
Strathprints Institutional Repository

Leonhardt, U. and Kiss, T. and Ohberg, P. (2003) Theory of elementary excitations in unstable
Bose-Einstein condensates. Physical Review A, 67 (3). ISSN 1050-2947

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9017754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 
 
 
 Leonhardt, U. and Kiss, T. and Ohberg, P.* (2003) Theory of elementary excitations in unstable 
Bose-Einstein condensates. Physical Review A, 67 (3). ISSN 1050-2947 
 
 
 
http://eprints.cdlr.strath.ac.uk/4980/
 
 
 
This is an author-produced version of a paper published in Physical Review A, 67 (3). 
ISSN 1050-2947. This version has been peer-reviewed, but does not include the final 
publisher proof corrections, published layout, or pagination. 
 
Strathprints is designed to allow users to access the research output of the University 
of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained 
by the individual authors and/or other copyright owners. You may not engage in 
further distribution of the material for any profitmaking activities or any commercial 
gain. You may freely distribute both the url (http://eprints.cdlr.strath.ac.uk) and the 
content of this paper for research or study, educational, or not-for-profit purposes 
without prior permission or charge. You may freely distribute the url 
(http://eprints.cdlr.strath.ac.uk) of the Strathprints website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://eprints.cdlr.strath.ac.uk/4980/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk


ar
X

iv
:c

on
d-

m
at

/0
21

14
62

 v
1 

  2
1 

N
ov

 2
00

2
Theory of elementary excitations in unstable Bose-Einstein condensates
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Like classical fluids, quantum gases may suffer from hydrodynamic instabilities. Our paper devel-
ops a quantum version of the classical stability analysis in fluids, the Bogoliubov theory of elementary
excitations in unstable Bose-Einstein condensates. In unstable condensates the excitation modes
have complex frequencies. We derive the normalization conditions for unstable modes such that
they can serve in a mode decomposition of the non-condensed component. Furthermore, we develop
approximative techniques to determine the spectrum and the mode functions. Finally, we apply our
theory to a sonic white hole and find that the spectrum of unstable modes is intrinsically discrete.

PACS numbers: 03.75.Fi, 04.70.Dy

I. INTRODUCTION

Instabilities may haunt classical as well as quantum flu-
ids. For example, classical supersonic flows can trigger
shock waves [1, 2] or moving obstacles in Bose-Einstein
condensates [3] can shed vortex pairs [4]. In fact, a dy-
namical instability is at the heart of vortex nucleation in
rotating condensates [5]. In classical fluid mechanics [2]
the stability of a solution of the equations of motion is
treated using stability analysis. Assuming a small per-
turbation of the solution, the equations are linearized in
the perturbation and the eigenvalues of the linearized
problem decide the fate of the solution. Complex eigen-
frequencies with positive imaginary parts indicate insta-
bilities. In the theory of quantum fluids such as Bose-
Einstein condensates [3] the equations of motion are lin-
earized around the mean field to find the elementary ex-
citations. The ground state of the condensate is, almost
by definition, stable, yet macroscopic flows of condensed
atoms may develop instabilities. Here it is important to
understand how to test for dynamical instabilities and
how unstable fluctuations evolve.

In this paper we elaborate a theory of elementary exci-
tations in unstable Bose-Einstein condensates. Our work
is primarily inspired by recent proposals [6, 7, 8, 9, 10]
for generating analogs of black holes using transsonic con-
densates, but our theoretical concepts and tools may cer-
tainly find applications in other situations as well [11].
Surprisingly little systematic work has been published on
elementary excitations in unstable condensates, to the
best of our knowledge, despite the fundamental nature
of the subject. Inspired by the treatment of instabili-
ties in quantum fields [12], Garay et al. studied a quan-
tum theory of instabilities in Bose-Einstein condensates
in an appendix [7] and in a brief book contribution [8].
Yurovsky [13] developed an alternative theory of insta-
bilities in quantum fluids. Section II of our paper elabo-
rates on these ideas, starting from the basic concepts of

elementary excitations in dilute quantum gases [14]. We
put forward an economic notation that allows us to derive
the theory with as little technical effort as possible. Sec-
tion III addresses two important approximative methods
to describe unstable excitations analytically. We present
a brief summary of the frequently applied acoustic ap-
proximation and develop a version of the WKB approxi-
mation that can be extended to complex frequencies and
complex variables. In Section IV we apply all the de-
veloped concepts and techniques to the analysis of sonic
horizons, demonstrating so their problem-solving poten-
tial.

II. ELEMENTARY EXCITATIONS

A. Fluctuation field

Consider a stationary Bose-Einstein condensate of
atoms with short-range repulsive interactions. Follow-
ing Fetter [14] we describe the dynamics of the bosonic

atom field ψ̂(t,x) using the grand-canonical Hamiltonian

Ĥ − µN̂ =

∫

ψ̂†

(

−~
2∇2

2m
+ U − µ+ 1

2g ψ̂
†ψ̂

)

ψ̂ d3x .

