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Bayes' theorem and quantum retrodiction

STEPHEN M. BARNETT†, DAVID T. PEGG‡ and JOHN JEFFERS†
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Abstract.  We derive on the basis of Bayes' theorem a simple but general

expression for the retrodicted premeasurement state associated with the

result of any measurement.  The retrodictive density operator is the

normalised probability operator measure element associated with the result.

We examine applications to quantum optical cryptography and to the optical

beam splitter.

PACS numbers:    03.67.Hk    42.50.Gy



1.  Introduction

Prediction is the determination of future events on the basis of present

knowledge.  If our knowledge is insufficient to allow a precise determination of future

events, then we must be satisfied with predicting probabilities.  Often we attempt to

determine past events on the basis of present knowledge.  A simple example is the

reconstruction of a message from a received signal.  Again, if our knowledge is

insufficient to allow a precise determination of past events, we must be satisfied with

retrodicting probabilities.  In our communications example, this would arise if the signal

were corrupted by a noisy channel [1]. 

In quantum mechanics there is always an element of probability.  In the

predictive formulation, even if we know the state of a system precisely before

measurement and have full knowledge of the measurement device, the outcome of

measurement cannot, in general, be determined with certainty.  It is customary, following

von Neumann [2], to think of the evolution of the system in terms of a deterministic,

time-reversible, unitary part and a sudden probabilistic change upon measurement.  In

the predictive formulation we assign the premeasurement state of the system by

prediction on the basis of the outcome of some previous preparation event.  In the

retrodictive formalism [3-6] the state of the system between preparation and

measurement is assigned retrodictively on the basis of the outcome of the measurement.

The sudden change occurs at the time of preparation, so the retrodictive formalism is not

simply the time reversal of the predictive formalism.  Careful use of the retrodictive

formalism will yield the same observable correlations as those from the predictive

formalism, so the fact that the two formalisms ascribe different states to the system

between preparation and measurement merely emphasises that the state is no more than

a mathematical convenience embodying knowledge about the system rather than having

a physical existence in its own right.

In the predictive formalism, the most general description of a measurement

involves a probability operator measure (POM) [7].  In the retrodictive formalism, we

can similarly describe the preparation in terms of a preparation POM.  In this paper we



use Bayes' theorem [8] to show how the retrodictive premeasurement density operator is

simply related to the associated measurement POM element and how the (more usual)

predictive density operator is similarly related to the preparation POM.  We concentrate

on situations in which the system does not evolve between preparation and measurement

use the relation derived in some quantum optical applications.

2.  Bayes' theorem

It is well known that probabilities are not objective but depend on the amount of

knowledge available.  Consider, for example, picking the winner in a ten-horse race.

With no further knowledge, the probability of any particular horse winning is 1/10.

Given the extra knowledge that one horse has been scratched, the probability of any one

of the remaining horses winning is 1/9.  An unscrupulous person who has fixed the race

might be able to predict the winner with (near) unit probability based on this privileged

additional information.  Bayes' theorem [8] determines how additional knowledge

changes the probabilities from an a priori distribution to an a posteriori distribution.  It

is important not to attach any temporal significance to the terms a priori and a

posteriori: they simply mean with less knowledge and with more knowledge

respectively.  Prediction and retrodiction, on the other hand, do have temporal meanings.

Prediction is determination of probabilities of later events given probabilities of earlier

events.  Retrodiction is determination of probabilities of earlier events given probabilities

of later events.  Bayes' theorem gives a means of predicting and retrodicting and also of

connecting the two.

