
Strathprints Institutional Repository

Aberg, Johan and Oi, Daniel K.L. (2007) Generalized spectroscopy; coherence, superposition, and
loss. arXiv.org.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9018861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 
 
Aberg, Johan and Oi, Daniel K.L.* (2007) Generalized spectroscopy; coherence, superposition, 
and loss. Physical Review Letters. ISSN 0031-9007 
 
 
 
 
 
http://eprints.cdlr.strath.ac.uk/6214/
 
 
 
This is an author-produced version of a paper published in Physical Review Letters. 
ISSN 0031-9007. This version has been peer-reviewed, but does not include the final publisher 
proof corrections, published layout, or pagination. 
 
Strathprints is designed to allow users to access the research output of the University 
of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained 
by the individual authors and/or other copyright owners. You may not engage in 
further distribution of the material for any profitmaking activities or any commercial 
gain. You may freely distribute both the url (http://eprints.cdlr.strath.ac.uk) and the 
content of this paper for research or study, educational, or not-for-profit purposes 
without prior permission or charge. You may freely distribute the url 
(http://eprints.cdlr.strath.ac.uk) of the Strathprints website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://eprints.cdlr.strath.ac.uk/6214/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk


ar
X

iv
:q

ua
nt

-p
h/

07
03

20
3v

1 
  2

2 
M

ar
 2

00
7

Generalized spectroscopy; coherence, superposition, and loss

Johan Åberg1, ∗ and Daniel K. L. Oi2
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We analyze single particle coherence and interference in the presence of particle loss and derive an
inequality that relates the preservation of coherence, the creation of superposition with the vacuum,
and the degree of particle loss. We find that loss channels constructed using linear optics form a
special subclass. We suggests a generalized spectroscopy where, in analogy with the absorption
spectrum, we measure a “coherence loss spectrum” and a “superposition creation spectrum”. The
theory is illustrated with examples.

PACS numbers: 03.65.Yz, 03.75.Dg, 03.67.-a, 39.30.+w

Interference phenomena are versatile tools for studying
quantum systems. The coherence of a physical process,
i.e., its ability to preserve the capacity for interference,
can likewise provide valuable information on the dynam-
ics, which we suggest could be utilized for a spectroscopic
approach. The coherence properties of quantum opera-
tions have been considered in Refs. [1, 2, 3], for an alter-
native approach see [4], and used to define operational
interferometric fidelity and coherence measures [5]. How-
ever, these investigations assume no particle loss, limiting
their applicability to mainly idealized situations. In this
Letter, we consider the effect of particle loss on coherence
and suggest procedures to measure the quantum proper-
ties of loss processes. The relation between particle loss
and coherence has been considered both theoretically and
experimentally in the context of neutron interferometry
[6] using complex phase shifts, and also in the context of
geometric phases [7] using non-Hermitian Hamiltonians.
Complex phase shifts and non-Hermitian Hamiltonians
[8] are useful phenomenological approaches to particle
loss, and the latter can be derived as an approximation
describing no-jump trajectories in the quantum jump ap-
proach [9]. However, within the standard framework of
quantum mechanics, we model loss using quantum chan-
nels (trace preserving completely positive maps) [10] on
second quantized systems to allow for varying particle
number.

Briefly reviewing the ideal case of no particle loss,
consider a particle with an internal degree of freedom
(e.g. spin or polarization) traversing a Mach-Zehnder
interferometer with two paths A and B. In path A we
insert the material or device we wish to probe. In
path B we apply a variable unitary operator U and
a phase shift eiχ. After re-interfering the two paths,
the probability to find the particle in path A is pA =
1
2 + 1

2 |F (ρ, U)| cos(argF (ρ, U) − χ), where F (ρ, U) =
Tr(U †V ρ), and where ρ is the initial internal state of
the particle, assuming no particle loss. The operator
V , which we refer to as the coherence operator [2], is
not uniquely determined by the internal state evolution
channel Φ of the material [1, 2, 3], and thus provides ad-

ditional information. In a second quantized description,
restricted to the vacuum and single particle subspace,
the action of the device or material can be described as
Φ̃A⊗ĨB where ĨB denotes the identity channel on path B,
and where Φ̃A(ρ̃) = Φ(ρ̃) + V ρ̃|0A〉〈0A| + |0A〉〈0A|ρ̃V † +
|0A〉〈0A|ρ̃|0A〉〈0A| [1, 3]. Hence, the coherence operator
V simultaneously determines to what extent superposi-
tion between the vacuum and single particle states is pre-
served, and the capacity for interference.