(2.1)

Here N̂ abbreviates the total number of particles,
∫

ψ̂†ψ̂ d3x, a conserved quantity, and µ denotes a con-
stant, the chemical potential. (Because of particle-

number conservation, both the Hamiltonian Ĥ and the
grand-canonical Hamiltonian (2.1) are equivalent.) We
assume that most of the atoms constitute a Bose-Einstein
condensate with macroscopic wave function

ψ0 =
√
ρ0 e

iS0 , (2.2)
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such that the deviations of ψ̂ from the mean field ψ0 form

a quantum field φ̂ of small fluctuations,

ψ̂ = ψ0 + eiS0 φ̂ . (2.3)

We expand the grand-canonical Hamiltonian (2.1) up to

quadratic order in φ̂, and get

Ĥ − µN̂ = Ĥ0 + Ĥ1 + Ĥ2 ,

Ĥ0 =

∫

ψ∗
0

(

−~
2∇2

2m
+ U − µ+ 1

2gρ0

)

ψ0 d
3x ,

Ĥ1 =

∫

φ̂†
(

−~
2∇2

2m
+ U − µ+ gρ0

)

ψ0 d
3x

+H. c. ,

Ĥ2 =

∫

[

φ̂† (T + U − µ) φ̂

+ 1
2gρ0

(

4φ̂†φ̂+ φ̂†2 + φ̂2
)]

d3x (2.4)

with the kinetic term

T =
m

2

(

~∇
im

+ u

)2

(2.5)

and the condensate flow

u =
~

m
∇S0 . (2.6)

Here Ĥ0 describes the energy of the condensate. The
Hamiltonian Ĥ1 would displace the mean value of the

fluctuations, when acting on φ̂, unless we impose the sta-
tionary Gross-Pitaevskii equation

(

−~
2∇2

2m
+ U − µ− g|ψ0|2

)

ψ0 = 0 , (2.7)

which minimizes also the Hamiltonian Ĥ0 such that

Ĥ0 = −1

2

∫

mc2ρ0 d
3x . (2.8)

Here, and throughout this paper, c denotes the local
speed of sound, defined by

mc2 = gρ0 . (2.9)

The quadratic Hamiltonian Ĥ2 generates the equations of

motion of the fluctuation field φ̂ (Bogoliubov-deGennes
equations). We found it advantageous to deviate from the
traditional notation of condensate fluctuations [3] and to

combine φ̂ and φ̂† in one spinor field

ϕ̂ =

(

φ̂

φ̂†

)

. (2.10)

Our spinor representation serves as a convenient short-
hand notation, which does not refer to the spin of the

atoms of course. In terms of this Bogoliubov spinor ϕ̂
the fluctuation field evolves as

i~∂tϕ̂ = Bϕ̂ ,

B =
(

T + U − µ+ 2mc2
)

σz + imc2σy ,

T =
m

2

(

~∇
im

+ uσz

)2

, (2.11)

where T describes the kinetic energy of the fluctuations.
Throughout this paper we use the Pauli matrices in their
standard representation

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

(2.12)
The Bogoliubov-deGennes equation (2.11) is non-
Hermitian, because of the anti-Hermitian spinor-mixing
term imc2σy . Therefore, the spectrum of elementary ex-
citations is not necessarily real. Dynamical instabilities
may emerge. Finally, as a consequence of Eqs. (2.11), we
find

Ĥ2 =
i~

2

∫

(

φ̂†(∂tφ̂) − (∂tφ̂
†)φ̂

)

d3x , (2.13)

an expression that we need in the mode expansion of the
Hamiltonian Ĥ2.

B. Mode expansion

As in standard field theories, we expand the Bogoli-
ubov spinor ϕ̂ into modes. First we note that ϕ̂ is invari-
ant under the conjugation

ϕ̂ ≡ σxϕ̂
† . (2.14)

Consequently, ϕ̂ must have the mode structure

ϕ̂ =
∑

ν

(

wν âν + wν â
†
ν

)

. (2.15)

The spinor wν comprises Bogoliubov’s familiar uν and vν

modes [3],

wν =

(

uν

vν

)

, (2.16)

and wν denotes the conjugated Bogoliubov spinor,

wν = σxw
∗
ν =

(

v∗ν
u∗ν

)

, (2.17)

such that [3]

φ̂ =
∑

ν

(

uν âν + v∗ν â
†
ν

)

. (2.18)

The mode functions wν are subject to the Bogoliubov-
deGennes equation

i~∂twν = Bwν (2.19)
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that implies

i~∂twν = Bwν . (2.20)

In a field theory, modes are orthonormal with respect to
an invariant scalar product (w1, w2) with

∂t(w1, w2) = 0 , (2.21)

in order to guarantee that the âν and â†ν are annihilation
and creation operators. Such a scalar product is

(w1, w2) =

∫

w†
1σzw2 d

3x , (2.22)

where w† abbreviates w∗T . This scalar product is time-
invariant, because

B†σz = σzB . (2.23)

