building regulations

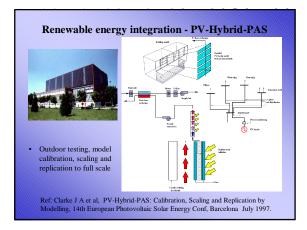
CEN Standards

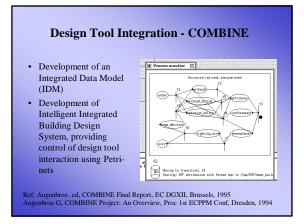

Standards being developed that may include simulation

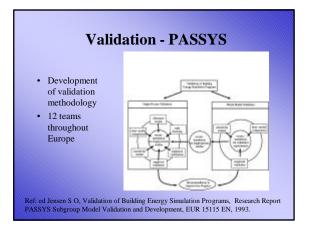

- 1. Estimation of Summer Overheating
 - General criteria and validation procedure
 - Annex contains numerical method based on implicit finite volume approach; also simplified calculation methods.
- Almost complete likely to be formally approved in 2002

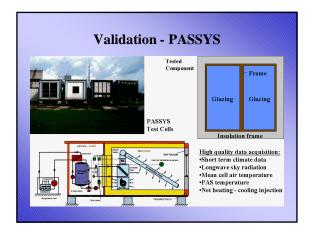

2. Calculation of peak cooling load

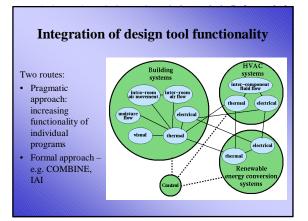

- Public enquiry stage: likely to be 2/3 years before approval
- Numerical method not defined; benchmark tests.
- 3. Calculation of annual cooling requirements
- Public enquiry stage: likely to be 2/3 years before approval

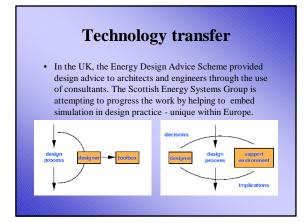

Advanced glazing (IMAGE)	Lighting/thermal Managed systems, insulated glazing, multiple
(IMAGE)	Managed systems, insulated glazing, multiple
1.0	coatings/gas fill, improved framing systems
IntDesign	Thermal/CFD Local indoor comfort
FOG	Thermal/moisture Stable fog generation and control
PV-Hybrid- PAS	PV hybrid components
HYPRI	Roof-mounted hybrid components
Solar House	Designer-led incorporation of low-energy components within European exemplary building designs
PASCOOL	Experimental and modelling study of solar control, thermal mass and natural ventilation
PASSYS	Validation methodology and application; empirical validation using outdoor test cells
COMBINE	Development of integrated data model and design process models
WIS	Thermal and optical properties of window systems Pressure coefficients
	PV-Hybrid- PAS HYPRI Solar House PASCOOL PASSYS COMBINE

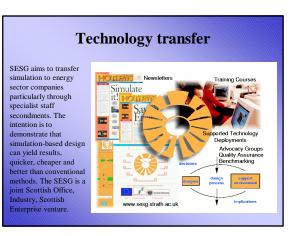












Cumulative model description	Typical behaviour enabled
pre-existing databases	simple performance indicators (e.g. material hygrothermal and embodied energy data etc)
+ geometry	visualisation, photomontage, shading, insolation etc
+ constructional attribution	embodied energy, material quantities, time constants etc
+ operational attribution	casual gains, electricity demands etc
+ boundary conditions	photo-realistic imaging, illuminance distribution, no- systems thermal and visual comfort levels etc
+ special materials	electricity generation (photovoltaics), daylight levels (switchable glazings) etc
+ control system	daylight utilisation, energy performance, system response etc
+ flow network	natural/mechanical ventilation, system performance, heat recovery etc
+ HVAC network	psychrometric analysis, component sizing etc
+ CFD domain	indoor air quality
+ electrical power network	renewable energy integration, load control etc
+ enhanced geometrical resolution	thermal bridging
+ moisture network	local condensation, mould growth and health

Conclusions

What building simulation software tools are commonly used by design professionals (architects/engineers)?

- Use of simulation increasing, particularly for prestige projects, but a long way to go for routine use.
- Biggest factor is move towards performance-based standards.
- Tools:

highly variable within Europe more advanced applications

Conclusions

What are the major barriers to further adoption of simulation by designers?

- Capital cost driven design
- Cost of modelling
- Lack of awareness of capabilities by managers
- Poor ease of use/ need for training
- Need to set up QA procedures
- Skills shortage

Conclusions

Who is doing software development: universities, government agencies or private companies?

• Diverse in Europe:

utilities companies

universities

Proprietary software in most cases

Conclusions

- What government and energy utility initiatives encourage the use of building simulation?
- Explicit:
- technology transfer initiatives

 Implicit:
 - stricter building codes performance-based standards Kyoto etc....