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Summary 
 
This paper describes the development of a numerical procedure for predicting 
deformations and stresses in a loaded two dimensional membrane exhibiting 
micropolar or Cosserat constitutive behaviour. The procedure employs a conventional 
finite element mesh together with a dual mesh of interconnected control volumes, 
each of which must satisfy equilibrium. A series of patch tests covering a variety of 
simple strain states are used to validate the procedure which is then employed to 
predict the stress concentration in a membrane containing a small hole. The 
predictions provided by the procedure are compared with those given previously by 
finite elements. 
 
Keywords: micropolar, Cosserat, finite element, control volume  
 
1. Introduction 
 
Classical elasticity theory is regarded as local in the sense that the state of stress at a 
point in a loaded material is related to the strain at that point through a suitable 
constitutive relationship. Its popularity persists because it provides a perfectly 
adequate description of the response of many materials when loaded. This can be 
attributed to the fact that although these materials are actually heterogeneous when 
viewed at the microscopic level they appear homogeneous at the larger scales that are 
usually of interest. However, there are instances where the assumption of material 
homogeneity is inadequate: either the size of the loaded structure is very small and 
comparable to the length scale of its constituent material microstructure or the length 
scale of the heterogeneity with the material structure is significantly larger than 
microscopic. Many nanotechnological devices fall into the first category while 
materials such as ceramics, cement, rock, soil, bone and short fibre and particulate 
reinforced composites are members of the second category. 
 
Alternative theories describing the behaviour of heterogeneous materials are 
available. These theories are regarded as nonlocal because they assume that the state 
of stress at a point not only depends on the strain at that point but also on the strain in 
the surrounding neighbourhood. Nonlocal theories therefore incorporate the concept 
of a length scale that quantifies the size of this neighbourhood and thereby recognises 
the underlying structure of the material. Gradient theories incorporate nonlocality by 
relating the stress to not only first but also higher order derivatives of displacement 
[1]. Micropolar or Cosserat theories introduce couple stresses that supplement the 
conventional stresses and are related to additional internal rotational degrees of 
freedom through constitutive relations that include a length scale parameter [2].  
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Incorporating nonlocal theories into numerical methods for predicting the behaviour 
of loaded heterogeneous materials is not as straightforward as with classical elasticity 
theory. Gradient theories ideally require inter element continuity of higher order 
displacement derivatives and this is not generally exhibited by conventional finite 
element (FE) methods. The development of suitable elements offering this feature is 
actively being pursued [3, 4, 5]. Micropolar elasticity theory has been incorporated 
into FE methods by a number of researchers [6, 7, 8, 9, 10]. However, the numerical 
results reported indicate that there are some issues that arise. Firstly, the accuracy of 
the numerical solutions can vary as the values of the additional micropolar elasticity 
parameters are changed even though the mesh remains unaltered [7, 8, 10]. Secondly, 
some elements appear to only satisfy appropriate patch tests approximately rather than 
exactly as might be expected [8]. Finally, reported results invariably consider two 
dimensional cases only implying that full three dimensional analyses are an as yet 
unrealized challenge for FE methods. 
 
This paper describes the initial development of an alternative numerical approach to 
predicting deformations in loaded heterogeneous materials that exhibit micropolar 
elastic behaviour. The description given here concentrates on the case of planar 
deformations; the extension of the approach to the more general three dimensional 
situation forms the basis of ongoing research. The approach itself employs a 
conventional finite element mesh with the unknown degrees of freedom located at the 
element vertices. However, instead of deriving the algebraic equations for the vertex 
unknowns by minimizing total potential energy they are obtained by imposing 
equilibrium locally on control volumes constructed around each element vertex. This 
so called control volume based finite element method (CVFEM) was first developed 
for convection diffusion problems [11] because its geometric versatility provided the 
opportunity to represent complicated flow domains while preserving the local 
conservation property of earlier Cartesian grid based finite volume methods [12]. The 
CVFEM has also been referred to as the vertex centred edge based finite volume 
method [13]. Lately the development of computational methods for analysing 
phenomena like melting and solidification or flow induced vibration, where different 
physical media are interacting, has produced control volume based procedures for 
numerical solid mechanics [14] that are compatible with their computational fluid 
dynamics (CFD) counterparts. These procedures have been used to analyse various 
fluid structure interaction problems [15,16,17]. Control volume procedures have also 
been employed in the solid mechanics context to analyse specific problems such as 
fracture [18], where the intrinsic local conservation feature can usefully be exploited 
in the crack tip neighbourhood, and in analysing nonlinear problems [19,20,21], 
where CFD experience, particularly in solving the discrete equations, can be 
reutilized. In general, the procedures usually incorporate low order displacement 
variations and provide displacement, strain and stress field predictions that are of 
similar accuracy to those given by corresponding FE methods. However, a recently 
developed CVFEM procedure incorporating additional rotational degrees of freedom 
and associated quadratic displacement variations [22] produced displacement 
predictions that were noticeably more accurate than its FE equivalent [23]. The 
research described here also includes vertex rotations but rather than simply providing 
higher order variations in displacement these now represent the microrotations 
intrinsically present in micropolar elasticity theory. This paper first provides a brief 
summary of plane micropolar or Cosserat elasticity theory and then describes the 