The âν and â†ν are Bose annihilation and creation oper-
ators if we require that

(wν , wν′) =

∫

(u∗νuν′ − v∗ν′vν) d3x = δνν′ ,

(wν , wν′) =

∫

(vνuν′ − uνvν′) d3x = 0 . (2.24)

So far, the mode expansion (2.15) is fairly general. Now
consider single-frequency modes,

i∂twν = Ωνwν . (2.25)

We obtain from the invariance (2.21) of the scalar prod-
uct (2.22)

0 = i∂t(w1, w2) = (Ω∗
2 − Ω1)(w1, w2) . (2.26)

Consequently, single-frequency modes are only normaliz-
able when their frequencies Ων are real ων [14]. In this
case we obtain the well-known mode expansion of the
Hamiltonian Ĥ2 [14] in terms of independent harmonic
oscillators,

Ĥ2 =
∑

ν

~ων

(

â†ν âν −
∫

|vν |2 d3x

)

. (2.27)

Single-frequency Bogoliubov spinors with complex Ω, in-
dicating instabilities, have zero norm. However, this fact
does of course not prohibit the existence of instabilities.
It only means that we must not directly employ such
spinors as modes.

C. Unstable condensates

Suppose that the frequency of a Bogoliubov spinor w
is complex,

Ω = ω + iγ . (2.28)
Because the Bogoliubov-deGennes equation (2.19) is non-
Hermitian, each eigenfrequency corresponds to a left and

a right eigenfunction, here denoted by w+ and wl, re-
spectively,

Bw+ = ~Ωw+ , w†
lB = ~Ωw†

l . (2.29)

As a consequence of the property (2.23) we find

B(σzwl) = σzB
†wl = ~Ω∗(σzwl) . (2.30)

Therefore, σzwl is the Bogoliubov spinor with the com-
plex conjugated eigenfrequency of w+. Complex frequen-
cies of elementary excitations occur in conjugated pairs,
reflecting the Hermiticity of the grand-canonical Hamil-
tonian (2.1). The spinor conjugate w+ corresponds triv-
ially to the frequency −Ω∗, whereas the frequency −Ω is
associated with the spinor

w− ≡ σzwl . (2.31)

Consider the scalar product of the modes with ±Ωn fre-
quencies that are labeled by the subscripts ±n,

0 = i∂t(w−n, w+n′) = (−Ωn + Ωn′)(w−n, w+n′) . (2.32)

Consequently, we can require

(w−n, w+n′) = δnn′ (2.33)

by choosing the appropriate overlap between the left and
right eigenstates of B. In Section IV we use this orthog-
onality condition to find the unstable elementary excita-
tion of a sonic horizon.

Single-frequency Bogoliubov spinors with complex Ω
must not represent modes per se, yet nothing prevents
us from combining two or more of such spinors to form
non-stationary modes. A simple choice is

W±n ≡ 1√
2
(w±n ± w∓n) =

(

U±n

V±n

)

(2.34)

satisfying the relations

(W±n,W±n′) = δnn′ , (W±n,W∓n′) = 0

(W±n,W±n′) = 0 , (W±n,W∓n′) = 0 . (2.35)

Therefore, the W±n are perfectly suitable as Bogoliubov

modes. We expand the fluctuation field φ̂ in terms of the
U±,V± modes,

φ̂ =
∑

ν

φ̂n ,

φ̂n = U+nâ+n + V∗
+nâ

†
+n + U−nâ−n + V∗

−nâ
†
−n .(2.36)

We obtain from Eqs. (2.25) and (2.28)

i∂tU±n = ±ωnU±n − iγnV∗
∓n ,

i∂tV±n = ±ωnV±n − iγnU∗
∓n , (2.37)

and, consequently,
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i∂tφ̂n =
(

ωnâ+n − iγnâ
†
−n

)

U+n −
(

ωnâ
†
+n + iγnâ−n

)

V∗
+n −

(

ωnâ−n + iγnâ
†
+n

)

U−n +
(

ωnâ
†
−n − iγnâ+n

)

V∗
−n .

(2.38)
We insert this result and the expansion (2.36) into formula (2.13), use the orthonormality relations (2.35), and get

Ĥ2 = ~

∑

n

ωn

[

â†+nâ+n − â†−nâ−n −
∫

(

|V+n|2 − |V−n|2
)

d3x
]

+~

∑

n

iγn

[

â+nâ−n − â†+nâ
†
−n +

∫

(

U+nV−n − U∗
+nV∗

−n

)

d3x
]

. (2.39)

Due to the instability of the condensate, pairs of elemen-
tary excitations are spontaneously generated at the rates
γn, and so the non-condensed part grows at the expense
of the condensate. Of course, the Hamiltonian Ĥ2 de-
scribes the correct dynamics only for short times, as long
as the growing excitations are still small compared with
the condensate. Furthermore, the backaction of the non-
condensed part onto the condensate ought to be taken
into account, affecting the growth rates γn and the fre-
quencies ωn. The instability causes the condensate to
dissolve. Nevertheless, the atoms may settle afterwards
to constitute a new condensate with a stable macroscopic
wave function, as happens in vortex nucleation [5].