The additional information in the coherence operator
suggests a spectroscopic procedure, recording the coher-
ence as a function of the wavelength of the probing par-
ticle, to obtain a “coherence loss spectrum”, akin to an
absorption spectrum. (Not to be confused with coher-
ence spectroscopy [11].) Here, we generalize our previous
approaches to include loss in order to characterize this
type of spectroscopy. Clearly, loss of the interfering par-
ticles causes a reduction of interference, but how much?
We find an expression that relates the interference ca-
pacity with particle loss, but also with a third quantity
that describes the creation of superposition between the
vacuum and single particle states. To achieve this we
need to quantify superposition [12]. Given two projec-
tors P0 and P⊥ onto orthogonal subspaces, the function
A(ρ) = ||P⊥ρP0|| [12], where || · || is the standard oper-
ator norm, quantifies the superposition in a state ρ with
respect to the two subspaces. In the present case, where
the vacuum state results in the one-dimensional projec-
tor P0 = |0〉〈0|, we find ||P⊥ρP0|| = ||P⊥ρ|0〉||, where on
the right hand side we have the ordinary Hilbert space
norm.

Let the channel Φ̃ be “vacuum preserving”, i.e.,
Φ̃(|0〉〈0|) = |0〉〈0|. Let |ψ⊥〉 be a normalized element
in the orthogonal complement of the vacuum state. We
define three functions that characterize the action of
the channel Φ̃. The first, L(ψ⊥) = 〈0|Φ̃(|ψ⊥〉〈ψ⊥|)|0〉,
tells us to what extent the state |ψ⊥〉 is mapped to the
vacuum state, i.e., the degree of loss. The next func-
tion, P(ψ⊥) = ||P⊥Φ(|ψ⊥〉〈0|)P0||, describes how well Φ̃
preserves superposition between |0〉 and |ψ⊥〉. Finally,
C(ψ⊥) = ||P⊥Φ(|ψ⊥〉〈ψ⊥|)P0|| quantifies how much su-
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perposition the operation creates from the input |ψ⊥〉. If

Φ̃ is vacuum preserving, the following relation holds

L(ψ⊥)P2(ψ⊥) + C2(ψ⊥) ≤ L(ψ⊥)[1 − L(ψ⊥)]. (1)

Moreover, if L(ψ⊥) = 0, then C(ψ⊥) = 0.
To prove Eq. (1) we note that there always exists a

Hilbert space Ha and a unitary operator U on H̃ ⊗ Ha

such that Φ̃(ρ) = Tra(Uρ⊗|a〉〈a|U†). By the requirement

that Φ̃ should be vacuum preserving it follows that there
exists a normalized |a0〉 ∈ Ha, such that U|0, a〉 = |0, a0〉
(where |x, y〉 = |x〉|y〉). We define |f〉 = U|ψ⊥, a〉, and
note that 〈0, a0|f〉 = 0. We can make the following iden-
tifications: L(ψ⊥) = ||〈0|f〉||2, P(ψ⊥) = ||〈a0|f〉||, and
C(ψ⊥) = ||P⊥

0 Tra(|f〉〈f |)P0||, where we keep in mind

that 〈0|f〉 ∈ Ha and 〈a0|f〉 ∈ H̃. We let P⊥
a0

denote
the projector onto the orthogonal complement of |a0〉,
and note that we can write L(ψ⊥) = 〈f |P0 ⊗ P⊥

a0
|f〉 and

P2(ψ⊥) = 〈f |P⊥
0 ⊗ Pa0

|f〉. Finally, one can show that
C2(ψ⊥) ≤ 〈P⊥

0 ⊗P⊥
a0
|f〉〈f |P0⊗P⊥

a0
|f〉. We can now prove

Eq. (1) by using the identity 〈f |P⊥
0 ⊗ P⊥

a0
|f〉 + 〈f |P⊥

0 ⊗
Pa0

|f〉 + 〈f |P0 ⊗ Pa0
|f〉 = 1. We can interpret Eq. (1)

as an exclusion principle satisfied by vacuum preserv-
ing channels; for a given level of loss the preservation of
superposition and the creation of superposition are com-
peting, one takes its maximum only if the other is zero.

