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ABSTRACT  

 Using a continuous-wave CO2   laser, surface engineering of a Ti-6Al-4V alloy through a  

combined treatment of laser nitriding and SiC preplacement was undertaken. Under spinning 

laser beam conditions, a surface alloyed / metal matrix composite (MMC) layer over 300μm 

in depth and 24mm wide was produced in the alloy by the overlapping of 12 tracks. 

Microstructural and chemical changes were studied as a function of (a) depth in the laser 

formed composite layer and (b) of the  track position. Using X- ray diffraction (XRD) and X-

ray photospectrographic (XPS) techniques, it was shown that the composite layer contained a 

complex microstructure which changed with depth. At the surface, a non-stoichiometric, 

cubic TiNx solid solution ( possibly a carbonitride) containing C and Si , where x ≈ 0.65-0.8, 

was prominent, but was replaced by α′-Ti with increasing depth to 300μm. TiC phase was 

also identified, and the presence of TiN0.3 and Ti5Si3 phases considered a distinct possibility. 
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1 INTRODUCTION  

Laser surface nitriding is a technique for modifying the near-surface region of alloys without 

altering the bulk characteristics. This technique has been developed over the past 20 years and 

involves  the use of  the  intense optical energy of the laser to melt the surface in a nitrogen- 

containing atmosphere [1-10]. While hardness values in excess of 2000VHN with melt depths 

around 1mm have been reported, the nitrided surface invariably contained cracks. 

The development of crack-free TiN surfaces was achieved by diluting the nitrogen content for 

laser treated  commercially pure titanium (CPTi), as reported by Mridha and Baker [5],and for 

Ti-6Al-4V by Selamat et al [10].However, this proved to be  at the expense of both a lower 

hardness and a shallower melt depth. 

An alternative means of developing a deep hard surface layer is to produce a surface MMC 

[11-15]. The early work in this area reported the injection of 30-50 vol.-% of ~100μm size 

particles of TiC into the laser melted surface of titanium alloys [11, 12]. This gave a hardness 

value, measured between the embedded particles, of 450VHN.Abboud and West [13] injected 

150μm particles of SiC powder into a commercially pure titanium surface. They observed 

partial dissolution of the particles, which led to the enrichment of the matrix with silicon and 

carbon during solidification. Both TiC and Ti5Si3 phases were formed, and the hardness 

increased from 210 to 600VHN.A further development was made with the aim of completely 

dissolving the preplaced particles 3 to 7μm in size, a size chosen to facilitate dissolution, [14-

15]. The resulting surfaces showed a hardness for the first 100μm below the surface, of 1000-

1400VHN, followed by a plateau of hardness in the range 450-550VHN, extending to a depth 

of about 500μm. The large change in hardness was associated with the formation of TiC 
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during the laser melting, which was undertaken in a protective atmosphere of argon or 

helium. Another advantage of alloying with SiC, is that Si in solid solution extends the liquid 

phase  to lower temperatures, reducing the possibility of cracking. A logical extension of 

these two approaches was to combine them to explore the possibility of gaining the advantage 

of both nitriding in a dilute environment and fine particle formation via alloying with carbide 

or nitride particles. Using this technique it was hoped to increase the melt depth and the 

hardness, while avoiding cracking. This approach was initially undertaken using a 

commercially pure titanium alloy with 6μm preplaced SiC powder [16]. The results were very 

promising and did achieve   the objectives given above. Several compounds, including ZrC 

and ZrN and a mixture of SiC and Ti-6Al-4V powders were considered as possible 

improvements on SiC. The  laser nitriding was carried out on a Ti-6Al-4V alloy base, again 

with a single melt track.[17].Due to the limitations on the availability of the particle sizes of 

the Zr compounds, the preplaced particles were of an average size of ~45μm.  The new 

surfaces were subjected to room temperature abrasive wear testing to rank the resistance of 

the surfaces to this kind of wear. The SiC treated surfaces showed by far the best abrasive 

wear resistance. 

While much of the laser surface engineering discussed in the literature refers to either spot or 

single track melting, there are many occasions when the laser processing of a surface requires 

an area to be treated and therefore many overlapping melt tracks to be made. This has been 

explored, both from the effect of preheat built up by the earlier laser passes, [18, 19] and the 

effect on the microstructure [10].   

In the present work, Ti-6Al-4V plate was laser processed using a combination of SiC powder 

preplacement and nitriding in a dilute environment. A detailed phase characterisation was 

undertaken mainly by X-ray diffractometry (XRD) and X-ray photo electron spectroscopy 

(XPS) techniques, with the prime objective of identifying the phases present. This was a 

similar approach to that used in previous work in this field, 
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[10, 20, 21].A second aim was to provide a better understanding of the influence of the laser  

process  on the microstructure. It is important to know how the microstructural features vary 

as a function of depth. For example, many studies correlating microstructure with wear 

resistance, determine only the details of microstructure close to the surface, and forget that 

this will be worn away and a new surface, with possibly a different microstructure, will be 

responsible for the wear resistance at a depth below the surface.  