formulation of the CVFEM in some detail. Finally, numerical results for a test 
problem are presented and compared with available FE results. 
 
2. Overview of Plane Micropolar Elasticity 
 
Micropolar or Cossarat elasticity extends classical elasticity theory by incorporating 
additional couples per unit area that act on a material element. These couple stresses, 
mx and my, together with the conventional direct stress components, σx and σy, and 
shear stress components, τxy and τyx, are shown acting on a loaded two dimensional 
element in Figure 1. 
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Figure 1 Stress system for a micropolar material element 
 
Equilibrium of the element in the Cartesian coordinate directions yields the following 
pair of equilibrium equations:- 
 

0,, =++ xyyxxx pτσ     (1) 
0,, =++ yyyxxy pστ     (2) 

 
where px and py are the components of any body force per unit volume that may be 
imposed on the element and the comma in the subscript denotes differentiation with 
respect to the succeeding variable in the usual way. Equilibrium of moments about the 
centre of the element yields a third equilibrium equation:- 
 

0,, =+−++ qmm yxxyyyxx ττ     (3) 
 
where q represents a body moment per unit volume that may be acting on the element. 
Equation 3 implies that when the couple stresses are present the shear stresses do not 
need to complement one another and are therefore not necessarily equal. The shear 
stresses can be written in terms of a symmetric component, τs, and an antisymmetric 
component, τa:- 
 

asxy τττ +=     (4) 

asyx τττ −=     (5) 
( )where      yxxys 21    (6) τ = τ +τ



and      ( )yxxya τττ −= 21    (7) 
 
The symmetric component is related to conventional shear deformation in the element 
while the antisymmetric component is associated with a rotation, φ, of the element as 
shown in figure 2. In Cosserat elasticity this microrotation is independent of 
displacements; it is not equal to the conventional rotation represented by the curl of 
the displacement vector. Constraining the microrotation to equal the conventional 
rotation leads to a simplified couple stress theory of elasticity. 
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Figure 2 Deformations associated with shear stress components 
 
In order to solve the equilibrium equations 1 to 3 numerically using a CVFEM 
employing displacement and rotation variables it is necessary to link the applied 
stresses to the resulting deformations via a set of constitutive relationships. In the 
plane stress case these are [24]:- 
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In the plane strain case the direct and shear stress components are given by [24] :- 
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while the couple stresses are still given by equation 9. Here εx and εy are the direct 
strain components and εxy and εyx are the shear strains. The rotation derivatives 
appearing in equation 9 are referred to as the curvatures as in plate theory. The 
subscript m is added to E, the Young’s modulus, and ν, the Poisson’s ratio to 
acknowledge that they are the micropolar material properties that would be obtained 
from a uniaxial load test in which a constant state of strain is induced throughout the 
test piece. The other two material properties appearing in these relationships are the 
characteristic length, l, and the parameter N, termed the ‘coupling factor’, which 
quantifies the interaction intensity between the displacement and rotation fields [24]. 
An alternative interpretation of this interaction can be obtained by letting:- 
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and, by noting that a shear modulus, Gm can be defined in terms of Em and νm thus:- 
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then the last two relationships in equation 10 can be simplified to:- 
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as in [8]. The strains appearing in equation 10 are related to the displacements by:- 
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where u and v are the displacement components in the x and y directions respectively. 
By substituting the expressions for the shear strains given in 14 into 13 it is possible 
to show using 6 and 7 that the antisymmetric component of the shear stress depends 



on φ and a (and thereby N) while the symmetric component is independent of them. 
Thus a may be regarded as a parameter that characterises the relative magnitudes of 
the symmetric and antisymmetric components of the shear stress. The lower bound on 
a occurs when a = 0 (or N = 0) and corresponds to classical elasticity while the upper 
bound, a = ∞ (or N = 1), is equivalent to couple stress theory. 
 