The relation in Eq. (1) is valid for arbitrary vacuum
preserving operations, no matter how they act on the
orthogonal complement of the vacuum state (e.g., single
particle states may be mapped to two-particle states).
However, a clear relation between P(ψ⊥) and coher-
ence, as measured with a single particle interferometer,
requires the assumption that single particle states are
not mapped outside the vacuum-single particle subspace,
e.g., if Φ̃ has no gain. With this additional assumption,
we can further understand Eq. (1) by considering a par-
ticle without internal degree of freedom. In this case we
can explicitly construct the loss channels on the vacuum-
single particle states as

Φ̃(ρ) = |0〉〈0|ρ00 + σρ11 + γ|0〉〈1|ρ01 + γ∗|1〉〈0|ρ10, (2)

where σ is a density operator on Sp{|0〉, |1〉}, and γ is a
complex number, such that |γ| ≤ 1 and σ00|γ|2 + |σ01|2 ≤
σ00(1 − σ00). Hence, L = σ00, P = |γ|, and C = |σ01|.
One can show that the converse also holds; if σ is a den-
sity operator then Φ̃ defined by Eq. (2) is a vacuum pre-
serving channel on the vacuum and single particle states.

How do we measure L(ψ⊥), P(ψ⊥), and C(ψ⊥)? We
first note that L(ψ⊥) can be measured directly from the

probability of finding the vacuum in Φ̃(|ψ⊥〉〈ψ⊥|). If

Φ̃(|ψ⊥〉〈ψ⊥|) stays within the vacuum and single par-
ticle subspace, then P(ψ⊥), with |ψ⊥〉 a single-particle
state, can be measured using a Mach-Zehnder setup,
where the internal input state of the particle is |ψ⊥〉.
We find that the final probability to detect the particle

in path A is pA(χ) = 1
2 − 1

4L(ψ⊥) + 1
2 |F | cos(argF − χ),

where F = 〈ψ⊥|U †Φ̃(|ψ⊥〉〈0|)|0〉. Thus, the maximal
visibility 1

2P(ψ⊥) is obtained when U |ψ⊥〉 is parallel to

P⊥Φ̃(|ψ⊥〉〈0|)|0〉. It is difficult to see how C(ψ⊥) could be
measured using an interferometric setup. However, there
are other means to determine this quantity, at least if
the particle is a photon. There are experimental tech-
niques [13] to determine the probability pχ = 〈χ|σ|χ〉,
where |χ〉 = (|0〉+e−iχ|1〉)/

√
2 for χ ∈ [0, 2π), and where

σ is a density operator on the vacuum and single particle
states. It is thus possible to determine σ01 by varying χ.
We can apply Φ̃ on a single particle state |ψ⊥〉 and use
the above technique to estimate pχ, and thus determine
|σ01|. This approach can in principle be extended to take
into account an internal degree of freedom such that we
can measure C(ψ⊥).

Let us examine two examples. First, consider a beam-
splitter with transmissivity cos2 θ, coupling the mode of
interest with an ancillary mode initially in the vacuum
state. The resulting channel Φ̃bs on vacuum-single parti-
cle subspace of the mode of interest is as in Eq. (2) with
σ = sin2(θ)|0〉〈0|+cos2(θ)|1〉〈1| and γ = cos(θ). We have
no superposition creation, C ≡ |σ01| = 0, and |γ| takes
its maximal value for a given degree of loss. As a second
example we let the beam-splitter be either totally trans-
parent (θ = 0) with probability p or totally reflective
(θ = π/2) with probability 1−p. On average we obtain a

channel Φ̃rand as in Eq. (2), with σ = p|1〉〈1|+(1−p)|0〉〈0|
and γ = p. For comparison we let p = cos2(θ), yielding
the same σ as previously, but γ = cos2(θ). Thus, for

the same level of particle loss, Φ̃rand preserves less coher-
ence than Φ̃bs. In Ref. [6] (with a potentially confusing
terminology mismatch with this Letter), “deterministic”

absorption using a beam chopper is equivalent to Φ̃rand,
and “stochastic” absorption by the foil absorber we as-
sociate with Φ̃bs.

