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 Linear Matching Method on the evaluation of plastic and creep behaviours 

for bodies subjected to cyclic thermal and mechanical loading  

 

Haofeng Chen
*,£ and Alan R.S. Ponter 

Department of Engineering, University of Leicester, Leicester, LE1 7RH, UK 

 

SUMMARY 

This paper extends the previous Linear Matching Method (LMM) to allow for the evaluation of 

plastic, creep and ratchet strains of structures subjected to a general load condition in a steady cyclic 

state. The constant and varying residual stress fields associated with differing mechanisms as well as 

the steady cyclic stress state of the whole component are obtained for further structural design and 

assessment.  The total strain range for use in fatigue assessment, including the effects of creep and 

plastic strains are obtained. A typical example of 3D holed plate subjected to cyclic thermal load and 

constant mechanical load are assessed here in detail to verify the applicability of the proposed 

numerical technique. The LMM results in the paper are compared with those by ABAQUS step-by-

step inelastic analyses and demonstrate that LMM have both the advantages of programming 

methods and the capacity to be implemented easily within a commercial finite element code, in this 

case, ABAQUS. The LMM provides a general-purpose technique for the evaluation of creep/ fatigue 

interaction. 

 

KEY WORDS: linear matching, plastic, creep, ratchetting, steady cyclic state 

 

 

1. INTRODUCTION 
 

The operating lifetime of components subjected to cyclic thermal and mechanical loading are 

normally limited by the mechanisms of low-cycle fatigue, creep fatigue interaction and excessive 

plastic deformation [1, 2]. The evaluation of creep/fatigue interaction and other failure mechanisms 
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of structures with variable repeated loading is a significant problem and has attracted the attentions 

of many researchers [3-9].  

One of the most successful of such methods, the Linear Matching Method (LMM) [10-12] has 

been applied with considerable rigor to cyclic loading problems where the residual stress field 

remains constant. This includes the evaluation of classical limit loads, shakedown limits, creep 

ruptures and rapid cycle creep solutions.  The LM method has also been extended to cases where the 

residual stress field changes during a cyclic state [12-15]. This includes the assessment of the plastic 

strain amplitude and ratchet limit associated with reverse plasticity mechanisms when the load 

history is in excess of shakedown but less than a ratchet limit. In these circumstances there are two 

properties required in low temperature design and life assessment. The amplitude of plastic strain 

provides information concerning fatigue crack initiation in low cycle fatigue and the capacity of the 

body to withstand additional constant mechanical load indicates the proximity to a ratchet limit. In 

[14], the LMM has been extended to characterise both the strain amplitude and the proximity to a 

ratchet limit, based upon a new minimum theorem [13]. 

In practice, components operate at high temperature within the creep range both within 

shakedown and for load ranges in excess of shakedown. Typically, in power plant, a creep dwell 

periods exist where the temperature of some proportion of the structure lies within the creep range. 

For some components, e.g. heat exchangers, the mechanical loads can be relatively small but the 

thermal stresses can be significantly in excess of yield. In such circumstances creep strains occur, 

and this results in the relaxation of initially high stresses as creep strains replaces elastic strains. 

Lifetime integrity may then be limited not only by low cycle fatigue but the damaging effects of the 

creep strains produced during creep relaxation. The evaluation of the creep relaxation, the 

determination of the accumulated creep strain, the varying flow stress and the corresponding elastic 

follow-up factors during dwell period are very important components of life assessment methods [1]. 

The work of [12] gave a general study of the application of the LMM to the various stages of life 

assessment in R5 [1] as the beginning point. It is anticipated that such methods may provide a viable 

alternative to rule-based methods currently used, providing more accurate and less conservative 

predictions. 

However, the assessment procedures in [12, 15, 16] for creep/fatigue interaction only involve the 

cyclic thermal stress. Only two load instances were considered in [15, 16] for method 1, which is 
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suggested as the basis of a general purpose method for use in life assessment. For a general case of 

arbitrary loading, a more general method should be developed.  

The evaluation of ratchet strains is also important in engineering practice. In nuclear plant 

structures, e.g. a typical AGR superheater headers in [17-19], the load conditions are such that the 

ratchetting may occur. The accumulated ratchet strain may be acceptable due to the limited number 

of load cycles. In such cases, the determination of ratchet strains is significant.   