2 MATERIALS AND EXPERIMENTAL METHODS 

A combination of laser surface nitriding and alloying with SiC preplacement on Ti-6Al-4V 

alloy using a 40% nitrogen and 60% argon environment has been carried out using a 

continuous-wave CO2   laser. A spinning beam mode was used to produce a ~ 2mm wide melt 

track using a velocity of spinning of 1500 r.p.m. The laser power was set at 2.8 kW and the 

specimen velocity at 10 mm/s. A total of   12 laser tracks with 50% overlaps was  produced 

on the surface of the 10 mm thick base alloy. 

 After the laser surface processing, the specimen was cut transversely to the direction of the 

laser track. The track cross-sections were prepared by mounting the specimens in the bakelite 

and grinding and polishing by standard metallographic techniques. The polished specimens 

were chemically etched in a solution of 2gm NH4.H.HF, 50 ml methanol, and 100 ml H2O for 

a period of 1 minute. After etching, the specimens were cleaned by water and methanol, then  

dried by blasted air. A Nikon Epiphot projection optical microscope and a JEOL JSM 840A 

scanning electron microscope (SEM) were used for detailed metallographic studies. 

XRD patterns were taken using a conventional diffractometer utilizing CuKα radiation and 

operated at 40kV and 20mA. A 2θ scan range from 30° to 80°, in steps of 0.1°/20 secs, was 

recorded. After performing the XRD experiments on the top surface, the specimens were 

ground to depths of ~100μm followed by 300μm, using SiC papers.    The different depths 

corresponded to different layers observed by optical microscopy, and the experiments 

described above were repeated for each layer. To identify the possible XRD and XPS peaks 

after laser processing, an untreated specimen, and standard specimens of powders of (a) 
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commercial high purity titanium nitride, (b) titanium carbide, (c) silicon carbide and (d)  

titanium silicide,  were examined [22].The error in lattice parameter measurements was 

estimated to be ± 0.001Å.  

Surface analytical spectra were acquired with a Vacuum Generators Scientific Ltd., Model: 

ESCALAB MK11 x-ray photoelectron spectroscopy unit. The pressure was typically 9 x 10-9 

torr in the analysing chamber. For the excitation of XPS spectra, MgKα(1253.6 eV) radiation 

was employed throughout, with the anode operating at an output power of 20mA and 11kV. 

Photoelectrons were collected at approximately 45° from the specimen surface normal. In this 

study, the specimens were cleaned in-situ by Ar ion bombardment to remove the natural 

protective titanium dioxide coating or any surface contamination. The residual carbon 

contamination line at 284.5eV was used as a datum for the binding energy.  

 

3 EXPERIMENTAL RESULTS 

3.1 Microstructure 

   The external appearance of the Ti-6Al-4V alloy surface after processing using a 

combination of laser surface nitriding and SiC preplacement, is shown in Fig. 1a. A pale gold 

colour was observed on the surface indicative of nitriding.  

   The spinning laser beam resulted in a wider melt zone than that produced under the 

corresponding laser processing conditions using a stationary beam. However, a consequence 

of the spinning, which may give a similar result to an oscillating beam, is that the energy 

density is considerably lower than that obtained from a stationary beam using the same laser 

conditions. This reduction, coupled with the 50% overlapping, had a significant influence on 

the microstructures formed in the melt zone during the laser alloying processing. The 

microstructure of a vertical cross-section shows the melt zone, the heat affected zone (HAZ) 

and a very flat surface crossing an overlapping area, Fig.1b. A crack at the eighth track was 

observed. From the vertical cross-section, the crack was found to be elongated along the 

width of the track, and to penetrate from the surface down to the melt zone, just stopping 
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before the heat affected zone. Also a number of pores were found. These can be seen in Fig 

1b at T2 , (~ 30μm in size) ,T3 , (~130μm in size) and T5 ,(~50μm in size), with a large 

defect ,~300μm in size in T2. 

          The SEM micrographs show the details of microstructures of the specimen at higher 

magnification, Fig.2. The top region of the melt pool is shown in Figs. 2a-c.  After 

solidification, the microstructure in this region at track 2, seen in Fig.2a, contains a very thin 

continuous layer on the surface (A)   and   small dendrites  growing from the surface layer in 

a direction nearly perpendicular to the surface, (B). 