III. APPROXIMATIVE METHODS

A. Acoustic approximation

Frequently, approximative methods provide the tools
to find analytic results that capture the essential physics
of elementary excitations. The best known example is the
excitation spectrum of a condensate in a harmonic trap
[15]. Here the excitations of the condensate have been
calculated in hydrodynamic or, as we would prefer to call
it, acoustic approximation. (Elementary excitations are
sound waves within the validity of the approximation.)
Furthermore, sound waves in moving Bose-Einstein con-
densates propagate in the same way as mass-less waves in
a sufficiently large class of curved space-time structures
[6, 7, 8, 16]. In Section IV we use this connection to
analyze the instabilities of a sonic horizon.

Let us briefly summarize the main aspects of the
acoustic approximation. Given a solution (2.16) of the
Bogoliubov-deGennes equation (2.19), the function

ψ = ψ0 + eiS0(u+ v∗) (3.1)

solves the time-dependent Gross-Pitaevskii equation,

i~∂tψ =

(

−~
2∇2

2m
+ U − g|ψ0|2

)

ψ , (3.2)

as long as u and v are small. We represent ψ in terms of
the particle density ρ and the phase S,

ψ =
√
ρ eiS , ρ = ρ0 + ρs , S = S0 + s . (3.3)

Neglecting the quantum potential ~
2(∇2√ρ)/(2m√

ρ) in
the Gross-Pitaevskii equation (3.2), we recover the equa-
tion of continuity and the Bernoulli equation,

∂tρ+ ∇ ·
(

ρ
~

m
∇S

)

= 0 , (3.4)

~∂tS +
~

2

2m
(∇S)2 + gρ+ U = 0 . (3.5)

Assuming that ρ0 and S0 satisfy Eq. (3.4) and linearizing
in ρs and s gives

∂tρs = −∇ ·
(

ρsu + ρ0
~

m
∇s

)

, (3.6)

ρs = − ~ρ0

mc2
(∂t + u · ∇)s , (3.7)

where c denotes the speed of sound (2.9) and u describes
the flow (~/m)∇S0. Substituting the expression for ρs

produces the wave equation for sound in irrotational flu-
ids [16, 17]

∂µf
µν∂νs = 0 ,

fµν =
ρ0

c2

(

1 u

u −c211 + u ⊗ u

)

,

∂ν = (∂t,∇) , (3.8)

the central argument in the analogy between sound in
moving media and waves in general relativity [8, 16].
Here we have used a relativistic notation with µ and ν
referring to space-time coordinates (not to the chemical
potential of course).

To see how ρs and s are related to the Bogoliubov
spinor we compare ψ2 of Eqs. (3.1) and (3.3) to linear
order in ρs, s, u and v, and get

u+ v∗ =
√
ρ0

(

ρs

2ρ0
+ is

)

. (3.9)

Consequently, a single-frequency sound wave appears as
the excitation mode

u =
√
ρ0

(

~

2mc2
(−iΩ + u · ∇) + 1

)

iσe−iΩt ,

v =
√
ρ0

(

~

2mc2
(−iΩ + u · ∇) − 1

)

iσe−iΩt (3.10)
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where

s = σe−iΩt + σ∗e+iΩ∗t . (3.11)

B. WKB approximation

Another important approximative method to analyze
elementary excitations is the WKB approximation [18],
the equivalent of semiclassical wave mechanics or geomet-
rical optics (geometrical acoustics). Frequently, the im-
portant features of waves are determined by the turning
points of rays on the complex plane or by branch points
of the momentum. Here we develop a modification of the
WKB approximation for elementary excitations [18] that
can be analytically continued to complex variables and
complex frequencies.

We assume an effectively one-dimensional model with
spatial coordinate z and flow u. We express the Bogoli-
ubov spinor as

w = (w0 + ~w1 + . . . ) exp

[

i

~

(∫

p dz − Et

)]

(3.12)

in terms of the semiclassical momentum p and the en-
ergy E. We insert the ansatz (3.12) into the Bogoliubov-
deGennes equation (2.19) and expand the result into
powers in ~. In zeroth order we obtain

B0w0 = Ew0 ,

B0 =

(

1

2m
(p11 +muσz)

2 + (U − µ+ 2mc2)

)

σz

+imc2σy . (3.13)

The determinant of B0 − E11 vanishes when p satisfies
the Hamilton-Jacobi equation

(

p2

2m
+ E0

)2

− (E − up)2 = m2c4 (3.14)

with

E0 = U +
m

2
u2 − µ+ 2mc2 . (3.15)

The components u0 and v0 of the envelope w0 are linearly
dependent, because w0 is an eigenstate of B0. We get

v0 = ηu0 ,

η = − 1

mc2

(

E0 +
p2

2m
+ up− E

)

. (3.16)

Before we proceed, let us see how the Hamilton-Jacobi
equation is related to the acoustic approximation. The
hydrodynamical model (3.4) presumes small local vari-
ations in the density and in the flow such that we can
describe the condensate locally. Let us assume that the
chemical potential µ corresponds reasonably accurately

to the local energy of the condensate, mc2 + U + m
2 u

2,
such that

E0 = mc2 . (3.17)

Then, for |p| ≪ mc, i.e. for sound with wavelengths

much larger than the healing length ~/(
√

2mc) [3], we
get the dispersion relation of sound in moving media

(E − up)2 = c2p2 . (3.18)

Additionally, in the relationship (3.16) between the enve-
lope components we ignore the p2/(2m) term within the
acoustic approximation. We get

η = −1 +
E − up

mc2
= −1 ± p

mc
, (3.19)

which represents the linearized Bernoulli equation (3.7)
expressed in terms (3.9) of the Bogoliubov-spinor com-
ponents.

