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Results in Optimal Discrimination

Kieran Hunter

University of Strathclyde, Glasgow, UK

Abstract. We study the problem of discriminating between non-orthogonal quantum states with least probability of error.
We demonstrate that this problem can be simplified if we solvefor the error itself rather than solving directly for the optimal
measurement. This method enables us to derive solutions directly and thus make definite statements about the uniquenessof
an optimal strategy. This approach immediately leads us to astate-discrimination analogue of Davies Theorem [1].

In the course of this, a complete solution for distinguishing equally likely pure qubit states is presented.

One cannot perfectly discriminate between non-orthogonalquantum states. It is therefore sensible to ask how one
canbest discriminate such states.

We consider the situation where we know that a system is in oneof a pre-determined set of states{ρ̂ j}, each of
which occurs with probabilityp j, but we do not know which one. Such a situation might arise if we knew the properties
of the preparation device (or communications protocol), but not the actual setting used on this specific preparation.
We can make any possible measurement to identify the state, but wemust make an identification of the state based on
the result of the measurement. If the states{ρ̂ j} are not mutually orthogonal, then there will be a non-zero probability
that this identification will be wrong. This is the state discrimination problem.

In this situation it makes sense to define the optimal measurement strategy to be the one which minimises the
probabilityPe of incorrectly identifying the state. This is the most well known example of a hypothesis testing problem,
as detailed in [2, 3, 4].

We describe our measurement strategy with a Probability Operator Measure (POM). This is a set of operators{Π̂k}
which gives the probabilities of each possible measurementoutcomeP(k| j):

P(k| j) = Tr
(

Π̂kρ̂ j
)

(1)

when the system is in the stateρ̂ j. The elements(Π̂k) of the POM represent probabilities and therefore must be subject
to the following conditions:

Non−negativity :Π̂k = Π̂+
k ≥ 0 ∀ k (2)

and
Completeness :∑

k

Π̂k = 1̂. (3)

Each POM element(Π̂k) corresponds to the detection of the stateρ̂k. Thus there must be exactly as many POM
elements as there are possible states, though some of these POM elements may be zero operators corresponding to
states which are never detected.

MINIMISING THE ERROR PROBABILITY

For a measurement strategy to minimise the error probability Pe, it must satisfy a known set of necessary and sufficient
conditions [2, 3, 4]:

∑
k

pkρ̂kΠ̂k − p jρ̂ j ≥ 0 ∀ j. (4)

It is possible to derive [2, 4] a useful necessary condition on the minimum error strategy:
(

Ĉ− pkρ̂k
)

Π̂k = 0 ∀ k (5)



where
Ĉ = ∑

j
p jρ̂ jΠ̂ j, (6)

from the necessary and sufficient conditions (4) and the completeness condition (3). This necessary condition is
equivalent to stating that the first derivative of the error probability is zero [2, 3].

While these conditions do give us a starting point for findingminimum error POMs, they do not themselves provide
a great insight into either the form of minimum error measurement strategies, or into how error probability depends on
the set of possible states. For this we must examine the solutions to these conditions, and there are not many solutions.

The solved cases of the necessary and sufficient conditions can be categorised:

1. When there are only two possible states [2]
2. When the states possess some simplifying symmetry [4, 5, 6, 7, 8]
3. When we have states for which the error cannot be reduced bymeasurement [9].

Only the first of these solutions is directly derived from theconditions (4), the others were all postulated and then
shown to satisfy these conditions. Simply postulating a solution does not tell us whether that solution is unique. This
lack of uniqueness does not aid our goal of understanding theirreducible error of measurements on non-orthogonal
quantum states.

The essential difficulty in solving the conditions directly(rather than postulating solutions) is that all of the variables
(Π̂k) appear in each condition, and they are not independent variables.1 However, the operator̂C (in (5) and (6)) fixes
the error probabilityPe as Pe = 1− Tr(Ĉ). This is a clue as to how we might solve the necessary and sufficient
conditions: we will solve them for̂C rather than for{Π̂k}.2

We can see that the necessary condition (5), combined with the POM conditions (3), implies the equality (6)
originally used as the definition of̂C. Thus we can use these conditions as an alternative definition of Ĉ. Furthermore,
since Tr(Ĉ) fixes the error probability, all strategies{Π̂k} which satisfy the necessary condition (5) for the optimalĈ
will be optimal strategies.

We can now restate the problem as finding an operatorĈ such that:
(

Ĉ− pkρ̂k
)

Π̂k = 0 ∀ k, (7)

and, from (4),
Ĉ− pkρ̂k ≥ 0 ∀ k, (8)

for some POM{Π̂k}. HereĈ is our operator variable, and the optimal POM is derived fromĈ by using (7), (2) and
(3).

From this we can immediately see that the optimal strategy might not be unique. The relation between the error(Ĉ)
and the measurement{Π̂k} is fixed by (7), but (7) places no restriction on{Tr(Π̂k)}. The only restriction on these
traces are the POM conditions (2) and (3), and these conditions cannot uniquely determine all of the{Tr(Π̂k)} when
the number of POM elements is large.

For the purpose of actually finding the solutions, this formulation suggests a two-step procedure:

1. Find operatorŝC which can satisfy (7) and (8), then
2. Check which of these operators leads to elements which canform a POM.

An important restriction on̂C for step (1) is that, from (7), we must have either

Det
(

Ĉ− pkρ̂k
)

= 0 or Π̂k = 0 ∀ k. (9)

Thus, for each outcome which occurs with non-zero probability, the correspondinĝC − pkρ̂k must have a zero
eigenvalue. For discriminating between sets of qubit states this approach becomes especially useful, since then
Ĉ− pkρ̂k andΠ̂k must be proportional to pure state projectors.