The primary objective of this paper is to investigate the possibility of extending the current LMM 

to allow for the evaluation of plastic, creep and ratchet strains of structures subjected to a general 

load condition in a steady cyclic state. The problem of a plate with a central circular hole is 

discussed, subjected to cyclic thermal load and constant mechanical load. In this paper, in order to 

demonstrate the applicability of the proposed LMM, all the LMM solutions are compared with step-

by-step inelastic analysis results.   

 

 

2. DEFINITION OF THE PROBLEM 

Consider the following problem. A structure is subjected to a cyclic history of varying temperature 

),( txiθλθ  within the volume of the structure and varying surface loads ),( txP iiPλ acting over part of 

the structure�s surface TS . The variation is considered over a typical cycle tt ∆≤≤0 . Here θλ and 

Pλ  denote load parameters, allowing a whole class of loading histories to be considered. On the 

remainder of the surface S , denoted by uS , the displacement 0=iu .  

Corresponding to these loading histories there exists a linear elastic solution history; 

P

ijPij

e

ij σλσλσ θ
θ ��� +=  (1) 

where θσ ij
�  and P

ijσ�  are the solutions corresponding to ),( txiθ and ),( txP ii , respectively. 

 Consider a typical cycle tt ∆≤≤0 . The cyclic solution may be expressed in terms of three 

components, the elastic solution, a transient solution accumulated up to the beginning of the cycle 

and a residual solution that represents the remaining changes within the cycle. The linear elastic 

solution ( i.e. p

ijε& =0  ) is denoted by e

ijσ� . The general form of the stress solution for the cyclic 

problems involving changing and constant residual stress fields is given by 

 ),()(),(�),( txxtxtx i

r

ijiiji

e

ijiij ρρσσ ++=  (2) 
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where ijρ  denotes a constant residual stress field  in equilibrium with zero surface traction on TS  

and corresponds to the residual state of stress at the beginning and end of the cycle. The history r

ijρ  

is the change in the residual stress during the cycle and satisfies; 

0),()0,( =∆= txx i

r

iji

r

ij ρρ  (3) 

Hence, the stresses and strain rates will asymptote to a cyclic state where; 

 )()( ttt ijij ∆+= σσ , )()( ttt ijij ∆+= εε &&  (4) 

It is worth noting that the arguments in this section do not explicitly call on the properties of perfect 

plasticity and are therefore common to all cyclic states associated with inelastic material behaviour. 

Both the Linear Matching Method and R5 [1] are concerned with properties of this cyclic 

solution, based upon a sequence of constitutive assumptions, drawing on the data base of materials 

data. Whereas R5 [1] relies significantly on rule-based calculations based on the linear elastic 

solution, the Linear Matching Method produces direct calculations of various performance indicators 

as derived from simplified continuum problems. 

 

3. MODES OF BEHAVIOUR 

If we define Eλ , Sλ , Pλ  as the elastic limit multiplier, shakedown limit multiplier and ratchet limit 

multiplier respectively, the four major mechanisms including elasticity, shakedown, reverse 

plasticity and ratchetting can be described as follows: 

E - Elastic region - 
Eλλ ≤≤0 , where 0)�( ≤e

ijf σ  throughout V 

S – Shakedown - SE λλλ ≤≤ , where 0)�( ≤+ ij

e

ijf ρσ  and ijρ is a constant residual stress field 

P – Reverse Plasticity - PS λλλ ≤≤ , where 0)�( ≤++ pr

ijij

e

ijf ρρσ , and )(tpr

ijρ is a changing 

residual stress field, derived from a plastic strain rate history pr

ijε& that satisfies the zero growth 

condition ∫
∆

=
t

pr

ij dt
0

0ε&  everywhere in V. 

R – Ratchetting - λλ ≤P , where 0)�( ≤++ pr

ijij

e

ijf ρρσ , and )(tpr

ijρ is a changing residual stress 

field, derived from a plastic strain rate history pr

ijε& that satisfies the growth condition 
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∫
∆

∆=
t

pr

ij

pr

ij dt
0

εε& where pr

ijε∆  is a compatible accumulated strain giving rise to non-zero displacement 

increment pr

iu∆ . 

The behaviour progresses, for increasing λ , from the most benign, the E region, to the most 

serious, the R region. At the transition values of λ  we reach the position that, for increasing λ there 

no longer exists a solution of the form that characterised the exiting region. Hence, when λ  

increases above Eλ , somewhere 0)�( >ijf σλ . Similarly when λ  increases above Sλ , there no longer 

exists a constant residual stress field ijρ so that 0)�( ≤+ ijijf ρσλ  everywhere. At the same time, if 

Sλλ >  then 0)�( >+ ijijf ρσλ  somewhere within the volume V, for all possible ijρ .  