A micrograph from the surface of tracks 6 / 7, Fig. 2b, shows that the very thin continuous 

surface layer, (A), is still present, and below the surface, a   network, (C),consisting of small 

particles and outlines grains of a  size <10 microns. Again, the dendrites, (B), can be seen on 

the right of the figure. Moving to track 7, Fig. 2c, the surface layer (A) is now discontinuous, 

and at the lower magnification, the extent of the dendrites, (B), is clear. As in Fig.2b, particles 

(C) can be seen to have formed at the grain boundaries. Fig.2d shows the microstructure, 

>300 micron from the surface, the precise depth depending on the location with respect to the 

beam centre. Here there are no significant dendrites or network compounds, but mainly small 

needles. The phases formed in the melt zone are related to the laser processing conditions 

such as laser power, traverse velocity and beam radius. They also varied with depth in the 

melt zone during laser processing. XRD was used to characterize the phases formed at 

different depths for two different sets of tracks, which are tracks 1 to 3, and tracks 6 to 8. It 

was necessary to sample more than one track, because of overlapping and the extent of the x-

ray beam diameter.  

 In a previous study of   nitrided-only specimens, [10, 20, 22], three phases, TiN, α′-Ti and 

possibly TiN0.3 were formed at the surface. The results revealed that the quantity of TiN 

precipitates decreased with the depth of melt pool. A similar trend was also expected in the 

present specimens. The melt zone developed by laser alloying with SiC preplaced specimens 

contained TiC particles (spherical), Ti5Si3 networks and α′-Ti phases, in agreement with 

 6



earlier work, [24]. The depth of the regions and the densities of these phases in the region 

depend on the amount of SiC particles alloyed in the specific location, the laser processing 

conditions and the beam modes used in the processing.  

          In the present study, the XRD spectra from three positions, the top surface, at a depth of 

100 μm and of 300 μm below the surface of tracks 1-3,Fig.3, and tracks 6-8, Fig.4,show very 

complicated results. The dots ●, ▲, x, ■, ♦ in the XRD spectra show the anticipated positions 

of the peaks for α′-Ti, TiC, Ti5Si3, TiN and TiN0.3. The x-ray spectra in Fig.3a and Fig.4a 

show that the phases, TiN, TiC, α′-Ti and possibly Ti5Si3 and TiN0.3, were formed on the 

top surface. At a depths of 100 μm below the surface, Fig.3b and Fig 4b, the microstructure 

consisted mainly of  α′-Ti, some TiN, a little TiC, and possibly also Ti5Si3 and TiN0.3, while 

at a depth of 300 μm, Fig.3c and Fig.4c, the microstructure contains mainly α′-Ti, a little 

TiC, and possibly Ti5Si3 and TiN0.3. The spectra in Fig.3 show that the strong intensity of 

the TiN peaks present at the top surface was decreased significantly  at both 100μm, and 300 

μm below the surface. This indicates that the TiN phase was present in the melt zone, but for 

both sets of tracks 1-3 and tracks 6-8, Fig.4, the concentration decreased with depth, an 

observation which is consistent with those made for the  nitrided-only specimens [10, 20].  

3.2 Lattice parameter changes 

              The lattice parameter changes in the TiN and α′-Ti phases were considered by 

observing the peak shift for both sets of   tracks at the three different melt depths. Other 

phases, such as TiC, Ti5Si3 and TiN0.3 were not analysed due to the closeness of each peak 

to one or two peaks of a different phase. The changes in lattice parameters are considered to 

result from the combined effect of the residual stress due to the rapid solidification in the laser 

processing, and to variations in composition of the phases. 

          By using the XRD data obtained from the laser processed specimens, the lattice 

parameter, a, of the TiN phase as a function of depth after laser surface nitriding and SiC 

preplaced alloying under 40% nitrogen environment, was calculated, and the results are 
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shown in Fig.5. The lattice parameter, a, of the TiN phase, Fig.5a, for the set of tracks 1-3 

increases from 4.241 Å on the top surface to 4.250 Å at the 100 μm depth and reverts to the 

surface value at 300μm. However, for the set of tracks 6-8, a of the TiN phase drops from 

4.235 Å at the surface to 4.232 Å at 100μm and rises to 4.4250 Å at 300μm. 

 The lattice parameters, a  and c, of the α′-Ti for both sets of tracks, 1-3 and 6-8 are given in 

Figs.5b and c. For tracks 1-3, the lattice parameter a of α′-Ti increases from 2.906 Å at the 

top surface to 2.915 Å at the 100 μm depth and then 2.916 Å at the 300 μm depth. However, 

the lattice parameter, c, of the α′-Ti, increases from 4.612 Å at the top surface to 4.662 Å at 

both the 100 μm and 300 μm depths. For the tracks 6-8, a   has similar values to those of 

tracks 1-3, but then increases to 2.924 Å at 300 μm depth. On the other hand, the lattice 

parameter c is constant at 4.662 Å with depth for tracks 6-8. The increase of a of α′-Ti with 

depth in the top surface resulted from the combined effect of the formation of TiN, TiC, the 

influence of Si and N in solid solution, and also the possibility of an effect of the residual 

stress exists. Zergioti et al [25] have also reported the shifting of XRD peaks due to the 

presence of the residual stress, in their work on TiB and TiC thin layers produced by pulsed 

laser deposition. 