Consider two sets of possible events {ai}  and {bj} .  Bayes' theorem states that

the probability of two particular events ai  and bj  both occurring is

P(ai ,bj ) = P(ai |bj )P(bj ) = P(bj |ai )P(ai )  , (1)



where P(x|y)  means the conditional probability of x occurring given that y occurs.  Let

the event a precede the event b.  Then the predictive and retrodictive conditional

probabilities are given respectively by

P(bj |ai ) =
P(ai ,bj )

P(ai )
 , (2)

P(ai |bj ) =
P(ai ,bj )

P(bj )
 . (3)

We usually have access to the predictive conditional probability, but can use Bayes'

theorem to obtain the retrodictive conditional probability as

P(ai |bj ) =
P(bj |ai )P(ai )

P(bj )
=

P(bj |ai )P(ai )

k
∑ P(bj |ak )P(ak )

 . (4)

In the absence of any knowledge of preference among the events ai , we assign them

equal a priori probabilities and in this case the retrodictive conditional probability is

P(ai |bj ) =
P(bj |ai )

k
∑ P(bj |ak )

 . (5)

As an example, consider the following problem.  An employee makes a choice

each day between going to work by bus or by train.  The a priori probability of the bus

or train being chosen is P(B)  or P(T ) = 1− P(B)  respectively.  The predictive

conditional probabilities of being late if the bus or train is chosen are P(late|B)  and

P(late|T )  respectively.  Before the employee arrives, the boss can use these

probabilities to predict the probability that the employee will be late as

P(late) = P(late|B)P(B) + P(late|T )P(T )  . (6)



When the employee indeed arrives late, the boss can then use Bayes' theorem to

retrodict the probability that the employee has taken the bus as

P(B|late) = P(late|B)P(B)
P(late)

 , (7)

where the denominator can be calculated from (6).  If the boss has no knowledge of

preference in the choice of transport, then he assigns a probability of 1/2 to each.  This

leads him to calculate the probability of his employee being late to be

P(late) = 1
2 P(late|B) + 1

2 P(late|T )  . (8)

Then if the employee is late, the boss would retrodict the probability that the employee

took the bus to be

P(B|late) = P(late|B)
P(late|B) + P(late|T )

 . (9)

Naturally, the boss can change this probability by acquiring additional information for

example by asking the employee which route was taken.

3.  Application to quantum retrodiction

The usual, that is predictive, description of quantum mechanics involves a state

and observables.  The state is assigned on the basis of the preparation procedure.  The

state of the system then evovles until it is measured.  In this paper, in order to highlight

the roles of state preparation and measurement, we shall consider only the case where

the system does not change between preparation and measurement.  Two simple

examples of this case are when measurement immediately follows preparation or when

the Hamiltonian is zero.  The observables are quantities associated with a measuring

device.  The probabilities associated with the results of observations are depend on

operators for both the state and observable.  The most general description of a



measurement utilises a probability operator measure (POM) [7].  A measurement POM

is characterised by its elements Π̂ j .  These are operators with only positive or zero

eigenvalues and have the property

Π̂ j
j

∑ = 1̂ , (10)

where ̂1 is the unit operator in the state space of the system.  The probability that a

measurement will result in the outcome bj  given that the event ai  that the system was

prepared in the state with density operator ρ̂i  is

P bj ai( ) = Tr ρ̂i
predΠ̂ j( )  . (11)

For a simple von Neumann measurement, the POM elements become projectors onto

the eigenstates of the operator corresponding to the measured observable so that this

probability becomes the expectation value of the density operator in the associated

eigenstate.

Our aim is to develop a retrodictive picture corresponding to the above.  Let

P(ai )  be the probability that the event ai  occurred (corresponding in the predictive

picture to the preparation of the state ρ̂i
pred).  We say that the preparation device is

unbiased if

P(ai )ρ̂i
pred

i
∑ = 1

D
1̂ , (12)

where D is the dimension of the state space†.  We use the concept of an unbiased source

to simplify our derivation of the retrodictive density operator and to illustrate more

directly the connection with the predictive formalism.  Use of an unbiased source

corresponds to no a priori information about the source.  This ensures that the

                                                
† If we wish to work with an infinite dimensional space then an appropriate limiting procedure must be
used.  Our final results are independent of D.



retrodictive state inferred on the basis of a future measurement can be based only on the

result of that measurement.  It corresponds to the situation in the predictive picture in

which we assign states purely on the basis of earlier preparation events.  Equation (12)

allows us to define a preparation POM with elements

Ξ̂i = D P(ai )ρ̂i
pred (13)

such that

Ξ̂i
i

∑ = 1̂ . (14)

The question now is whether we can derive a retrodictive density operator ρ̂ j
retr  such that

the probability that the event ai  occurred, given that the later measurement yields the

result bj , is

P ai bj( ) = Tr ρ̂ j
retrΞ̂i( )  , (15)

for all possible preparation POM elements Ξ̂i .