We will demonstrate a simple example of how one use this method to find notan optimal strategy, butall optimal
strategies for a given class of states.

1 This is also why the two states case is more easily soluble: there is only one independent variable.
2 This is rather reminiscent of the method used in [4] to prove the necessity of the conditions (4).



EXAMPLE: DISTINGUISHING EQUIPROBABLE PURE QUBIT STATES

Let us consider the problem of discriminating between a set of N equally likely pure qubit states. We seek to find all
solutions to the necessary and sufficient conditions (4) forsuch sets of states. We use the following method:

We assume that we do notneed zero operators as POM elements (see (9)),
We solve (9) forĈ,
We obtain the directions of the POM elements from (7),
We solve (3) for Tr(Π̂k).

If no solution is found, we know that at least one POM element must be a zero operator. We then update our assumption
accordingly, and try again. We shall begin by looking at a setof three states.

The most useful basis to describe the three states in is the basis where the diagonal elements of their density operators
are identical. In this basis the three states share a common latitude of the Bloch Sphere (see figure 1). If we then follow
the procedure outlined above, we find that (9) is insufficientto completely define the optimal̂C, but the diagonal part
of (3) fixes the rest.

+

-

Common 
Latitude of 
the three 
states

Equator of the 
Bloch Sphere

FIGURE 1. The position on the Bloch sphere of the projectors proportional to the optimal POM elements (dashed arrows) for
discriminating between a set of three equiprobable pure qubit states (solid arrows). These elements are equatorial in the basis where
the states share a common latitude and each element has the same longitude as the corresponding state. These elements form a
POM if and only if every semicircle of the circle of common latitude contains at least one state.

The solution for three states (see figure 1) is similar to thatfor the symmetric states [5] in that the optimal POM
elements are at the Bloch Sphere longitudes of the states andequatorial in latitude, providing that such elements can
satisfy (3) and so form a POM.̂C is diagonal in the basis of figure 1, but it does not correspondto the square-root
strategy [5, 6, 7] unless the three states actuallyare symmetric states as defined by [5].

It is interesting to note that the minimum error in this case depends only on the common latitude of the three states
and not on their arrangement on that latitude:

min(Pe) = 1− p j −2p j

√

〈+|ρ̂ j|+〉〈−|ρ̂ j|−〉, (10)

which is the same for any of thêρ js. It clearly does not depend on the off-diagonal elements ofthe states’ density
operators. The error is reduced the closer the common latitude of states is to the equator of the Bloch sphere.

If the elements shown in figure 1 cannot form a POM (i.e. they are all in one half of the Bloch sphere), then the
optimal strategy is the binary decision strategy [2] which best discriminates between the pair of states with least
overlap.

Should we add a fourth state to this picture, we run into some interesting problems. Those properties ofĈ which
were determined by (9) for the original three states cannot change, as those conditions must still hold. If the fourth (9)
is not consistent with this, it can only lead to the situationwhereno Ĉ can satisfy both (9) and (3) for all states, and
some zero operator POM elementsmust be introduced. The three possibilities for adding a fourth state are:

1. The new state is on the common latitude of the three original states. Then the optimal̂C is the same as it was for
three states.



2. The new state is in the opposite Bloch Sphere hemisphere from all three states. Then Yuen’s solution [4] for states
which themselves form a POM (when multiplied by suitable coefficients) applies and̂C ∝ 1̂.

3. The new state shares a hemisphere but not a latitude with all three original states. Then no solution exists which
does not contain at least one zero operator POM element. The optimal strategy will have non-zero elements
corresponding to the subset of three states whose common latitude is closest to the equator of the Bloch Sphere.

Further additional states follow the same pattern. The subset of states which the optimal strategy detects will always
either have common diagonal elements in some basis, or be able to form a POM when multiplied by suitable
coefficients, or consist of only two states.

CONCLUSIONS

We can simplify the problem of finding the best strategy for discriminating between non-orthogonal quantum states
by solving the necessary and sufficient conditions for minimum error (4) for the error itself rather than solving directly
for the optimal strategy. This is easier since then we have only one operator variable (̂C) and there is no issue with
variables not being independent.

When you do this is becomes obvious (we haveN equations for only one unknown operator) that, in general, some
states will never be selected because the corresponding POMelement will have to be a zero operator. The exceptions
to this are when the number of states is small, or some limiting symmetry applies to all of them. It is interesting to
note here that the subset of states which corresponded to non-zero POM elements in the examplehad to be one of the
special symmetry cases.

The example gives the form of the solution for the optimal discrimination between all possible sets of equally likely
pure qubit states. This example has also shown that the minimum error obtained in the symmetric states case [5]
is more generally applicable. The corresponding solution described here applies to any arrangement of states with
common diagonal elements, though this solution isnot generally the square-root measurement as described in [5].It
can be shown that this result is still valid in higher dimensional bases.

We have also shown that the weights Tr(Π̂k) of the POM elements are irrelevant to the optimality of the strategy.
The only restriction on them is that the POM is complete (3) and thus realisable. This means that we neverneed more
thanD2 (D is the dimension of the system) possible outcomes and thusD2 non-zero POM elements to achieve the
minimum error. In any situation where wecould use more thanD2 elements and still achieve the minimum error, the
minimum error measurement strategy cannot be unique. Therewill then be an unlimited number of optimal strategies
differing only in the weights of their elements. This constitutes a state discrimination equivalent of Davies theorem for
the accessible information [1].
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