3.3 Surface analysis by x-ray photoelectron spectroscopy 

A wide range scan of 0-500eV, as shown in the example in Fig.6a, was used for all the initial 

surveys of the samples to identify the elements present. Detailed scans, as in Figs. 6b to e, 

were then performed over the binding energy ranges of interest. For high intensity peaks, the 

accuracy of  locating relative peak positions is ± 0.1eV.For low intensity peaks, the peak 

positions are not so well defined and the accuracy can decrease to ±0.5eV. The specimens 

were cleaned with methanol before inserting into the spectrometer. The XPS spectrum before 

argon ion sputtering (cleaning), was dominated by surface oxygen and carbon contamination, 

which obscured the spectrum from the alloy. The ion sputtering removed the oxide layer, and 

the XPS spectrum showed the presence of titanium nitride.  
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The XPS spectra of the Ti2p core levels for the processed alloy at different depths taken again 

from tracks 1-3 and 6-8, are shown in Fig. 7. Table 1 and Table 2 give the values of the 

binding energy of Ti2p3/2 and N1s peaks, and their binding energy difference at different 

depths taken from tracks 1-3 and tracks 6-8, respectively. The peaks of Ti2p3/2 at 454.2 eV, 

in Tables 1 and 2, correspond to TiN (454.4 eV [26]). At the depth of 100 μm and 300 μm for 

tracks 1-3, and at the depth of 300 μm for tracks 6-8, the Ti2p3/2 peaks approached the base 

alloy value at 453.6 eV, which correspond to titanium (453.8 eV [27], 453.6 eV [28]). All 

N1s peaks at the top surface and at the 100 and 300 μm depths for both sets of tracks, 

correspond to nitrides, which appeared at 396.6 eV [26]. These values confirm the presence of 

titanium-nitrogen solid solution. 

          In the C1s spectra, Fig.8, two possible peaks appear. The higher binding energy 

corresponds to the chemical bonding between Ti and C (labelled TiC), while the lower one is 

due to absorbed (contamination) carbon (labelled C). The binding energy of the chemical 

bonding between Ti and C is about 3.0 eV smaller than that arising from the contamination. 

As mentioned in the literature, the peaks at 280.8 eV for the top surface of tracks 1-3 and 

tracks 6-8 in the present specimen, indicate the presence of TiC (281 eV [27], 

 281.5 eV [29] , 81.7 eV [30],).  The Si2p XPS core level spectra are shown in Fig.9. There is 

little evidence for Si on the top surface but a distinct signal appears at 100 μm and at 300 μm 

for both tracks 1 – 3 and tracks 6 –8. In a similar study with SiC preplacement only [22], the 

Si 2p signal was apparent from the top surface downwards which implies that in the combined 

laser treated specimen, the nitriding rejects the Si phase from the surface. The binding energy 

of the Si 2p peaks in Fig.9 are at 98.4 eV, while  the binding energy from the Ti5Si3 standard 

was at 99.2 eV and that from pure Si is at 99.7 eV [29], indicating that the Si containing phase 

is not pure Ti5Si3. 

4 DISCUSSION 

4.1 Microstructure 
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          The results from the nitriding-only and the SiC preplaced specimens [10, 20, 22], were 

used as a basis for characterising the phases formed after laser processing using the 

combination of nitriding and SiC powder preplacment. 

          Titanium nitride has gold colour, and the track surfaces previously have been observed 

to exhibit gold and yellow colours when melted in pure and dilute nitrogen environments 

respectively [4,5]. In the present investigation, surface alloying with silicon carbide in the 

40% nitrogen environment, produced a pale golden colour on all the overlapped tracks. This 

is normally taken as an indication of the formation of a titanium nitride phase in the top 

surface of melt zone.  

          The vertical cross-sections of all tracks produced on the Ti-6Al-4V surface in the 40% 

nitrogen environment gave a melt zone almost free from any SiC particles, which had 

dissolved after melting. No large SiC particles, picked up from the grinding technique used to 

produce a new surface, were observed in this work. However, in Fig 1b a defect some 300μm 

in size can be seen at T2, and several pores are present at the melt/ heat affected zone (HAZ) 

interface. While ideally, macro-defect free microstructures are desirable, these laser processed 

surfaces were developed to give improved wear and erosion resistance [15, 17, 31].The 

presence of porosity, probably due to nitrogen gas quenched into the melt pool, at the 

interface, had no effect on the surface properties in this work.  The crack observed at the 

eighth track is a more serious defect. However, in previous work, cracking has been overcome 

by changes to the laser processing procedures, which have included preheating the substrate, 

and  this approach could be used in future work. 