We can use Bayes' theorem to determine ρ̂ j
retr .  From (1) we have

P ai bj( ) =
P bj ai( )P ai( )

P bj( )  . (16)

Substituting (11) and (15) for the predictive and retrodictive conditional probabilities we

find

Tr ρ̂ j
retr Ξ̂i( ) =

Tr Π̂ j ρ̂i
pred( )P ai( )

P bj( ) =
Tr Ξ̂i Π̂ j( )
D P bj( )  , (17)



where we have also used the definition (13).  The a priori probability of the outcome bj

is

P bj( ) = P bj ai( )P(ai )
i

∑ = P(ai )Tr ρ̂i
predΠ̂ j( ) = 1

D
Tr Π̂ j( )

i
∑  (18)

from (12).  Note that this is simply the expectation value of the POM element Π̂ j  for

the zero information state corresponding to the density operator D−11̂.

Tr ρ̂ j
retr Ξ̂i( ) =

Tr Π̂ j Ξ̂i( )
Tr Π̂ j( )  . (19)

We require this relationship to hold for all possible Ξ̂i  corresponding to all possible

preparation POMs and hence we must set

ρ̂ j
retr =

Π̂ j

Tr Π̂ j( ) (20)

is the retrodictive density operator associated with the measurement outcome bj .  This

is the main result of our paper.  An analogous relationship between the predictive

density operator and the preparation POM element follows from our definition (13).

We conclude this section by examining the retrodictive picture for biased

sources, that is sources which produce states with predictive density operators ρ̂Bi
pred

prepared with a priori probabilities PB(ai )  which do not satisfy equation (12).  We

introduce operators

Λ̂ i = PB ai( )ρ̂Bi
pred (21)

analogous to the predictive POM elements, but with



Λ̂ i ≠ D1̂
i

∑  . (22)

We can use Bayes' theorem and the predictive conditional probability (11) to write

P ai bj( ) =
Tr ρ̂Bi

predΠ̂ j( )PB(ai )

Tr ρ̂Bk
predΠ̂ j( )PB(ak )

k
∑

=
Tr Λ̂ i Π̂ j( )

Tr Λ̂k Π̂ j( )
k

∑
 . (23)

We can rewrite this in the retrodictive picture using the retrodictive state (20) as

P ai bj( ) =
Tr ρ̂ j

retr Λ̂ i( )
Tr ρ̂ j

retr Λ̂k( )
k

∑
 . (24)

The lack of symmetry between this retrodictive conditional probability and the predictive

conditional probability (11) does not reflect any intrinsic time asymmetry arising from

quantum mechanics or from Bayes' theorem.  Rather, it reflects the fact that it is

possible, and even usual, to use biased sources of states in experiments.  It is also

possible, however, to make predictions which are biased on the basis of future

measurements.  In such cases, we would restrict our attention to only a subset of the

possible experimental results.  The predictive conditional probability would then be

P bj ai( ) =
Tr ρ̂i

predΠ̂ j( )
Tr ρ̂i

predΠ̂l( )
l

∑
 , (25)

where the sum includes only those measurement POM elements in the subset of

interest.  This situation is not uncommon in quantum optics.  Consider, for example, the

much studied phenomenon of two-photon interference in which two photons from a

parametric down-conversion source exhibit a non-classical effect [9].  The experiment is

usually analysed with the aid of a state involving only two-photons.  The theory of the



parametric down-converter, however, predicts a state which is a superposition of this

state and the vacuum plus other higher photon-number states.  In considering only the

two-photon component of the state we are restricting our description to those situations

in which the future measurements record some photocounts.