3.0 The CVFEM Formulation 
 
3.1 The control volume dual mesh 
 
The geometry of a two dimensional structure is represented by a mesh of finite 
elements that are connected to one another at their vertices in the usual manner. The 
shape of the elements is, in general, not restricted; they can be triangular, quadrilateral 
or even polygonal. A dual mesh of control volumes (CVs) is constructed by 
connecting each element centre to the midpoints of its edges. Figure 3 shows the case 
where a typical CV belonging to the dual mesh is formed around one of the vertices 
located in a mesh of triangular elements. In general, n elements will be connected to 
the vertex so the CV forms a multifaceted polygon with 2n edges numbered from 1 to 
2n as illustrated. It is important to note that the dual mesh is conceptual; in practice it 
is unnecessary to store any information about its construction as will be explained 
later. 
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Fig.3 Multifaceted control volume constructed around element vertex 
 
Equilibrium equations 1, 2 and 3 are satisfied by each CV when the resultants of the 
stresses acting on their boundaries balance any body loadings imposed on them. 
Equilibrium of a particular CV can thus be represented by:- 
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where  and  are the components of the stress resultants acting on face j of the 

volume,  is the resultant moment about P of the stresses and AV is the area of the 
CV. 
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3.2 The triangular finite elements 
 
A typical triangular finite element with three degrees of freedom per vertex, two 
displacement components, u and v, and a rotation φ, is shown in Figure 4. 
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Fig 4 Triangular element with translational and rotational degrees of freedom 
 
If the displacements and rotations are assumed vary linearly within each element then 
at some internal point, (ξ1, ξ2, ξ3), u, v and φ are given by 
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where ξ1, ξ2 and ξ3 are the usual area or natural coordinates associated with triangular 
elements [25]. If these expressions are differentiated with respect to the global (x, y) 
coordinate system then from 14 the strains at the point (ξ1, ξ2, ξ3) are given by:- 
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where A denotes the element area, u and φ are the nodal displacement 

) and rotation (( [ ]Tvuvuvu 332211=u [ ]T3φ ) vectors respectively, 21 φφ=φ
the matrix B is:- 
 

 
and y23 implies y2 – y3 while x32 means x3 – x2 and so on.

at the direct strains, εx and εy, are constant throughout an element while the shear 
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 Equations 19 and 20 reveal 
th
strains, εyx and εxy, vary linearly. Similarly, the curvatures at the point are given by:- 
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 of a CV lies entirely within a particular 
iangular element expressions for the force and moment resultants acting on the edge 

can be obtained by integrating the expressions approximating the stress variations 
within that element along the edge. For example, performing the integrations along
edge 1 of the CV centred on node 2 of the triangular element shown in Figure 4 y

ing expressions for the resultants:- 

 
Equations 19, 20 and 21 can then be used in con
relationships, 8 and 9 or 9 and 10, to derive expressions that describe the approximate 
variations in the assorted stresses throughout the element for the plane stress and plain 
strain cases respectively. 
 
3.3 Assembling the CV discrete equilibrium equations 
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and:- 



( ) ( ) ( ) ( )[ ]

[ ] ( ) ( ) ( )
( ) ( ) ( )

[ ]

[ ]

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

φ

2
1
A

θ BuD

s acting on the second edge of this CV which, of course, is 
lso located within the triangular element. These expressions can then be added to 

equations 22 and 23 to produce three equations representing the contributions that this 
element makes to the equilibrium equations of the C

ent makes to the equilibrium equations of the CVs centred on its first and third 

logous to the assembly of a 
trix from element stiffness matrices and results in a system 
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where L1 is the length of the edge, θ is the angle that its outward normal makes with 
the positive x direction as shown in Figure 4, the matrix D is the 4 by 4 constitutive 
property array in 8 or 10 and γ = 2Eml2/(1+νm) from 9. Similar expressions can be 
derived for the resultant
a