              The microstructure after solidification in this specimen contained a very thin layer on 

the surface and small dendrites growing from the surface layer in a direction nearly 

perpendicular to the surface. The layer was continuous on the surface of tracks 2, Fig.2a, and 

6/7, Fig.2b, but was discontinuous for track 7, Fig.2c.  This shows an obvious difference from 

the nitriding only processing  where the top TiN compound which always formed a 

continuous layer,  and  the dendrites, which had long arms projecting into the melt below the 

surface [18]. Fig.2a shows some isolated particles formed both in the grains of the matrix and 
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at the grain boundaries. A network of a compound was formed in the melt pool, spreading 

between the small grains (<10 μm in diameter) of the matrix and appearing with a eutectic 

morphology. 

          Below the top region, particularly at a depth of ≥ 300 μm from the surface, there are no 

significant dendrites or network compounds, but mainly small needles. In the nitrided only 

specimens, a needle phase has been identified as TiN0.3, which has the same crystal structure 

and similar lattice parameters of those of α-Ti. The difference is that in the present 

processing, this needle phase formed only in the region far from the surface, whereas the 

needles studied previously in the nitriding only process formed throughout the melt zone [20, 

21].  

4.2 X-ray diffraction 

4.2.1 Surface layer 

          In the above discussion, the existence of a thin layer in the top region, seen in Figs 2a, 

2b and 2c, was mentioned. It is clear from the results of the XRD experiments, that the thin 

layer on the top surface is a primarily a cubic TiN compound. By comparing EDX spectra 

from the thin layer and from the matrix, [18], it is suggested that the surface is no longer a 

simple TiN compound, but a TiN solid solution containing carbon and silicon, although the 

lattice parameters of the phase are unchanged. The matrix is considered to form from the β → 

α′ martensitic transformation, where the α′-Ti has the same structure and lattice parameters 

as the α-Ti. 

4.2.2 Small dendrites 

          As the surface XRD spectra show strong TiN and α′-Ti peaks and the quantity of the 

small dendrites was fairly high, the small dendrites growing in non-preferential directions in 

the top region must be also the TiN solid solution with dissolved carbon and silicon. An 

electron back-scattered pattern (EBSP) from this dendrite performed by Hu et al [24] showed 

a face centred cubic (fcc) structure. This is consistent with the XRD data  which contained the 
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TiN phase with a f.c.c. structure. The thin surface layer and the many small TiN dendrites 

disconnected from the surface TiN layer are attributed to the addition of SiC particles on the 

surface before the nitriding. First of all, while some nitrogen would be expected to diffuse 

between the solid preplaced SiC particles, nitriding would not proceed quickly until the SiC 

powder coating dissolved into the melt to allow the nitrogen to react with the liquid surface. 

However, the priorities for the formation of TiN particles at the surface will depend on the 

opportunities for contact between the liquid and nitrogen. Secondly, even after the SiC 

particles dissolved into the melt, the TiN solid solution could not grow directly from the 

surface in the form of long arm dendrites because of an insufficient nitrogen concentration 

and concentration gradient in the liquid. In addition to this, when the convection flow in the 

melt is considered, the discontinuous small TiN dendrites formed in the top region would be 

transferred to a deeper location in the melt, to form the morphology shown in Fig.2d. 

4.2.3 Isolated particles and network compound 

          The volume fraction of the isolated particles is obviously too small to be detected by 

the XRD technique. Though the quantity of the network compound may be detectable by 

XRD when the compound is a eutectic mixture and the major phase in the eutectic is the α′-

Ti, the quantity of the other phase in the eutectic might still be revealed by the XRD 

spectrum. Another difficulty in attempting to ascertain the correct peaks for TiC or Ti5Si3 is 

the closeness of other strong peaks. Hu et al [24] suggested, following analysis of EDX 

spectra, that the isolated particles are a carbon rich phase and the network compound at grain 

boundaries is a silicon rich phase. Consideration of the Ti-C and the Ti-Si phase diagrams 

suggests that the isolated particles are most probably a TiC phase and the network compound, 

Ti5Si3 phase. XRD results from the top surface and below 100 μm from surface show the 

possibility of the existence of the TiC particles and a Ti5Si3 compound. 

4.2.4      Needle phase 

          In earlier work of Hu et al [20], a needle phase in the nitriding only processing was 

identified as TiN0.3.This phase has the same crystal structure (hexagonal) as the α′-Ti phase 
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and has similar lattice parameters. Also found in this earlier work was that the lattice 

parameters of the TiN0.3 phase changed with a change in those of α′-Ti. Using XRD, these 

investigations found the following lattice parameters in a commercial purity titanium alloy, 

a=2.9511Å and c=4.6843 Å for the α′-Ti and a=2.976Å and c=4.807 Å for the TiN0.3 phase. 