4.  Quantum optical examples

The retrodictive formalism can be used to analyse situations involving

preparation and measurement for a quantum system.  It will provide a more natural or

simpler description of events in some situations than in others.  The retrodictive

interpretation of phenomena may be quite different from the more familiar predictive

interpretation but is no less valid.  We have already described the retrodictive

interpretation of photon antibunching and of the Kocher-Commins experiment [4].

Here, we derive the retrodictive states arising in quantum cryptography and optical fields

superposed by a beam splitter.

4.1.  Quantum cryptography

A very important and obvious application of retrodiction is communication.  The

recipient of the signal (Bob) has the task of constructing the original message sent by

the transmitter (Alice).  In order to do this, Bob uses the knowledge gained from his

measurement together with the characteristics of the communication channel.  The most

developed technique in quantum communications is quantum cryptography or quantum

key distribution [10], in which Alice and Bob attempt to construct a secret shared key

which has not been leaked to any eavesdropper.

The first protocol for quantum key distribution was devised by Bennett and

Brassard [11].  In the Bennett-Brassard protocol Alice prepares single photons in either

in one of two states of linear polarisation (vertical V  or horizontal H ) or in one of

two states of circular polarisation (left L  or right R ).  These states do not change on

propagation to Bob.  The states of circular polarisation can be written as superpositions

of the states of linear polarisation and vice versa



L = 2− 1
2 V + i H( ) , R = 2− 1

2 V − i H( )

   V = 2− 1
2 L + R( ) , H = 2− 1

2 i R − L( )  . (26)

Alice sets her preparation device so that in any given time slot of these states is

prepared.  In order to ensure security, she selects the states with equal probabilities

thereby providing an unbiased source.  Bob chooses to measure either circular or linear

polarisation for each time slot.  He chooses randomly between these two incompatible

observables.  Let us suppose that Alice chooses L for one particular photon.  On the

basis of this choice, Alice assigns to the photon the predictive state L pred.  She can

then use this to predict the probabilities for the outcomes of Bob's measurements

conditioned on her knowledge of the preparation.  Alice's predictive conditional

probabilities that Bob will find each of the four possible outcomes are

P bL aL( ) = P(circular measured)× L L pred 2
= 1

2 ×1= 1
2

P bR aL( ) = P(circular measured)× R L pred 2
= 1

2 × 0 = 0

P bV aL( ) = P(linear measured)× V L pred 2
= 1

2 × 1
2 = 1

4

    P bH aL( ) = P(linear measured)× H L pred 2
= 1

2 × 1
2 = 1

4  . (27)

Let us suppose that Bob measures linear polarisation in a given time slot and finds

vertical polarisation corresponding to the POM element V V .  From (20)  he assigns

to the photon the corresponding retrodictive density operator ρ̂V
retr = V V  or

equivalently the state vector V retr .  He can then use this to retrodict the probabilities for

Alice's preparation events conditioned on his knowledge of the measurement.  Bob's



retrodictive conditional probabilities that Alice prepared each of the four possible states

are

P aL bV( ) = P(circular prepared)× L V retr 2
= 1

2 × 1
2 = 1

4

P aR bV( ) = P(circular prepared)× R V retr 2
= 1

2 × 1
2 = 1

4

P aV bV( ) = P(linear prepared)× V V retr 2
= 1

2 ×1= 1
2

    P aH bV( ) = P(linear prepared)× H V retr 2
= 1

2 × 0 = 0  . (28)

It is straightforward to verify that the two sets of conditional probabilities satisfy Bayes'

theorem (1) with P ai( ) = 1
4 = P bj( ) .  The protocol involves a public discussion between

Alice and Bob in which some of the results are discussed.  Eavesdropper activity is

revealed by comparing the above conditional probabilities with the observed

correlations.  Alternatively eavesdropper activity is indicated if, in any time slot, Alice's

predictive state is orthogonal to Bob's retrodictive state.