To first order in ~ we obtain from the Bogoliubov-
deGennes equation (2.19) and from the ansatz (3.12)

0 = B1w0 + σz(B0 − E11)w1 ,

B1 =
1

2im

(

(2p∂z + p′)11 +m(2u∂z + u′)σz

)

.(3.20)

For complex frequencies or complex z values the matrix
σz(B0 − E11) is symmetric but not necessarily Hermi-
tian. Since w0 is the eigenvector of σz(B0 − E11) with
zero eigenvalue, B1w0 must be orthogonal on w0 with re-
spect to the scalar product wT

1 w2. Note that this scalar
product does not involve complex conjugation. We find

0 = wT
0 B1w0

=
1

2im
∂z

(

(u2
0 + v2

0)p+m(u2
0 − v2

0)u
)

, (3.21)

which gives the continuity relation

∂z(u
2
0 − v2

0)v = 0 (3.22)

with the velocity

v =
1 + η2

1 − η2

p

m
+ u =

∂H

∂p
(3.23)

in terms of the semiclassical Hamiltonian

E = H = up±

√

(

p2

2m
+ E0

)2

−m2c4 . (3.24)

The continuity relation (3.22) shows how the spinor am-
plitudes are connected on the complex plane. For real
energies and real coordinates (|u0|2 − |v0|2)v is exactly
conserved, describing a stationary quasiparticle flux [18].
In this case our result agrees with (|u0|2 − |v0|2)v, apart
from an arbitrary phase. On the other hand, for com-
plex energies or complex coordinates (u2

0 − v2
0)v does not

correspond to an exact conservation law in general, but
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still remains a constant within the validity of the WKB
approximation. The advantage of our result is that it can
be analytically continued such that

u2
0 − v2

0 =
A0

v
, (3.25)

with a constantA0 as long as z does not reach the vicinity
of a turning point or crosses a Stokes line in the complex
plane [19].

C. Turning points

At a turning point the velocity v vanishes and, conse-
quently, u2

0−v2
0 diverges such that the WKB approxima-

tion is no longer valid in its vicinity. Turning points are
the origins of Stokes lines where the WKB solutions are
discontinuously connected [19].

Assume that the condensate is nearly uniform around
a turning point such that the speed of sound is approxi-
mately constant and that the locality condition (3.17) is
satisfied. In this case the turning point does not lie at the
edge of the condensate, as it is the case for oscillations in
harmonic traps [15]. Let us find out whether and where
such turning points exist. Our conditions imply that the
momentum p depends on z only through the flow u(z).
Let us turn matters around and regard z as a function of
u and u as a function of p. We get from the expression
(3.24) of the quasiclassical Hamiltonian

v =
∂H

∂p
= u+

∂

∂p
(E − up) = −p∂u

∂p
. (3.26)

The definition (3.16) of η and the Hamilton-Jacobi equa-
tion (3.14) with the condition (3.17) implies the relation

p2

m2c2
= − (1 + η)2

η
. (3.27)

We substitute this result for p2 in Eq. (3.16), solve for
up, and get

u =
mc2

p

(

ε− η2 − 1

2η

)

(3.28)

with

ε =
E

mc2
. (3.29)

We differentiate Eq. (3.28) with respect to the momen-
tum p, utilize relation (3.27) and its momentum deriva-
tive, and arrive at

∂u

∂p
=

1 + (3 − 2ε)η + (3 + 2ε)η2 + η3

2m(η − 1)(η + 1)2
. (3.30)

The turning points correspond to the zeros η0 of the nu-
merator. We note that ε is naturally a small number,

because the energy of the elementary excitation ought to
be much smaller than the condensate’s energy (2.8). We
expand η0 in powers of ε1/3,

η0 = x0 + x1ε
1/3 + x2ε

2/3 + x3ε
3/3 + . . . , (3.31)

and find the coefficients

x0 = −1 , x1 = 3
√
−4 , x2 =

2

x1
, x3 = −2

3
. (3.32)

Close to a turning point the flow profile depends quadrat-
ically on the momentum

u− u0 =
∂2u

∂p2

∣

∣

∣

∣

0

(p− p0)
2

2
. (3.33)

This relation shows that a turning point is a branch point
for the semiclassical momentum p and it also specifies
the onset of Stokes lines [19], defined as the lines where
the differences between the phases