Beam splitters are examples of linear optics. Here we
consider the more general question of which vacuum pre-
serving channels can be obtained using linear optics only.
We consider K bosonic system modes A1, . . . ,AK (cor-
responding, e.g., to an internal degree of freedom of the
particle) with annihilation operators a = (a1, . . . , aK),
and J ancillary modes B1, . . . ,BJ with annihilation op-
erators b = (b1, . . . , bJ). On the total system we assume
linear optics [14], which we describe with a unitary oper-
ator U such that

U
†

[
a

b

]
U = S

[
a

b

]
, S =

[
S

(11)
S

(12)

S
(21)

S
(22)

]
, (3)

where S is a unitary matrix. We wish to find all vacuum
preserving channels Φ̃(ρ) = Tre(Uρ ⊗ ηU†), where η is
an arbitrary but fixed density operator on the ancillary
modes. Let S

(12) = V DW
† be a singular value decom-

position, i.e., V and W are unitary matrices, and D is
such that Dll′ = dlδll′ for 1 ≤ l, l′ ≤ min(K, J) and zero
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FIG. 1: (Color online) A photon interacting with a dephasing
two-level atom via the Jaynes-Cummings model. The solid
(dotted) line in the lower panel depicts the probability that
a photon is found in the field, as a function of the detuning
δ = ω−ωa, at time t = π/(2g) with (without) dephasing. The
upper panel shows the excess coherence loss 1−σ00−|γ|2 as a
function of detuning δ in the case with dephasing. Neither the
pure Jaynes-Cummings model, nor a simple relaxation model
for the atom, gives any excess coherence loss.

otherwise, and dl ≥ 0. We transform to new modes A and
B, with annihilation operators a = V

†
a and b = W

†
b,

respectively. We find that U
†
aU = V

†
S

(11)
a + Db.

(Note a, not a, on the right hand side.) Since the chan-

nel Φ̃ is supposed to be vacuum preserving it follows
that Tr[nkΦ̃(|0〉〈0|)] = 0, where nk = a†kak. Without
loss of generality we may assume η = |ψ〉〈ψ|, yielding
〈0, ψ|U†nkU|0, ψ〉 = dk||bk|ψ〉||2, and hence dkbk|ψ〉 = 0.

Now we consider the action of the channel Φ̃ on the vac-
uum and single particle states and use the above results
to find:

Φ̃(ρ) = |0〉〈0|Tr[(1̂ − S†S)ρ] + SρS†

+Sρ|0〉〈0|+ |0〉〈0|ρS†, (4)

where S =
∑J

l,l′=1 |Al〉S(11)
ll′ 〈Al′ |, and where |Al〉 denotes

the single particle excitation in mode Al. A necessary
and sufficient condition for the channel in Eq. (4) to
be obtainable via linear optics is that SS† ≤ P1 and
S†S ≤ P1, with P1 the projector onto the single-particle
subspace. One can see that P2(ψ⊥) = 1 − L(ψ⊥) and
C(ψ⊥) = 0. Hence, the coherence preservation is max-
imal relative to the degree of particle loss, and there is
no superposition creation. Note that excessive coherence
loss is obtained if we form convex combinations of linear
optics channels, i.e. by random selection of “pure” linear
optics channels. We can also conclude that, even at the
level of vacuum and single particle states, the linear op-
tics channels form only a subset of all possible channels.

Now we turn to the question of coherence loss spec-
tra, and as a model system we consider a photonic mode
and a two-level atom interacting via a Jaynes-Cummings
Hamiltonian [15]. On the relevant subspace we can write
the effective total Hamiltonian as

H =
ω

2
σz ⊗ 1̂a +

ωa

2
1̂ ⊗ σa

z + g(|01〉〈10|+ |10〉〈01|), (5)

where ω is the photon energy, ωa the excitation energy
of the atom, and g the coupling constant, all in units
of some suitable reference energy E , where we assume
~ = 1. If the atom initially is in the ground state then
the resulting channel on the vacuum and single particle
subspace of the field is such that |σ01| = 0 and |γ|2 = 1−
σ00. Hence, there is neither generation of superposition
nor excessive coherence loss. We now assume the atom
is affected by an environment, modeled with the master
equation d

dt
ρ = −i[H, ρ]+qQ(ρ), where q ≥ 0, and where

the time-parameter t is in units of E−1. We consider two
cases

Qr(ρ) = |0〉a〈1|ρ|1〉a〈0| −
1

2
|1〉a〈1|ρ−

1

2
|1〉a〈1|ρ,

Qd(ρ) = −1

4
[σa

z , [σ
a
z , ρ]], (6)

where Qr gives relaxation to the ground state of the
atom, and Qd gives dephasing in its eigenbasis. For both
these cases σ01 = 0. Hence, we can take 1−σ00−|γ|2 as a
measure of excess coherence loss. One can show that for
the relaxation model there is no excessive coherence loss,
but there is for dephasing. We let g = 0.1, ωa = 1, and
q = 0.01. The upper panel of Fig. 1 shows the excessive
coherence loss 1−σ00−|γ|2 as a function of the detuning
δ = ω − ωa, at t = π/(2g). In the lower panel the solid
(dotted) line depicts the probability p to find a photon
in the field as a function of the detuning delta δ, at the
same t with (without) dephasing. The excessive coher-
ence loss spectrum distinguishes dephasing from the pure
Jaynes-Cummings interaction and relaxation, and hence
may discriminate atom-environment couplings.