In the above formulations, if we only consider the plastic behaviour of the component, f is the 

function associated with the material yield surface. In the steady cyclic state, if the creep relaxation 

occurs during the dwell period at some load instances, the function f should be adjusted by the creep 

flow stress which depends on the creep strain rate.  

 

4. MINIMUM THEOREM FOR CYCLIC STEADY STATE SOLUTION 

 

 Consider the functional where λ  is regarded as prescribed 

                     ∫ ∫
∆

−=
V

c

ij

t

ij

c

ij

c

ij dtdVI εσλσλε &&
0

)�(),(  (5) 

where c

ijε&  is subject to the following conditions; 

 c

ij

c

ij

cT

ij C ερε &&& += ,    (6) 

where cT

ijε&  is compatible and  ∫
∆

=∆
t

c

ij

c

ij dt
0

εε &&  is also  compatible, 

In addition there exists a ρ  so that 0))(�( ≤++ ij

c

ijij tf ρρσλ  (7) 

Then ),(),( λελε s

ij

c

ij II && ≥  (8) 

where s

ijε&  is the exact solution. 
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Note: Inclusion of )(tc

ijρ  and ijρ  in I  does not change its value. Hence in the following we use; 

 { }∫ ∫
∆

+−=
V

t

c

ijijij

c

ij

c

ij dtdVtI
0

))(�(),( ερσλσλε &&  (9) 

where r

ijijij t ρρρ +=)( ,  and ijij ρρ =)0( . For I  given by (9), inequality (8) still holds. 

 

5. PROBLEM FOR PLASTIC STRAINS OCCURRING AT N DISCRETE TIMES 

We essentially adopt the same procedure as [13, 14], and develop a Linear Matching Method that 

reduces I for each iteration. 

We assume that plastic or creep strains occur at N instants, 1t , 2t �.. Nt , where nt  correspond to 

a sequence of  points in the cyclic history. Hence n

ij

N

n

c

ij εε ∆=∆ ∑
=1

 where n

ijε∆  is the increment of 

plastic or creep strain that occurs at time nt . Hence we may write the following approximation for I; 

 ∑
=

=
N

n

nc

ij II
1

),( λε&   (10) 

where     { }∫ ∆+−∆=∆
V

n

ijnn

e

ij

n

ij

n

ijn

n

ij

n
dVtttI ερσλεσρλε ))()(�())(,,(  (11) 

 n

ij

n

ij

Tn

ij C ερε ∆+∆=∆ ,    (12) 

where Tn

ijε∆  compatible and n

ijρ∆  satisfies equilibrium. 

Note that  ∑
=

∆+=
n

l

l

ijijnij t
1

)( ρρρ  (13) 

The solution of (12) is equivalent to minimising dVU
n

ij

Tn

ij

V

)( εε ∆−∆∫   where,      

))(()( 1
2

1 n

kl

Tn

kl

n

ij

Tn

ij

n

ij

Tn

ij CU εεεεεε ∆−∆∆−∆=∆−∆ −  (14) 

Hence the problem becomes that of minimising; 

{ }∫ ∆+−Ω=∆∆
V

n

ijnijn

Tn

ij

n

ij

n
dVttI ερσλρλεε ))(�())(,,,(  (15) 
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with respect to Tn

ijε∆ and n

ijε∆  where 

U
n

ij

n

ij +∆=Ω εσ   (16) 

 

6. LINEAR MATCHING METHOD SOLUTION 

The minimisation problem (14) and (15) is identical in form to the minimisation problem in [13, 14]. 

Hence the process is as follows for isotropic elastic properties and a von Mises yield condition. The 

latter will be replaced by creep flow stress if only creep relaxation occurs at the load instance. 

Assume we have an initial estimate of ni

ij

n

ij εε ∆=∆ . Define shear modulus by linear matching  

)(20

ni

ijni εεµσ ∆=  (17) 

where 0σ  is the von Mises yield stress or creep flow stress.  