4.2. Beam splitters

We shall now study the retrodictive description of the optical measuring device

depicted in Figure 1. This consists of two photodetectors Db  and Dc in the output

modes b and c of a beam splitter with a known (predictive) state ρ̂c  in the input mode c.

The separate POM elements for the detectors are Π̂n
b  and Π̂m

c  corresponding to

detection events n and m.

The POM element for the system comprising the two detectors is Π̂n
b Π̂m

c .  To

include the beam splitter as well we change this to Û†Π̂n
b Π̂m

c Û  where Û  is the forward

unitary evolution operator for the beam splitter given in terms of the creation and

annihilation operators for the modes by [12]



Û = exp iθ b̂†ĉ + ĉ†b̂( )[ ]  . (29)

The reason for inserting the forward and backward unitary operators in the order we

have done will become clear below.  Finally we wish to find a POM element which

allows us to include the field in state ρ̂c  as part of the complete measuring device.  We

require a POM element Π̂nm  such that when there is an incoming (predictive) state ρ̂b
pred

in mode b we obtain the probability for events n and m

Trb ρ̂b
predΠ̂nm( ) = Trbc ρ̂b

predρ̂c Û†Π̂n
b Π̂m

c Û( )

                           = Trbc Ûρ̂b
predρ̂c Û†Π̂n

b Π̂m
c( ) . , (30)

where we have used the cyclic property of the trace.  The reason for this requirement is

that the second line of (30) is the probability for these events calculated in the standard

predictive formalism using the forward evolved predictive density matrix Ûρ̂b
predρ̂c Û† .

For equation (30) to hold for any ρ̂b
pred we require

Π̂nm = Trc ρ̂cÛ
†Π̂n

b Π̂m
c Û( )   . (31)

From our relationship (20) the retrodictive state of the field in input mode b immediately

before measurement, based on the measurement outcome of events n and m, is

ρ̂b
retr =

Trc ρ̂cÛ
†Π̂n

b Π̂m
c Û( )

Trbc ρ̂cÛ
†Π̂n

b Π̂m
c Û( )   . (32)

We shall now consider two important special cases of the above.  The first

involves modelling an inefficient photodetector by a perfectly efficient detector Db  and a

completely inefficient detector Dc .  The state in input mode c is the vacuum, 0 c c 0 .

The individual POM elements for the detectors Db  and Dc  are respectively n b b n



and ̂1c  where the latter is the unit operator for the state space of mode c.  These POM

elements are associated with recording n photocounts in Db  and the inevitable event that

zero counts are recorded in Dc  respectively.  The retrodictive state (32) now becomes

ρ̂b
retr = c 0 Û† n b b n ⊗ 1̂cÛ 0 c

Trb c 0 Û† n b b n ⊗ 1̂cÛ 0 c( )  . (33)

We find a simple expression for this retrodictive density operator by using the operator

identity [12]

:exp −b̂†b̂( ):=  0 b b 0  (34)

to give

c 0 Û† n b b n ⊗ 1̂cÛ 0 c = 1
n! c 0 Û† b̂†( )n

:exp −b̂†b̂( ):b̂nÛ 0 c  , (35)

which upon performing the unitary transformation becomes

c 0 Û† n b b n ⊗ 1̂cÛ 0 c = 1
n!

ηn b̂†( )n

:exp −ηb̂†b̂( ):b̂n  . (36)

Here η = cos2 θ  is the efficiency of imperfect detector being modelled.  The

denominator in (33) is most easily evaluated as the trace of (36) in the coherent state

basis which gives the result 1 / η .  Hence the retrodictive premeasurement density

operator for mode b, conditioned on the event that the imperfect detector recorded n

photocounts is

ρ̂b
retr = 1

n!
ηn+1 b̂†( )n

:exp −ηb̂†b̂( ):b̂n  . (37)



This is in agreement with our previous work in which Bayes' theorem was applied to

analyse a single imperfect photodetector [5].