However, in a Ti-6Al-4V alloy studied in the same work [20], it was found that a=2.925Å and 

c=4.670 Å for the α′-Ti and a=2.941Å and c=4.727 Å for the TiN0.3 phase. A further XRD 

analysis was carried out in this region in the present work, by removing 300 μm from the 

surface. The results in Fig.4c and Fig.5c show there are no additional strong peaks present 

from this region, but only those associated with the α′-Ti and TiN0.3 phases. Thus, the needle 

phase in the present work is considered to be the TiN0.3 phase, which has the same structure 

as the α′-Ti phase with similar lattice parameters, but a higher nitrogen concentration. 

4.2.5 Lattice parameter changes 

Fig 5 shows the changes in lattice parameters of both TiN and α′-Ti with depth below the 

processed surface for tracks 1-3 and 6-8. In the transition elements, the cubic nitrides can 

exist in a wide range of non-stoichiometry, and FCC TiNx can be obtained with 0.5 ≤ x ≤ 1.1 

[32].For slowly cooled specimens, TiNx has a lattice parameter which increases linearly from   

4.215Å, when x=0.6, to a maximum of 4.242Å, when x=1 [32, 33]and then decreases 

linearly to 4.225Å when  x=1.1 [32]. Furthermore, most of the transition metal carbides and 

nitrides are mutually soluble, forming a series of carbonitrides which have face-centered 

cubic (FCC) NaCl crystal structures[34, 35]. The lattice parameter, a, for TiC is given as 

4.312-4.315Å [36], 4.294Å [22] and 4.33Å [37], all of which are significantly greater than 

the maximum  a for TiN. The lattice parameter of the carbonitrides behaves linearly between 

TiN-TiC [34]. 

 In a previous paper by Selamat et al [10], discussing laser nitriding using 20%N, it was  

found that for tracks 1-3, a increased from 4.213Å at the surface to 4.222Å at a depth of 
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100μm, while for tracks 6-8, a remained constant at 4.222Å. This indicated that that x was 

always <1. TiN was not detected below 100µm.In the present work,  which used 40%N, the 

variations in a, as  determined by XRD, and shown in Fig5a, can be explained by the  

different C, N and Si contents of Ti(Cy,Nx), with Si in solid solution. a is always ≥ than 

4.23Å,, indicating that in a TiNx C and Si free phase,  x is ≥ 0.9. C diffuses ~17x faster than N 

in βTi at 1423K [38, 39] (the difference in diffusion coefficients in the liquid state is not 

known). In tracks 1-3 the increase in a between the surface and 100µm, may be associated 

with the presence of C in TiN solid solution, while the decrease in a between 100 and 300µm 

could be due to the limitations in the diffusion of C and N, in the latter case, 300µm depth, 

resulting in a smaller values of x and y in Ti (Cy,Nx). It should be remembered that  nitrogen 

has to penetrate the SiC layer before reacting with the Ti-6Al-4V alloy.    

The lattice parameters of the α  phase in slowly cooled or aged Ti-6Al-4V are   a = 2.925Å 

and c= 4.670Å [39].These parameters are similar for α′[40],which are smaller than the lattice 

parameters of CPTi,  given as  a = 2.951Å and  c= 4.684Å, by Wriedt and Murray [32],and  

included in Figs5b and5c.It is considered that the substitutional elements  in solid solution in 

α/α′ , Al and V, are responsible for the decrease in the lattice parameters. Both these 

elements and silicon have smaller atomic diameters (2.86Å, 2.63Å, 2.35Å) than titanium 

(2.95Å).On the other hand,  the interstitial elements C,N, and O are known to increase the 

lattice parameters  of the α  phase [20,40] . It is noted for tracks 6-8, that c is unchanged, 

probably due to preheat producing slower cooling and allowing a closer approach to the 

equilibrium lattice parameter value. This effect only appears for  a  in tracks 1-3,at  300μm 

depth, as the smaller a  value of the surface persists to 100μm. The XPS results suggest that 

Si is rejected from the surface but is present in TiNx solid solution at 100μm and 300μm 

subsurface. Hu and Baker [41]showed that overlapping  11 tracks could result in a preheat of 

up to 290°C during laser nitriding with 20%N, recorded in 10mm thick Ti-6Al-4V plate. It is 

considered that even higher temperatures could result through the exothermic reaction to form 

TiN from the use of 40%N. This could result in greater distances in the diffusion of  both N 
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and C below the surface, albeit at lower and lower concentrations, which might explain the 

increase in a seen in Fig5a for tracks 6-8. 

While  the residual stress will have an effect on a, it would be expected that the preheat 

generated by the melting of a number of tracks, would have a major influence  in reducing the 

residual stress level throughout the  work-piece.  

There are few experimental data in the literature concerning the residual stress levels 

developed in laser surface processing [14, 42].Ubhi et al [42] showed that the residual stress 

across a single track in laser glazed Ti-6Al-4V plate was +170MPa compared to +100MPa 

(+ve is tensile) in the parent plate, and these values  were reduced by annealing. Mridha et al 

[14] determined the residual stresses in single track laser processed using 3mm thick CPTi 

sheet, alloyed with ~6µm SiC particles. They showed that the tensile stresses determined 

parallel to the track direction, decreased with depth from +259MPa at the surface to +124MPa 

at a depth of  200µm.The compressive stresses determined perpendicular to the track 

direction, also decreased from the surface -244MPa to -170MPa at 100µm subsurface, to 

- 99MPa at 200µm subsurface. How the effects of the combined tensile and compressive 

stresses would affect the local lattice parameters of TiN and α′-Ti has not been determined. 