Solve the following linear problem; 

′
∆+

′
∆=

′
∆ nf

ij

nf

ij

Tf

ij ερ
µ

ε
2

1
,   

nf

kk

Tf

kk
K

ρε ∆=∆
3

1
 (18) 

{ }′∆++=
′

∆ −
nf

ijnijn

e

ij

ni

nf

ij tt ρρσλ
µ

ε )()(�
2

1
1  (19) 

where  

121

01 ......)()( −
− ∆++∆+∆+= n

ijijijijnij tt ρρρρρ , ijij t ρρ =)( 0  (20) 

 

7. ITERATION PROCEDURES 

In order to simplify the calculation, the entire iterative procedure includes a number of cycles. Each 

cycle contains n iterations associated with n load instances. The first iteration is to evaluate the 

changing residual stress 1

ijρ∆  for the elastic solution )( 1t
e

ijσ)  at the first load instance. We denote 

K

Lijρ∆  as the calculated changing residual stress for Kth load instance at L cycle of iterations, where 

K=1,2, � , n and L=1,2, � , m. The whole iterative procedure can be shown as follows: 
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At cycle 1 of iterations: 

Iteration 1: we solve 
1

1ijρ∆  from the elastic solution )( 1t
e

ijσ)  at the first load instance. 

Iteration 2: we solve 
2

1ijρ∆  from 
1

12 )( ij

e

ij t ρσ ∆+)
 

Iteration n: we solve 
n

ij1
ρ∆  from 

1

1

2

1

1

1
)(

−∆++∆+∆+ n

ijijijn

e

ij t ρρρσ L
)

 

At cycle 2 of iterations: 

Iteration n+1: we solve 
1

2ijρ∆  from 
n

ijijij

e

ij t
1

2

1

1

11)( ρρρσ ∆++∆+∆+ L
)

 

Iteration n+2: we solve 
2

2ijρ∆  from 
1

21

2

1

1

12 )( ij

n

ijijij

e

ij t ρρρρσ ∆+∆++∆+∆+ L
)

 

Iteration 2n: we solve 
n

ij 2
ρ∆  from 

1

2

2

2

1

21

2

1

1

1
)(

−∆++∆+∆+∆++∆+∆+ n

ijijij

n

ijijijn

e

ij t ρρρρρρσ LL
)

 

At cycle m of iterations: 

Iteration mn-n+1: we solve 
1

mijρ∆  from ∑∑
=

−
=

∆++∆+
n

K

K

mij

n

K

K

ij

e

ij t
1

1
1

11 )( ρρσ L
)

 

Iteration mn-n+2: we solve 
2

mijρ∆  from 
1

1
1

1
12 )(

mij

n

K

K

mij

n

K

K

ij

e

ij t ρρρσ ∆+∆++∆+ ∑∑
=

−
=

L
)

 

Iteration mn: we solve 
n

mijρ∆  from ∑∑∑
−

==
−

=

∆+∆++∆+
1

11
1

1
1

)(
n

K

K

mij

n

K

K

mij

n

K

K

ijn

e

ij t ρρρσ L
)

 

If the convergent solutions are obtained at mth cycle of iterations, we must have 

0
1

=∆∑
=

n

K

K

mijρ  (21) 

Hence the constant residual stress over the cycle can be calculated by 

∑∑∑
===

∆++∆+∆=
n

K

K

mij

n

K

K

ij

n

K

K

ijij

11
2

1
1

ρρρρ L  (22) 

At each iteration, not only the above changing residual stress for n load instances and the constant 

residual stress over the cycles, the plastic strain amplitudes at load instances or accumulated creep 
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strains during dwell period are evaluated as well. The total ratchetting strain can be calculated from 

these plastic and creep strains thereafter, i.e. ∑
=

∆=∆
n

K

K

ij

R

ij

1

εε  

8. CREEP FLOW STRESS 

In the iteration that evaluates the plastic strain amplitudes [14], 0σ  is adopted as the material yield 

stress. But when we calculate the accumulated creep strain during the dwell period, 0σ  equals to the 

creep flow stress cσσ =0 , which is an implicit function of c

ijε∆  and c

ijρ∆ .  

During the time interval tttt ii ∆+≤≤ , where itt −=τ , relaxation of stress takes place so that 

c

ij

c

ijij ρσσ ∆−=)0(  and c

ijij t σσ =∆ )( . A creep strain c

ijε∆  occurs, related to the relaxation of stress 

c

ijρ∆  by the equations (18) and (19), i.e. 

c

ij

c

ij

Tc

ij ερ
µ

ε ∆+
′

∆=
′

∆
2

1
  (23) 

c

kk

Tc

kk
K

ρε ∆=∆
3

1
 (24) 