V. The contributions that the 
elem
nodes can similarly be derived. In practice these contributions are not only evaluated 
but are also stored on an element by element basis as in the conventional FE method. 
The need to obtain or store any details of the dual CV mesh is thus avoided. If the 
contributions that each element associated with a given CV are then summed as in 
equations 15 to 17 then the discrete equilibrium equations for that CV can be 
obtained. Obtaining these equations for all CVs is thus ana
FE structural stiffness ma
of algebraic equations:- 
 

⎥
⎦⎣−⎦⎣⎦⎣ QKK φφφφu

 
where P and Q are the body force and moment vectors respectively. Modification of 
equations 24 to incorporate displacement and traction boundary conditions follows 
conventional FE practice. An implementation of the CVFEM outlined here was 
developed using the MATLAB software suite and equations 24 solved using the 
standard algebraic equation solver supplied with the suite. 
 
4. Numerical Examples 
 
4.1 Patch Tests 
 
Patch testing is employed in FE development to ensure that elements are capable of 
predicting simple strain states correctly. For example, a triangular element 
incorporating linear displacement variations and classical elastic constitutive 
behaviour should predict constant states of strain exactly. Patch testing thus serves as 
a straightforward method of checking that the results provided by an FE procedure are 
consistent with the assumptions made in its formulation and that its software 
implementation is error free. However, in the case of micropolar elasticity the notion 
of simple strain states is more involved. Applying a constant body moment produces 
linear displacement variations and a constant rotation state while applying
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body forces in combination with a linearly varying body moment causes 
displacements and rotations to vary linearly. Any FE procedure incorporating 
micropolar constitutive behaviour and linearly varying displacement and rotation 
fields should therefore pass patch tests for these states of strain. In [8] a set of three 
patch tests for micropolar behaviour are presented. The tests are summarized in Table 
1 where the loadings applied to a rectangular membrane and the analytically obtained 
displacement fields are listed. The first test involves a state of constant strain in which 
the shear strains are complimentary, that is, εxy = εyx, while the second corresponds to 
a constant strain state in which they are no longer equal. The third test is more 
involved in that the curvatures are now constant rather than zero as they were in the 
previous two tests. The direct strains remain constant throughout the membrane but 
the shear strains now vary linearly due to the linearly varying rotation field.  
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Figure 5 Mesh for Patch Tests 
 
The elements developed in [8] were all tested using the three tests listed in Table 1 
and the mesh shown in figure 5. All the elements provided exact predictions of 
displacements, rotations and stresses for the first two tests. However, for the third test 
the predictions though accurate, were acknowledged to be approximate rather than 
exact. The discrepancies between the numerical and analytical solutions were thought 
to result from the irregularity of the mesh. The three tests have also been used to 
verify the CVFEM presented in this paper. The mesh shown in figure 5 was used for 
the verifications. Displacements at the lower left node were fully fixed while the 
rotation at this point was prescribed according to the analytical solution listed in Table 
1 as was the horizontal displacement at the upper left node. Together, these essential 
bou

Node x y

u 

ndary conditions provide the minimum constraint required to obtain a unique 
olution for the unknowns. Nodal forces and moments were applied that were 

 the periphery of the membrane 
nd the body forces and moments acting throughout it. The CVFEM like the finite 

= 0.00006 mm

s
equivalent to the direct and shear stresses imposed on
a
elements developed previously provides exact predictions for the first two patch tests. 
For the third patch test nodal displacement and rotation values and elemental stress 
values obtained using the CVFEM are compared to their analytically obtained 
counterparts in table 2. Element results presented earlier in [8] are also included in 
this table for comparison. The results listed clearly demonstrate that, unlike the finite 
elements, the CVFEM provides exact predictions of the displacement, rotation and 
stress fields for this test. The CVFEM is thus able to provide results that are entirely 
consistent with the assumed displacement and rotation variations incorporated within 
it. 



 
4.2 Uniaxial Loading of a Plate with a Circular Hole 
 
The ubiquitous loaded square plate containing a central circular hole problem has also 
been used to assess how accurately FE methods incorporating micropolar or couple 
stress constitutive behaviour can predict the stress concentration around the hole [7, 8, 
9]. For a Cosserat material the problem is intriguing because the magnitude of the 
stress concentration depends on the degree of micropolarity; as the micropolar 
constitutive parameters are increased the concentration reduces [26]. In [7] this 
problem was analysed using triangular elements with linear displacement and rotation 

elds across a range of interaction intensity parameter values. For small radius holes 

d higher order elements was then assessed across a range of intensity 
arameter and characteristic length values. In general, the higher order elements 

provided better estimates of the stress concentration over the constitutive parameter 
ranges considered. 
 