∫

p dz of the two p
branches is purely imaginary. Here one of the waves is
exponentially small compared with the other. Crossing
a Stokes line connects waves in a discontinuous yet pre-
cisely defined way [19]. We obtain the coefficients from
Eqs. (3.27) and (3.30), using the series (3.31),

± p0

mc
= x1ε

1/3 − ε

6
+ . . . ,

±∂
2u

∂p2

∣

∣

∣

∣

0

= −3

4
− 5

8x1
ε2/3 − ε

4
+ . . . . (3.34)

Finally, we determine the velocity u0 at a turning point
from Eq. (3.28). We find

±u0

c
= −1 +

3

2
3
√
−1

(ε

2

)2/3

+ O(ε4/3) . (3.35)

Here 3
√
−1 refers to the three cubic roots of −1, gener-

ating three turning points in the complex plane when u
approaches c. In a mostly uniform condensate the turn-
ing points of elementary excitation are close to transsonic
regions where the condensate flow transcends the speed
of sound. Such a region forms a sonic horizon.

IV. SONIC HORIZONS

A. Model

Consider a stationary transsonic medium i.e. a
medium with a spatially non-uniform flow that varies
from subsonic to supersonic speed. One would expect
that beyond the interface where the flow exceeds c sound
waves are swept away such that no sound from the su-
personic zone can return to the subsonic region. This
transsonic interface serves as the sonic equivalent of a
black-hole horizon. [6, 7, 8, 16]. On the other hand,
the interface where the flow settles from supersonic to
subsonic speed forms the horizon of a sonic white hole
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[6, 7, 8], an object that no sound wave can enter from
outside. Close to the horizons, sound waves propagat-
ing against the current freeze, and their wavelengths are
dramatically reduced.

Transsonic Bose-Einstein condensates offer great
prospects [6, 7, 8, 9, 10] for demonstrating the quantum
effects of event horizons [20, 21]. Such effects and the sta-
bility of the condensate depend on the behaviour of the
condensate close to the horizons. Let us thus focus on
the physics in the vicinity of a black- or white-hole hori-
zon. In this case we can use the simple one-dimensional
model

u = −c+ αz . (4.1)

Here z denotes the spatial coordinate orthogonal to the
horizon at z = 0, α characterizes the surface gravity or, in
our acoustic analog, the gradient of the transsonic flow,
and ρ0 and c are assumed to be constant. Strictly speak-
ing, we should complement the flow component (4.1) in
the z direction by appropriate components in the x and
y directions, in order to obey the continuity of the flow.
But as long as we focus on effects on length scales smaller
than |c/α| we can ignore the other dimensions of the fluid.
Depending on the sign of α, two cases emerge. When
the velocity gradient is positive we are considering the
horizon of a sonic black hole. When α is negative the
horizon refers to a white hole [6, 7, 8]. In a typical alkali
Bose-Einstein condensate without exploitation of Fesh-
bach resonances the speed of sound c is in the order of
1 mm/s. The transsonic velocity gradient should be small
compared with the healing length [3]

|α| ξ ≪ c , ξ =
~

mc
√

2
, (4.2)

which guarantees that the Hawking energy k
B
T

H
is much

smaller than the energy of the condensate,

k
B
T

H
=

~|α|
2π

≪ mc2 . (4.3)

Being in the vicinity of the horizon and having the linear
velocity profile (4.1) presumes that

|z| ≪
∣

∣

∣

c

α

∣

∣

∣ . (4.4)

The energies of elementary excitations should be suffi-
ciently smaller than mc2, which implies that their di-
mensionless energy parameter ε defined in Eq. (3.29) is
small. The excitations are sound waves for low wavenum-
bers and for z far away from the turning points,

|z| ≫ |z0| , z0 =
3c

2α
3
√
−1

(ε

2

)2/3

. (4.5)

Given the linear velocity profile (4.1), we solve the wave
equation (3.8) exactly, and get

s = s0

(

iz±iΩ/αe−iΩt − iz∓iΩ∗/αeiΩ∗t
)

. (4.6)

Re z

Im z

FIG. 1: Analytic structure of a sonic horizon in a Bose-
Einstein condensate. The figure shows the three turning
points in the complex z plane around the horizon at the
origin. The points are connected by two branch cuts where
the wavenumber k of acoustic elementary excitations is ele-
vated to other solutions of the dispersion relation. The circle
around the turning points roughly indicates the place where
k approaches the asymptotics Ω/(αz) that is characteristic of
waves at a horizon [21]. The third branch cut, connecting one
of the turning points to infinity, is the cut between the two
trans-acoustic branches with the asymptotics (4.11).