In conformity with the plasticity solution we assume a kinematically constrained solution where 

the creep strain rate during tttt ∆+≤≤ 11  remains in a constant tensorial direction, i.e. ij

cc

ij nεε && =  

where ijn  is a constant tensor. The constitutive relation is assumed to be Norton�s law, 

ij

n

n

c

ij σσ
σ
εε ′= −1

0

0

2

3 &
& ,   i.e.    n

n

c σ
σ
εε

0

0
&

& =     (25) 

where n is the creep index of the material, 0ε&  is the uniaxial  steady state creep rate corresponding to 

temperature θ  and uniaxial stress 0σ . Hence ijσ ′  describes a radial path in deviatoric stress space 

and )()( ijij σσσσ && = . σ  denotes the von Mises effective stress and ε&  the von Mises effective strain. 

During the relaxation process we assume, at each point in space, that an elastic follow-up factor Z 

exists, i.e. for uni-axial conditions   

 σε &&
E

Zc −=    and   σε &&
E

Zc −=  (26) 

for multi-axial conditions where  
)1(2

3

v

E
E

+
= . 
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Combining (25) and (26) and integrating over the relaxation period, we obtain 

                 
⎭
⎬
⎫

⎩
⎨
⎧

∆+
−

−
=−=∆ −−

∆

∫ 110
0

0

)(

1

)(

1

1

1
nccncnn

n

d
t

Z

E c

ρσσσ
σ

σ
ε ρ&

  (27) 

where )( c

ij

c ρσρ ∆=∆ .  Integrating (26) gives  

 ccc

ij
E

Z ρεεε ∆=∆=∆ )(  (28) 

Combining (27) and (28) and eliminating EZ /  provides an implicit relationship between the 

effective values cσ  , cρ∆  and cε∆ . Computationally it is advantageous to be able to compute cσ  at 

each iteration in terms of a fictional rate Fε& ,  

 
nF

c

1

0

0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ε
εσσ
&

&
 (29) 

Combining(27), (28) and (29) gives, 

      
⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

∆+
−

−∆∆
∆

=∆
∆
∆

= −− 11 )(

1

)(

1

1

1)(
),,(

nccncc

ncc
c

f

c
F

nt
nf

t ρσσρ
σερσεε&  (30) 

Hence in the iterative process we begin with current estimates ciσ , ciρ∆ and ciε∆  and compute a 

new value of the creep stress cfc σσ =  from (29) where 

),,( nf
t

cici
ci

F ρσεε ∆
∆
∆

=&  (31A) 

Note that in the limit when cc σρ /∆  is small, 1→f  and  

t
cF ∆∆= /εε&  (31B) 

with an error of the order of 2)/( cc σρ∆ .  

 

9. NUMERICAL EXAMPLE:  A PLATE WITH A CENTRAL HOLE AND 

SUBJECTED TO VARYING THERMAL LOADS AND CONSTANT 

MECHANICAL LOAD 

The geometry of the structure and its finite element mesh are shown in Fig.1, posed as a three 

dimensional problem. The 20-node solid isoparametric element with reduced integration is adopted. 

The ratio between the diameter D of the hole and the length L of the plate is 0.2 and the ratio of the 

depth of the plate to the length L of the plate is 0.05.  
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The plate is subjected to a temperature difference θ∆  between the edge of the hole and the edge 

of the plate and uniaxial tension P acts along one side (Figure 1). The variation of the temperature 

with radius r was assumed to be; 

)5ln()5ln(0 raθθθ ∆+=  (32) 

which gives a simple approximation to the temperature field corresponding to θθθ ∆+= 0  around 

the edge of the hole and 0θθ =  at edge of the plate.  

The elastic stress field and the maximum effective value, 0tσ , at the edge of the holed plate due to 

the thermal load was calculated by ABAQUS [20], where 00 =θ , 500=∆θ C
o  and a coefficient of 

thermal expansion of 510−
C° -1

. The yield stress MPaY 360=σ , and the elastic modulus E = 208 

GPa and 3.0=ν . It is coincident that the above calculated 0tσ  is the reverse plasticity limit, i.e. 

yt σσ 20 = . 

For the creep material data in equation (25) we adopt 
2

0

yσ
σ = , n=5 and   

.
)273(

)19700(
exp53108.5760 ⎥

⎦

⎤
⎢
⎣

⎡
+

−
=

θ
ε& /hr (33) 

where the creep properties depend on temperature, typical of type 316 stainless steel (Table I). 