Our second example is the measurement method of projection synthesis [13].

This allows us to determine the probability distribution for any physical observable

associated with a quantised optical field mode.  To keep the discussion simple, we will

assume that both detectors are perfect so that their individual POM elements are

n b b n  and m c c m .  These correspond to the events n and m in which n and m

photocounts are recorded in the detectors Db  and Dc  respectively.  We prepare the

reference field in input mode c to be the pure state 
  
c c = c0 0 c + c1 1 c +L .  The

retrodictive premeasurement state (32) then becomes

ρ̂b
retr = c c Û† n b b n ⊗ m c c m Û c c

Trb c c Û† n b b n ⊗ m c c m Û c c( )  . (38)

We can construct any retrodictive state, containing up to n + m  photons, by a suitable

choice of the reference state.  Measurement by projection synthesis involves choosing

the reference state such that the retrodictive state is an eigenstate of the observable of

interest.  As a specific example, we let the events n and m be the registering of 1 and 0

photocounts respectively.  From (38) we find that the retrodictive state in input mode b

is the pure state with density operator

ρ̂b
retr =

c0
∗ cosθ 1 b − ic1

∗ sinθ 0 b( ) c0 cosθ b 1 + ic1sinθ b 0( )
c0

2
cos2 θ + c1

2
sin2 θ

 . (39)

Knowledge of the retrodictive state can be used for the preparation of selected

predictive states.  This can done, for example, if the field in input mode b is prepared in

an entangled state with a field in some other mode d.  Retrodicting the state in input

mode b from the result of the measurement and projecting this onto the entangled state,

allows us to collapse the predictive state for mode d into an unentangled field state.  As

an example, consider the entangled state



Ψ = 1
2

1 d 0 b + i 0 d 1 b( ) (40)

which can be produced by beam-splitting a single photon.  Projecting the retrodictive

pure state (39) onto the entangled predictive state (40) results in a predictive state

ψ
d

=
c0 cosθ 0 d + c1sinθ 1 d

c0

2
cos2 θ + c1

2
sin2 θ( )1

2
(41)

for the field in mode d.  This is the retrodictive mechanism explaining the quantum

scissors device for truncating states which we have described elsewhere [14,6].

5.  Conclusion

We have used Bayes' theorem to establish a  relationship between the predictive

and retrodictive formalisms of quantum mechanics.  In particular we have shown that the

premeasurement density operator for the state retrodicted on the basis of the outcome of

a measurement is just the normalised probability operator measure (POM) element for

the general measuring device.  As well as providing a straightforward method for

calculating the retrodictive state, it also provides a new physical interpretation of POM

elements.  Similarly the density operator for a state predicted on the basis of the

outcome of a preparation is the normalised preparation POM associated with that

outcome.

We have illustrated the use of our general formula for quantum optical

applications involving quantum cryptography and a quantum optical measuring device

comprising two photodetectors in the output modes of a beam splitter with some known

state in one of the two input ports.  We have been able to obtain results in agreement

with those we have previously derived by less direct techniques and have indicated how

the retrodictive formalism can be used, by means of entanglement, in the preparation of

selected states.



In this paper we have restricted ourselves to the situation in which the system

does not change between preparation and measurement.  Where the evolution of the

system density operator is unitary it is straightforward to modify our derivation of the

retrodictive density operator to include the appropriate time evolution operator.  For

open systems, in which the evolution involves a coupling to an environment, the

derivation is more involved.  We address this problem elsewhere [15].  At a more

fundamental level, future work might give more consideration to the role of preparation

POMs, or preparables, which express the properties with which a system can be

prepared, as opposed to measurement POMs, or observables, which express the

properties which can be observed or measured.
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Figure Caption

Figure 1.   Optical measuring device comprising a beam splitter and photodetectors in

the two output modes b and c.  A field in a known state is in input mode c.
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