We use the relationship (3.10) to find the Bogoliubov
spinor within the acoustic approximation,

w = A







Ω

2αz
+
mc

~
Ω

2αz
− mc

~






z±iΩ/αe−iΩt , (4.7)

where

A = −s0
~
√
ρ0

mc
. (4.8)

The approximation (4.7) is restricted to complex z vari-
ables outside the trans-acoustic region indicated in Fig.
1. Close to the trans-acoustic zone the wavelength of
elementary excitations is dramatically reduced. In this
regime we can use the WKB approximation. In the re-
gion where both the acoustic and the WKB approxima-
tion are applicable we represent the Bogoliubov spinor as

w =

(

u0

v0

)

exp

(

i

∫

k dz − iΩt

)

(4.9)

with the wavenumber

k ∼ Ω

αz
. (4.10)

If the acoustic approximation were universally valid the
wavenumber k would approach a singularity at the hori-
zon where, consequently, the wavelength of sound would
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-1

0

1

Re z
-1

0

1

Im z

0
Re k

1

0
Re z

-1

0

1

Re z
-1

0

1

Im z

0Im k

1

0
Re z

-1

0

1

Re z
-1

0

1

Im z

0Re k

1

0
Re z

-1

0

1

Re z
-1

0

1

Im z

0
Im k

1

0
Re z

-1

0

1

Re z
-1

0

1

Im z

0
Re k

1

0
Re z

-1

0

1

Re z
-1

0

1

Im z

0
Im k

1

0
Re z

FIG. 2: Wavenumbers k of elementary excitations around a sonic white-hole horizon, analytically continued on the complex
plane. The figure shows three roots of the dispersion relation [~2k2/(2m) + mc2]2 − ~

2[Ω − (−c + αz)k]2 = m2c4 for Ω =
0.1i (mc2/~) and α = −0.5 (mc2/~), illustrating the branch cuts of k. The top row displays the wavenumber of a sound wave
that propagates against the current. The picture indicates the characteristic Ω/(αz) asymptotics away from the branch points.
The two lower rows display two trans-acoustic branches of k. The fourth root of the dispersion relation is not shown, because
it corresponds to the trivial case of sound waves that propagate with the flow.

shrink to zero. Apparently, Nature tends to prevent
such extreme behaviour [22]. In our case, the singular-
ity is split into three branch points, the turning points.
The branch cuts between the points connect the acous-
tic branch to two other trans-acoustic branches with
wavenumbers so high that the branches do not repre-

sent sound waves subject to the wave equation (3.8).
We solve the Hamilton-Jacobi equation (3.14) in the
|Ω| ≪ |uk| limit and get the asymptotics for the trans-
acoustic branches [23]

k ∼ ±2
mc

~

√

u2/c2 − 1 +
Ωu

c2 − u2
. (4.11)



9

Figure 2 illustrates the momenta k of the three branches
in the complex z plane. Finally, we note that the fourth
solution of the Hamilton-Jacobi equation (3.14) corre-
sponds to sound waves that are swept away by the cur-
rent, a less interesting case.

B. Stokes phenomenon

It is tempting to assume that we could employ the
acoustic asymptotics Ω/(αz) of the wavenumber k on
the entire complex plane, as long as z is sufficiently far
away from the turning points at the horizon. In this
case, however, the phase

∫

k dz becomes logarithmic and
hence multivalued, whereas the true Bogoliubov mode
function is singlevalued. The Stokes phenomenon [19]
resolves this conflict by connecting the acoustic modes
to trans-acoustic ones on the upper or the lower half
plane, giving rise to connection formulas [23] that de-
scribe mode conversion [24]. Each turning point z0 con-
nects two branches of WKB wavenumbers, as we see from
Eq. (3.33), and each z0 is origin of three Stokes lines. At
a Stokes line the phase difference between the two con-
nected branches is purely imaginary. Consequently, one
of the WKB waves exponentially exceeds the other such
that the smaller cannot be resolved within the WKB ap-
proximation, if the larger wave is present. In general, the
Bogoliubov spinor is a superposition of the four funda-
mental solutions that correspond to the four branches of
the WKB wavenumbers.

w = c
A
w

A
+ c

B
w

B
+ c

C
w

C
+ c

D
w

D
. (4.12)

When crossing a Stokes line, the exponentially sup-
pressed solution may gain an additional component that
is proportional to the coefficient of the exponentially en-
hanced solution. If we wish to construct a Bogoliubov
spinor where only the exponentially smaller component
exits in the vicinity of a Stokes line we must put the co-
efficient of the larger one to zero. Figure 3 shows the
Stokes lines of Boboliubov modes at a sonic white hole
with purely imaginary frequency, a case of importance in
Sec. IV C. The pairs of letters indicate which branches are
connected by the lines, and the first letter identifies the
exponentially dominant branch. The picture shows that
with the choice of branch cuts made we can construct a
Bogoliubov mode that is acoustic on the lower half plane,
by demanding that c

C
vanishes at the C,A Stokes line of

the lowest turning point and that c
B

is zero on the lower
half plane. Since c

D
is not connected to the other three

branches we can put the coefficient to zero throughout
the complex plane. Such a strategy is not possible for a
sonic black hole, see Fig. 4, because here the order of ex-
ponentially dominant or suppressed waves is exchanged.
Moreover, we cannot find a solution that is purely acous-
tic on the upper half plane, because of the branch cut
between the central and the highest turning point in Fig.
4. We can of course alter the arrangements of branch
cuts, such that the cut between the two trans-acoustic

A,B A,C

A,B C,A C,B

B,C

B,A

A,C

FIG. 3: Stokes lines of elementary excitations at a sonic white
hole with purely imaginary frequencies (dotted lines). The
pairs of letters indicate which branches of the superposition
(4.11) are connected by the lines. The first letter of each pair
identifies the exponentially dominant branch.