Figure 2 shows the cyclic loading condition. Totally there are two load extremes for this varying 

thermal loads and constant mechanical load. However, in order to evaluate the creep relaxation in the 

dwell period t∆ , we introduce an extra load instance for assessing this creep behaviour (Figure 3). 

Hence, we have three load instances in the computation. Instance 1 is for the load extreme 1, i.e. the 

holed plate subjected to the maximum thermal loads and constant mechanical load. Instance 2 is for 

the load extreme 1 as well, but used to evaluate the creep relaxation during dwell period. Instance 3 

is for the load extreme 2, i.e. the holed plate subjected to the minimum thermal loads and constant 

mechanical load 

Figure 4 shows the shakedown and ratchet boundaries for the problem, using the methods 

described in [13, 14]. Three load cases are shown in Table II and Fig.4. For load case 1, only cyclic 

thermal load was applied on the holed plate, where 00 =θ , 750=∆θ C
o . There is no mechanical 

load and the creep dwell time is 10000 hours.  For load case 2, not only the same cyclic thermal 

loads, but also the mechanical load are applied on the structure, which equals to yσ4.0  and the creep 
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dwell time is 10000 hours. For load case 3, the ratchetting mechanism involves. The same cyclic 

thermal loads is applied, but the mechanical load is applied on the structure, which equals to yσ5.0  

and the creep dwell time is 10000 hours 

Figure 5-10 present the plastic strain amplitudes at load extremes and the accumulated creep strain 

after dwell period 10000 hours for the holed plate subjected to three load cases by both the LMM and 

the step-by-step analyses. It can be seen that the solutions of these strains are near same with or 

without constant mechanical load. This numerical fact supports the developed creep-reverse 

plasticity solution method in [15, 16], where only the cyclic loads were considered and the constant 

loads disappeared in the formulations, i.e. the constant load has little effects on the evaluation of the 

creep-reverse plasticity mechanism.  

The LMM results have a good agreement with ABAQUS step-by-step analysis results, although 

the value of the effective plastic and creep strains by LMM are slightly higher than those by 

ABAQUS step-by step analyses. The reason is that in ABAQUS step-by-step analyses, we only 

calculate 50 load cycles. In order to evaluate the structure at the steady cyclic state, more load cycles 

need to be performed, which leads to slightly higher values of strains.   By the LMM analysis, a 

steady cyclic state solution can be obtained directly, which produces the less conservative results 

than R5 method [1]. Figure 11 also produces the contours of effective ratchetting strains over the 

cycle for three load cases using the Linear Matching method. It is demonstrated again that the ratchet 

strains in Fig. 11 for three load cases correspond to their load domains in Fig. 4. Only the load case 3 

outside the ratchet limit curve in Fig.4 shows significant ratchetting mechanism in Fig.11. 

Table III and IV present the comparisons of key parameters of point A and B of the holed plate by 

LMM and step-by-step analysis. It is verified again that the LMM results have a good agreement 

with ABAQUS step-by-step solutions. The introduction of the constant mechanical load has little 

effect on the plastic strain amplitudes and accumulated creep strains at the steady cyclic state. For all 

three cases, the elastic follow-up factors Z for point A and B are almost same and approximately 

equals to 2.2. It can also be seen that the summation of the effective plastic strain amplitude at load 

instance 1 and the effective creep strain over dwell period is approximately equal to the effective 

plastic strain amplitude at load instance 3. This is a direct and full numerical proof of the creep-

reverse plasticity mechanism [16]. 
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By the comparisons of the total number of increments and total CPU time in the ABAQUS 

analyses (Table V), it can be seen that the time consuming of the step-by-step analysis is more than 

20 times of the LMM. This is a main advantage of the simplified method. 

Figures 12-17 show the effective steady cyclic stresses at three load instances for the holed plate 

subjected to three load cases by both the LMM and the step-by-step analyses, respectively. It still can 

be seen that the LMM results have a good agreement with the ABAQUS step-by-step analyses. 

Unlike the above magnitude of strains, the solutions of steady cyclic stresses with constant 

mechanical load are quite different with those without constant mechanical load.  However, by the 

further comparisons of the residual stress amplitudes at three load instances (Fig. 18-20), it can be 

seen that the inclusive of the constant mechanical load has no effects on these residual stress fields, 

which determine the plastic strain amplitudes at load instances and the accumulated creep strain over 

the dwell time.  