However, the residual stresses in tracks 6-8 would be expected to be reduced significantly 

through the preheat developed in this work..  

 

 

4.3 X-ray photospectroscopy 

          XPS results have suggested that with the present specimen, the surface is no longer a 

simple   TiN cubic compound, but a TiN solid solution containing carbon and silicon, 

possibly a carbonitride. Further, it is thought that the small dendrites growing in non-

preferential directions in the top region, Fig 2a, must also be the TiN solid solution with 

dissolved carbon and silicon. It is considered that the needle phase, Fig 2d, is most likely to 
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be the TiN0.3 phase, while the region below 300 μm from surface is associated with the α′-Ti 

and TiN0.3 phases.  

          Comparison of the binding energy difference (ΔE) between the Ti2p3/2 and the N1s 

core peaks, Table 1 and Table 2, with the work of Porte et al [43], Fig. 10, suggests that in the 

present specimen, x ≈ 0.65-0.8 in TiNx.This range compares well with that of a 20% nitrogen 

Ti-6Al-4V alloy, where for similar experiments, x ≈ 0.5-0.8 [10].The atomic fraction of C 

was not assessed.  

          In the C1s core level spectra, Fig.9, the peak at about 280.8 eV binding energy, is due 

to the chemical bonding between Ti and C ( labelled TiC) and that at about 284.5 eV 

represents absorbed carbon. These results indicate that a certain amount of TiC and un-

reactive sources are contained in the specimens. For the layer showing strong TiC peaks, the 

absorbed carbon is noticeably reduced and the chemical bonding of Ti-C dominates. 

The Si 2p spectra of Figure 9 show that the silicon concentration is too low to produce a 

discernable signal from the surface. However, such a  signal does appear at the 100μm and the 

300μm depths for both sets of tracks indicating that the silicon has diffused from the surface 

into the depth of the melt pool. In the earlier study with SiC preplacement only, [22], Si was 

present from the surface downwards so it would appear that the presence of nitrogen in 

solution at high concentrations has the effect of rejecting silicon. Since the microstructure at 

these depths shows only α’-Ti and the needle phase TiN0.3, the silicon must be in solid 

solution. 

4.4 Comparison with recent significant studies 

With the exception of the work undertaken at Strathclyde University [22-24] there are few  

publications  concerned with Ti-6Al-4V alloys where SiC particles dissolved during laser 

processing, and which discuss the microstructure in depth. Furthermore, there appears to be 

no other published work on laser nitriding Ti-6Al-4V combined with alloying with SiC 

additions [44]. However, Pei et al [45] have  studied in detail the microstructure in single 
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track Nd:YAG laser processed Ti-6Al-4V alloys without nitriding, into which 50-90μm SiC 

particles were injected, using beam scanning velocities in the range 8.3 to 13mm/s,which 

spanned that used in the present work. 

Like the present  work, they also found a variation in the microstructure with depth, but in 

their case, the presence of   undissolved SiC particles had a major influence on the 

morphology of the submicron  phases [45]. For example, a heterogeneously nucleated TiC 

reaction layer was always found to surrounded the SiC particles. This was sometimes 

associated with Ti5Si3. A eutectic of TiC/α-Ti was also observed. The thickness of the 

reaction layer was shown to be influenced by the beam velocity and the depth to which the 

SiC had penetrated. The same phases were also identified by Oh and Lee [46]   in surface 

composites developed by melting powders of TiC, SiC or mixtures of both, on Ti-6Al-4V 

alloys using   high energy electron beam irradiation. One major difference to the 

microstructure recorded by both these sets of workers [45,46]  to that observed by Selamat et 

al [22], was the absence of a thin surface layer comprised of Ti0.55C0.45, Ti5Si3 and a 

martensitic α′-Ti solid solution containing Si and /or C. In the case of the combined SiC plus 

laser nitriding studied here, this is replaced by a thin layer of TiN solid solution containing 

C, possibly forming a carbonitride, and Si,. plus martensitic α′-Ti.   

5 CONCLUSIONS     

A combination of laser surface nitriding and alloying with SiC preplacement on a Ti-6Al-4V 

alloy using a 40% nitrogen and 60% argon environment has been carried out and  produced a 

pale gold colour on the  surface after laser processing. The spinning beam mode was used to 

produce a 4mm wide melt track using a velocity of spinning of 1500 r.p.m. for the main 

specimens studied in this work. The laser power was set at 2.8 kW and the specimen velocity 

at 10 mm/s. A total of 12 laser tracks with 50% overlaps   produced a 24mm wide modified 

surface on  the 7mm thick base alloy.  