C,A B,A

B,C A,C B,A

C,B

A,B

C,A

FIG. 4: Stokes lines of elementary excitations at a sonic black
hole with purely imaginary frequencies analogous to Fig. 3.

branches B and C points in other directions. Choosing
different branch cuts does determine in which half plane
the excitation wave may be acoustic, but it does not influ-
ence whether such an acoustic behavior is possible at all
on either the upper or the lower half plane. Therefore, at
a sonic white hole unstable elementary excitations with
the acoustic asymptotics (4.7) exists on one of the com-
plex half planes, whereas the unstable modes of black
holes, if any, are always trans-acoustic.
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C. Instabilities

Consider the unstable elementary excitations of a sonic
white hole, assuming the acoustic asymptotics (4.7) with
complex frequencies ω+ iγ to be valid on one of the com-
plex half planes. Excitations (4.7) with negative γ are
localized near the horizon and are attenuated in time,
whereas acoustic excitations with positive γ would grow
in space and time. Therefore, the truly unstable modes
are trans-acoustic. Nevertheless, we can use the proper-
ties of the attenuated modes to determine the spectrum
of unstable modes, because of the spectral symmetry of
the Bogoliubov-deGennes equations proven in Sec. II C.

Bogoliubov excitations with complex frequencies have
zero norm and should satisfy the orthogonality relation
(2.33). First we calculate the scalar product (w1, w2)
at time τ = 0, to find a condition for zero norm. We
assume that the scalar product (2.22) is dominated by
the acoustic region where |z0| ≪ |z| ≪ |c/α|,

(w1, w2) =

∫

w†
1σzw2 dz

∼ |A|2mc
~

(∫ 0

−∞

+

∫ +∞

0

)

2ω

αz
z(ω∗

1
−ω2)/αdz

= |A|2mc
~

(

−e±2πω/α + 1
)

×
∫ ∞

0

2ω

αz
exp

(

i
ω∗

1 − ω2

α
ln z

)

dz . (4.13)

Here we have connected the two acoustic regions on the
upper or lower half plane, respectively, indicated by the
± sign, circumventing the trans-acoustic region close to
the horizon at z = 0. The scalar product vanishes if

ω = 0 . (4.14)

Therefore, within the validity range of our approxima-
tions, the unstable elementary excitations have purely
imaginary frequencies γ. Let us examine the orthogonal-
ity condition (2.33). We represent γ as

γ = 2nα , (4.15)

and we deform the integration contour such that it cir-
cumvents the trans-acoustic zone on a large semi-circle
with radium r from below.

(w−n, w+n′) =

∫

(v−nu+n′ − u−nv+n′) dz

∼ A−nA+n′

mc

~

∫

2n+ 2n′

iz
z2(n−n′) dz ,

= A−nA+n′

mc

~
(2n+ 2n′) r2(n−n′)

×
∫ 2π

π

e2i(n−n′)θ dθ . (4.16)

The scalar product (w−n, w+n′) vanishes for n 6= n′ if
the n are integers. The spectrum of unstable elementary

excitations consists of discrete and equally spaced points
on the imaginary frequency axis.

An interesting proposal for a sonic hole [6, 7, 8] involves
a toroidal condensate that flows through a constriction
where it exceeds the speed of sound and that then, after
the constriction, settles to subsonic speed. Garay et al.

[6, 7, 8] found that the condensate is unstable only in
narrow “instability fingers” in the parameter space used.
Our analysis indicates that the instabilities are generated
when the excitations of the toroidal condensate match the
discrete imaginary resonances of the white hole. This
would explain the narrowness of the instability fingers
[6, 7, 8]. Such instabilities are enhanced by the ”las-
ing” effect of the black-hole white-hole pair [24]. The
white hole generates a hydrodynamic instability that is
resonantly enhanced by the pair of horizons where ele-
mentary excitations can bounce back and fourth. Sonic
black holes can be stabilized by employing the equiva-
lent of a Laval nozzle [9] that converts a subsonic flow
to a supersonic one without causing turbulence (as in a
rocket engine). Our theory indicates that white holes are
intrinsically unstable [25], generating breakdown shocks
[1].

V. SUMMARY

Unstable Bose-Einstein condensates develop elemen-
tary excitations with complex frequencies. Such excita-
tions have zero norm and are subject to orthogonality
relations between pairs of excitations with opposite fre-
quencies. We elaborated the general theory of unstable
elementary excitations and of two important approxi-
mate methods to analyze their behaviour, the acoustic
and the WKB approximations. Applying these tech-
niques, we showed that sonic white holes in Bose-Einstein
condensates give rise to a discrete spectrum of instabili-
ties, which may explain the remarkable stability of sonic
holes in toroidal traps [6, 7, 8].
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