 

10. CONCLUSIONS 

In this paper, by the extension of previous Linear Matching Method, a new integrity assessment 

technique is proposed to evaluate plastic and creep behaviours for bodies subjected to cyclic thermal 

and mechanical loading at a steady cyclic state. The plastic strain range, the accumulated creep strain 

over dwell period and the ratchetting strain over the cycle are calculated by an iterative process. The 

constant and varying residual stress fields associated with differing mechanisms as well as the steady 

cyclic stress state of the whole component are obtained by LMM for the further structural design and 

assessment.   

The LMM assessment procedure in this paper is designed to evaluate the high temperature 

components subjected to cyclic loading conditions with three or more load instances. Hence this 

paper provided an important supplement of the previous LMM [12] on the integrity assessment of 

structures.  

By the application of LMM to the holed plate with cyclic thermal loads and constant 

mechanical load, the solutions in the paper verified the creep-reverse plasticity mechanism and its 

corresponding assumptions proposed in [15, 16].  It was also demonstrated that the effects of the 

constant mechanical load on the final creep deformation are insignificant. Although the steady state 

stresses are quite different between two cases with or without the constant mechanical loads, the 

varying residual stresses associated with the creep relaxation mechanism are nearly the same.  
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The FE step-by-step analyses in the paper provide nearly identical solutions with LMM when 

adopting the same material assumption. However, the time consuming of a typical FE step-by-step 

analysis is normally more than 20 times of the LMM (Table V). This is a main advantage of the 

LMM. Another advantage of LMM is that LMM only make use of a standard collection of uniaxial 

test data without the need for the development of full constitutive descriptions. 

 The work of this paper is part of a general study of the application of the Linear Matching 

Method to the various stages of Life Assessment methods, using R5 [1]. It is anticipated that such 

methods may then provide an alternative to rule-based methods currently used, providing more 

accurate and less conservative predictions. The form of the method allows it to be implemented in 

conventional commercial finite element code ABAQUS [20]. This allows the method to become a 

general purpose method which, unlike most programming methods, does not requires specialist 

codes.  
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Table I. Particular functional forms and material coefficients adopted in the paper. 

 

 

Young�s 

modulus E 

 

Poisson�s 

ratio ν  

coefficient of 

thermal 

expansion α  

 

Yield stress  

yσ  

Creep material data 

nc

s

Q
B σ

θ
ε .

)273(

)(
exp. ⎥

⎦

⎤
⎢
⎣

⎡
+
−

=&  (h
-1

) 

Ln {B} Q (K) n  

208GPa 

 

0.3 

 

C°× − /100.1 5  

 

360MPa 
-19.607755 41097.1 × 5 

 

 

 

 

Table II. Definition of load domains for the holed plate. 

Case The cyclic thermal load θ∆
Pσ  t∆ (hours) Mechanism 

Case 1 L00 5.105.1 tt σσ →→  0 10000 Reverse plasticity 

Case 2 L00 5.105.1 tt σσ →→  yσ4.0 10000 Reverse plasticity 

Case 3 L00 5.105.1 tt σσ →→  0.5 yσ 10000 Ratchetting 

 

 

 

Table III. Comparison of key parameters of point A by LMM and step-by-step analysis. 

 

Case 

 

Method 
cρ∆  

(MPa) 
cε∆  

( t∆ =10000h)

 

Z 
pε∆  at load 

instance 1 
pε∆  at load 

instance 3 

Ratchetting 

strain per cycle 

LMM 296.318 310810.2 −×  2.276 310355.3 −×  310235.6 −×  410457.1 −×   

Case 1 
Step-by-step 287.225 310656.2 −×  2.219 310354.3 −×  310056.6 −×  410094.1 −×  

LMM 295.241 310817.2 −×  2.290 310505.3 −×  310326.6 −×  410047.1 −×   

Case 2 
Step-by-step 287.454 310652.2 −×  2.214 310353.3 −×  310064.6 −×  410159.1 −×  

LMM 295.932 310808.2 −×  2.277 310485.3 −×  310371.8 −×  310196.2 −×   

Case 3 
Step-by-step 289.897 310658.2 −×  2.201 310358.3 −×  310684.7 −×  310758.1 −×  
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Table IV. Comparison of key parameters of point B by LMM and step-by-step analysis. 