   Following the study of characterization of the Ti-6Al-4V alloy using SEM, XPS and XRD, 

a  phase identification was made, and the following conclusions were reached:- 

 17



(1) a spinning beam associated with overlapping tracks produced a smoother and a uniformly 

thick melted layer (more than 300μm deep) over a significant area, compared with a 

stationary beam melting a single track. 

(2)  XRD spectra from the specimens taken from tracks 1-3 and  6-8, showed similar features. 

At the surface, cubic TiN ( possibly a carbonitride) was prominent, while TiC and α′-Ti, were 

identified, and Ti5Si3 and TiN0.3 were also possibly present. At depths of 100μm, cubic TiN 

was less concentrated,.With increase in depth, α′-Ti became more prominent, while the other 

phases were still in evidence. The results suggest that the surface layer  comprised mainly of a 

cubic TiN solid solution containing C, (possibly a carbonitride), and Si. 

(3) XPS data suggest that the cubic TiN solid solution containing carbon and silicon is in fact 

non-stoichiometric ie,TiNx , where x lies between 0.65 ≤ x ≤ 0.8. The evidence for Si on the 

top surface is only slight but a distinct signal appears at 100 μm and at 300 μm for both sets 

of tracks. In a similar study with SiC preplacement only [22], the Si 2p signal was apparent 

from the top surface downwards. This implies that in the combined laser treated specimen, the 

nitriding rejects the Si phase from the surface. 
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Tables 

 

 

 

Table 1 : The binding energies (eV) of the Ti2p3/2, N1s and their differences with depths for 

tracks 1-3. 

Depth (μm)             Ti2p3/2                        N1s                              Ti2p3/2- N1s 

     0                       454.2±0.1                    396.2±0.1                           58.0±0.4 

    7.5                     454.2±0.1                    396.4±0.1                           57.8±0.2 

   100                     454.1±0.1                    396.1±0.1                           58.0±0.2 

   300                     453.6±0.1                    396.1±0.1                           57.8±0.2 

    Base alloy      453.6±0.1                          -                                   - 

 

 

 

Table 2 : The binding energies (eV) of the Ti2p3/2, N1s and their differences with depths for 

tracks 6-8. 

Depth (μm)         Ti2p3/2                        N1s                             Ti2p3/2 - N1s 

                 0                      454.7±0.1                    396.2±0.1                   58.0±0.2          

                 7.5                   454.2±0.1                    396.2±0.1                   58.0±0. 

                 100                  453.8±0.1                    396.2±0.1                   57.6±0.2 

   300                  454.4±0.1                    396.2±0.1                   57.6±0.2 
 
   Base alloy       453.6±0.1                        -                                     - 
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Figure Captions 

 

Figure 1 : (a) Macrograph, and (b) optical micrograph of the laser processed specimen. 

Figure 2 : SEM micrographs showing microstructure produced in the laser processed 

specimen. (a) Top surface of track 2, (b) top surface of track 6/7, (c) top surface of track 7, (d) 

at a depth of over 300 μm below the top surface of track 1/2. 

Figure 3: X-ray diffraction spectra of the laser processed specimen for tracks 1-3, (a) at the 

top surface, (b) at the 100 μm depth, and (c) at the 300 μm depth. ( ■ TiN,● α′-Ti, ▲ TiC, x 

Ti5Si3,♦ TiN0.3) 

Figure 4 : X-ray diffraction spectra of the laser processed specimen for tracks 6-8, (a) at the 

top surface, (b) at the 100 μm depth, and (c) at the 300 μm depth.  ( ■ TiN,● α′-Ti, ▲ TiC, x 

Ti5Si3,♦ TiN0.3) 

Figure 5 : The lattice parameters formed at different depths of the laser processed specimen. 

(a) a of TiN, (b) a of α′-Ti, and (c) c of α′-Ti. 

Figure 6 : (a) XPS wide energy range (0-550 eV) survey scan for the laser processed 

specimen, taken from tracks 1-3. Detailed scans of the core level peaks, (b) Ti2p, (c) C1s, (d) 

O1s and (e) N1s. 

Figure 7 : The XPS spectra of the Ti2p core levels with different depths for the laser 

processed specimen, (a) from tracks 1-3 and (b) from tracks 6-8. 

Figure 8 : The XPS spectra of the C1s core levels with different depths for the laser 

processed specimen, (a) from tracks 1-3 and (b) from tracks 6-8. 

Figure 9 : The XPS spectra of the Si2p core levels with different depths for the laser 

processed specimen, (a) from tracks 1-3 and (b) from tracks    6-8. 

Figure 10 : Binding energy difference (ΔE) between the Ti2p3/2 and the N1s core-level peaks 

versus x obtained from the TiNx produced using PVD method (31). 
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