This stress concentration problem was also used to assess the performance of the 
CVFEM described here. Meshes with the same number of elements as those used in 
[8] were employed. Due to the symmetry of the problem only one quarter of the plate 
was considered. A typical mesh is shown in Figure 6. The element size was gradually 
reduced on moving in from the plate edge towards the hole. On the planes of 
symmetry the normal displacements and rotations were suppressed while on one of 
the edges nodal loads and moments consistent with a uniform normal stress were 
applied. 
 

fi
numerical results were found to be in excellent agreement with the infinite plate 
analytical solution [26] across the parameter range. The size of the hole was also 
varied to investigate the effect of changing the radius to characteristic length ratio. 
Numerical results began to show some divergence from the analytical solution at 
larger hole sizes but this behaviour was largely attributed to the effect of the finite 
sized computational domain. The problem was also considered in [8] although the 
hole radius was fixed at a small fraction of the domain size. The performance of both 
linear an
p
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Figure 6 Mesh (8×15×4) used to represent plate with 0.864 mm radius hole (quarter 
plate measures 16.4 mm by 16.4 mm) 

 
For a range of values of the interaction parameter, a, the maximum circumferential 
stress in an element adjacent to the hole was determined for two different values of 
the hole radius to characteristic length ratio. The results are tabulated in Tables 3 and 
 where previous FE results and the analytical values for an infinite plate are also 

he CVFEM, like the finite elements, 
rst improves and then, at a high value of a, reduces again. Table 5 compares the 

 results for the case where a is held constant while the ratio of the 
ole radius to characteristic length is varied by altering l while fixing r. Here the 

r Cosserat constitutive 
ehaviour. The performance of the method has been assessed using patch tests and a 

centration problem. The patch testing has 
emonstrated that the method is able to predict simple strain states exactly and 

he accuracy to which the method predicts the 

eters. A comparison of the predictions provided by the method with 

o higher order methods. 

hancement of control volume based methods as an alternative in meeting this 

4
quoted. The percentage errors in the numerical solutions are listed in parentheses. 
From the tables it can be seen that for classical elastic behaviour (a = 0) the CVFEM 
predicts the stress concentration more accurately than the triangular element 
incorporating linear displacement and rotation fields (MLINT) though not as 
accurately as the higher order triangular elements (MQLT with quadratic 
displacement and linear rotation fields and MQUAT with quadratic displacement and 
rotation fields). As a increases the accuracy of t
fi
CVFEM and FE
h
CVFEM provides predictions that are more accurate than any of the FE methods and 
accuracy improves as the characteristic length is increased. 
 
Overall, the predictions of the CVFEM are impressive in that they are always more 
accurate than the linear finite elements and are actually of comparable accuracy to the 
higher order elements across the parameter ranges. Indeed, the CVFEM might 
actually be more accurate than the higher order elements because the meshes used by 
both methods contained the same number of elements so the FE results were obtained 
using a larger number of degrees of freedom. However, a full convergence study of 
both methods would be required to confirm this. 
 
5. Conclusions 
 
A CVFEM has been successfully developed for predicting planar deformations and 
stresses within loaded materials exhibiting micropolar o
b
two dimensional plane strain stress con
d
therefore the results it provides are consistent with the assumptions incorporated in it. 
For the stress concentration problem t
magnitude of the concentration was determined across a range of micropolar 
constitutive param
those given previously by FE methods has revealed that its accuracy is superior to the 
equivalent low order FE method and is actually comparable t
As mentioned earlier, enhancing existing FE methods to analyze more challenging 
three dimensional situations has still to be realized. The results reported here support 
the en
challenge and research is currently underway to address this. 
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 = σy = 4,  = τyx = 1.
 =lution:- u {x + (1 }, v = 10  + y}, φ /4) × 10