So far, all examples have resulted in C = 0. Here
we show how C 6= 0 can occur. If we can create the
superposition |χ〉 = (|0〉 + |1〉)/

√
2, then the channel

Φ̃(ρ) = |0〉〈0|ρ|0〉〈0|+ |χ〉〈χ|〈1|ρ|1〉 can be generated. We
measure the particle number in the mode: if we measure
vacuum we do nothing, otherwise we prepare |χ〉. The
measurement destroys any initial superposition, but as
Eq. (1) shows, this is the price we have to pay for max-
imal superposition creation. Whether it is possible to
generate the superposition |χ〉 depends on the nature of
the particle. If the particle is a photon then the superpo-
sition can be generated using, e.g., photon blockade [16].
More generally, if the particle is related to a super selec-
tion rule (SSR) [17], a reference frame (if such is avail-
able) can be used to locally break the SSR [18], which
enables generation of the superposition.

The following Hamiltonian of a photon and three level
atom interaction results in a nontrivial superposition cre-
ation spectrum:

H =
ω

2
σz ⊗ 1̂a + 1̂ ⊗ (ω0|0〉〈0| + ω1|1〉〈1| + ω2|2〉〈2|)

+
∑

k,k′:k>k′

gk,k′(σ− ⊗ |k〉〈k′| + σ+ ⊗ |k′〉〈k|), (7)
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FIG. 2: (Color online) A photon interacting with a three-level
atom, according to the Hamiltonian in Eq. (7). The solid line
in the lower panel shows the probability p to detect the photon
at time t = 25 as a function of the photon energy ω measured
in units of a reference energy E . The solid line in the upper
panel shows the amount of superposition |σ01| between the
vacuum and a single photon at t = 25 (in units of E−1) as a
function of ω. The dashed line in the upper (lower) panel is
obtained by at each ω take the maximum (minimum) of |σ01|
(p) over a long evolution time.

where σ− = |0〉〈1| and σ+ = |1〉〈0|, and where ω, ωk,
and gk,k′ are in units of E . Initially we have a single pho-
ton and the atom in its ground state. To illustrate the
effect we choose ω0 = 5, ω1 = 7, ω2 = 8, g01 = 0.05,
g02 = 0.07, and g12 = 0.08. In Fig. 2 the solid lines give
the probability p to find a photon (lower panel) and the
superposition creation |σ01| (upper panel) as functions of
ω at t = 25. In the upper panel the dashed line is the
maximum of |σ01| at each ω, taken over a long evolution
time, thus approximating the envelope of the evolution
of the |σ01|. In the lower panel the dashed line similarly
depicts the minimum of p. As expected, there are two
lines in the absorption spectrum corresponding to the
two transitions from the ground state. The superposi-
tion creation spectrum, however, shows a peak also at
the transition between the two excited states. Further
investigations are needed to understand the significance
of this type of spectrum.

In conclusion we consider the coherence of single par-
ticles under particle loss. Channels with no gain are not
only characterized by the loss they cause, but also by
how well they preserve coherence, and their tendency to
create superposition between vacuum and single particle
states. We find an inequality relating these quantities.
This characterization of loss processes suggests a gener-
alized spectroscopic approach where we record a “coher-
ence loss spectrum” and a “superposition creation spec-
trum”, akin to absorption spectra. We illustrate these
concepts with examples. Although the vacuum preserva-

tion condition simplifies the analysis, the notions of co-
herence loss spectra and superposition creation spectra
are not limited to this setting. However, the general case
requires a more extensive analysis, and will most likely
lead to richer phenomena. A comparison with coherence
spectroscopy in dissipative media [11, 19], and coherent
control techniques in general [20], may also be fruitful.
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[3] J. Åberg, Phys. Rev. A 70, 012103 (2004).
[4] D. Braun and B. Georgeot, Phys. Rev. A 73, 022314

(2006).
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