 

Case 

 

Method 
cρ∆  

(MPa) 
cε∆  

( t∆ =10000h)

 

Z 
pε∆  at load 

instance 1 
pε∆  at load 

instance 3 

Ratchetting 

strain per cycle 

LMM 296.312 310812.2 −×  2.277 310352.3 −×  310233.6 −×  410460.1 −×   

Case 1 
Step-by-step 287.238 310656.2 −×  2.219 310353.3 −×  310054.6 −×  410093.1 −×  

LMM 296.02 310809.2 −×  2.277 310373.3 −×  310232.6 −×  410358.1 −×   

Case 2 
Step-by-step 287.049 310660.2 −×  2.224 310353.3 −×  310040.6 −×  410001.1 −×  

LMM 296.43 310807.2 −×  2.273 310181.3 −×  310928.5 −×  410147.1 −×   

Case 3 
Step-by-step 289.146 310642.2 −×  2.193 310182.3 −×  310829.5 −×  410918.0 −×  

 

 

 

 

 

 

Table V. Comparison of computing cost by LMM and step-by-step analysis. 

 

Case 

 

Method 

Total number of 

steps in ABAQUS 

Total number of 

increments in ABAQUS 

Total CPU time in 

ABAQUS (s) 

LMM 1 75 1323  

Case 1 
Step-by-step 150 (50 load cycles) 2111 45324 

LMM 1 147 2765  

Case 2 
Step-by-step 150 (50 load cycles) 2154 47016 

LMM 1 202 3679  

Case 3 
Step-by-step 150 (50 load cycles) 2208 50615 

 



 19

 

 

A B  

 

Figure 1. Geometry of the holed plate subjected to varying thermal loads and its finite element mesh 

(D/L=0.2), the yield stress MPaY 360=σ , the elastic modulus GPaE 208= . 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Load history with two distinct extremes (three load instances) to the elastic solution. 
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Figure 3. Schematic representation of the quantities for three load instances. 

 

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 

 Shakedown limit  
 Elastic limit 
 Ratchet limit  

0t

t

σ
σ

      
Y

P

σ
σ

 

P R

S
E 

Case 1 

Case 2

Case 3

 

Figure 4. Elastic, shakedown, reverse plasticity and ratchet region for the holed plate with constant 

mechanical and varying thermal loading. 
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(a) 0=Pσ   

 

 

(b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 5. Effective plastic strain amplitude at load instance 1 by LMM. 
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(a) 0=Pσ    

 

 

 (b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 6. Effective plastic strain amplitude at load instance 1 after 50 load cycles  

by step-by-step analysis. 
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(a) 0=Pσ   

 

  

(b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 7. Contour of accumulated creep strain at load instance 2, i.e. after dwell period 

( ht 10000=∆ ) by LMM. 
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(a) 0=Pσ    

 

 

 (b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 8. Contour of accumulated creep strain at load instance 2, i.e. after dwell period 

( ht 10000=∆ ) after 50 load cycles by step-by-step analysis. 
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(a) 0=Pσ   

 

 

 (b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 9. Contour of plastic strain amplitude at load instance 3 by LMM. 
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(a) 0=Pσ    

 

 

(b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 10. Effective plastic strain amplitude at load instance 3 after 50 load cycles  

by step-by-step analysis. 
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(a) 0=Pσ   

 

 

 (b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 11. Contour of effective ratchetting strain over the cycle by LMM. 
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(a) 0=Pσ  

 

  

(b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 12. Effective steady cyclic stress at load instance 1 by LMM. 
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(a) 0=Pσ  

 

 

 (b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 13. Effective steady cyclic stress at load instance 1 after 50 load cycles  

by the step-by-step analysis. 
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(a) 0=Pσ  

 

  

(b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 14. Effective steady cyclic stress at load instance 2, i.e. after dwell period ( ht 10000=∆ ) by 

LMM. 
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(a) 0=Pσ  

 

  

(b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 15. Effective steady cyclic stress at load instance 2, i.e. after dwell period ( ht 10000=∆ ) 

after 50 load cycles by the step-by-step analysis. 
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(a) 0=Pσ     

 

 

 (b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 16. Effective steady cyclic stress at load instance 3 by LMM. 
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(a) 0=Pσ    

 

 

(b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 17. Effective steady cyclic stress at load instance 3 after 50 load cycles  

by the step-by-step analysis. 
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(a) 0=Pσ     

 

 

 (b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 18. Effective residual stress field at load instance 1.  
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(a) 0=Pσ     

 

 

 (b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 19. Effective residual stress field at load instance 2 associated with creep relaxation.  
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(a) 0=Pσ     

 

 

 (b) yP σσ 4.0=  

 

 

(c) yP σσ 5.0=  

Figure 20. Effective residual stress field at load instance 3.  