Te
L  = py  1, σ  4, τ  = 2 y = 
S = 1 2) -3{  1  (  0

st 2:- 
oading:- px

o  
 = 0, q =
-3

x = σy = xy = 1, τyx , mx = m
-3

0 
lution:- u 0 {x + (1/ y}, v = 10 x + y}, φ = 0 {(1/4) + 1/4α)}, α = .5 

T
Loading:- px = y 2 x y xy = y) yx + 
m
Solution

est 3:- 
p  = 1, q = (x – y), σ  = σ = 4, τ    1.5 – (x – , τ  = 1.5 (x – y), 

x = -my = (2l2/α), α = 0.5 
:- u = 10-3{x + (1/2)y}, v = 10-3{x + y}, φ = 10-3{(1/4) + (1/2α)(x – y)}    

 
Table 1 Patch tests for micropolar materials:- body and boundary loadings and 

p olu sp  ro  
 

u v  ( σx  m

olynomial s tions for di lacement and tation fields

Method  (×10 ) 3  (×10 ) φ3 ×10 ) 3  σy x 
MLINT 0 0.4 9 34  .1944 0.2096 001 3.9 28 1.46  0.0400
MQLT 0 0.4 9 68  .1945 0.2097 001 3.9 56 1.46  0.0400

MQUAT 0 0.3 9 07  .1945 0.2097 960 3.9 56 1.47  0.0392
CVFEM 0.195000 0.210000 0.400000 4.000000 1.466666 0.040000 

Exact 0.195000 0.210000 0.400000 4.000000 1.466666 0.040000 
 

Table 2 Patch test 3:- Comparison of displacements at node 2 and stresses at point P 
predicted by FE methods [7] and CVFEM with exact solutions.  

a Analytical FE 
(MLINT) FE (MQLT) FE 

(MQUAT) CVFEM 

 

0.0 3.000 2.867 (4.4) 3.027 (0.9) 3.027 (0.9) 2.904 (3.2) 
0.0667 2.849 2.753 (3.4) 2.874 (0.9) 2.875 (0.9) 2.783 (2.3) 
0.3333 2.555 2.516 (1.5) 2.576 (0.8) 2.577 (0.9) 2.532 (0.9) 
1.2857 2.287 2.269 (0.8) 2.303 (0.7) 2.306 (0.9) 2.279 (0.3) 
4.2632 2.103 (2.6) 2.179 (1.0) 2.124 (1.6) 2.158 2.174 (0.8) 
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Analytical 

 
 

a FE 
(MLINT) FE (MQLT) FE 

(MQUAT) CVFEM 

0.0 3.000 2.867 (4.4) 3.027 (0.9) 3.027 (0.9) 2.904 (3.2) 
0.0667 2.956 2.833 (4.2) 2.987 (0.8) 2.983 (0.9) 2.922 (1.1) 
0.3333 2.935 2.809 (4.3) 2.969 (1.2) 2.966 (0.9) 2.932 (0.1) 
1.2857 2.927 2.761 (5.7) 2.983 (1.9) 2.973 (1.6) 2.924 (0.1) 
4.2632 2.923 2.633 (9.9) 2.975 (1.8) 3.005 (2.8) 2.846 (2.6) 

 
Table 4 Maximum Circumferential Stress at Circular Hole Predicted by CVFEM and 
arious finite elements [7] (hole radius 0.216 mm, r/l = 10.63, ν = 0.3, mesh 8×22×4v ) 

r/l Analytical  FE 
(MLINT) FE (MQLT) FE 

(MQUAT) CVFEM 

 

10.0 2.929 2.824 (3.6) 2.984 (1.9) 2.981 (1.8) 2.957 (1.0) 
8.0 2.902 2.804 (3.4) 2.954 (1.8) 2.952 (1.7) 2.922 (0.7) 
6.0 2.857 2.770 (3.1) 2.905 (1.7) 2.905 (1.7) 2.868 (0.4) 
4.0 2.779 2.709 (2.5) 2.821 (1.5) 2.823 (1.6) 2.781 (0.1) 
3.0 2.719 2.661 (2.1) 2.758 (1.5) 2.761 (1.6) 2.717 (0.1) 
2.0 2.641 2.599 (1.6) 2.678 (1.4) 2.680 (1.5) 2.638 (0.1) 
1.0 2.549 2.524 (1.0) 2.584 (1.4) 2.585 (1.4) 2.547 (0.1) 

 
Table 5 Maximum Circumferential Stress at Circular Hole Predicted by CVFEM and 

various finite elements [7] (hole radius 0.216 mm, a = 1/3, ν = 0.3, mesh 8×15×4) 
 
 


