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Abstract

Within the engineering design community there is support for further research into the development of improved
approaches to design management. Such research has lead to coordination being identified as an important and
pervasive characteristic of many existing approaches~e.g., concurrent engineering and work-flow management!. In
this article, operational design coordination is proposed as the basis for an improved approach. This article also
presents a novel integrated approach that incorporates the key elements of operational design coordination: coherence,
communication, task management, resource management, schedule management, and real-time support. Through
unifying these key elements, this approach provides an integrated means of managing design in a controlled and
harmonious fashion. The approach also provides knowledge of the constituent techniques involved in operational
design coordination, the interrelationships and dynamic interactions between them, and the knowledge used and
maintained within and between them. The approach has been realized within an agent-oriented system called the
Design Coordination System, which provides a systematic means of simultaneously coordinating operational manage-
ment tasks and technical design tasks. To evaluate the approach, the system has been applied to an industrial case study
involving the computational process of turbine blade design. This application has been shown to enable the structured
undertaking of interrelated tasks by allocating and using resources of varying performance efficiency in an optimized
fashion in accordance with dynamically derived schedules in a coherent, appropriate, and timely manner. This is
achieved by managing tasks, their dependencies, and the information required to undertake them. In addition, the
approach enables and sustains the continuous optimized use of resources by monitoring, forecasting, and disseminating
resource performance efficiency. The approach facilitates dynamic scheduling and the subsequent enactment of the
resulting schedules. Decision making for rescheduling is also incorporated within the approach such that it is only
performed as and when appropriate. If rescheduling is performed, it is done so in parallel with task enactment such that
resources continue to be utilized in an optimized manner.

Keywords: Agent-Oriented Approach; Design Management; Real-Time Coordination

1. INTRODUCTION

Competitive pressure compels engineering companies to
out perform their contemporaries in order to be more attrac-
tive to existing and potential customers. Wallace~1987!
indicated that in order to maintain continuing competitive
advantage, senior management in manufacturing industries
should coordinate and control personnel to fulfill the main

business activities, which include design and development.
In the context of engineering design, Andreasen et al.~1996!
recognized that it is increasingly evident that significant
improvements and efficiency gains can be made because
much time and effort is lost as a result of the lack of focus
on the management of design work.

In 1916, Fayol~1949! wroteGeneral and Industrial Man-
agement, in which management was described as a process
consisting of planning, organization, coordinating, direct-
ing, and controlling. Lock~1993! named Fayol the found-
ing father of engineering management and modern
management theory. In addition, Bennett~1996! cited Fay-
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ol’s work as forming the origin of the field of the manage-
ment process, shaping the basis for much other work in this
area. Despite Fayol’s pioneering work on management in
the early 1900s, only in recent years has engineering man-
agement started to attain the status of a recognized disci-
pline~Lock, 1993!. Despite this recognition, research efforts
in engineering management have been described as frag-
mented and uncoordinated. Furthermore, Lock noted that
in the current climate of rapid technological change and an
intensively competitive global environment, there is a
demand for a renewed emphasis on effective engineering
management and a reevaluation of traditional attitudes and
approaches. This point is echoed by Thamhain~1992!, who
also recognized that today’s engineering environment is more
challenging than ever before because of increased technical
complexity and the interdependency of technical tasks.

Management has been considered to comprise a strategic
level and an operational level~Greenley, 1989; Cole, 1994!,
and Finlay~2000! also noted that an organization consists
of a number of parts that includes a strategic apex to over-
see the whole of the business and an operational core,
described as the people who perform the basic, day to day
processes. Greenley~1989! indicated that strategic manage-
ment provided a framework for operational management,
which was described as being concerned with the efficient
use of the existing production capacity. Similarly, Cole
~1994! stated that “strategic management produces the pri-
mary goals and framework within which they can be real-
ized for operational management.” Furthermore, it was noted
that the concerns of strategy were effectiveness~i.e., ensur-
ing that the organization is doing the right things!, whereas
the concerns of operations were efficiency~i.e., doing things
right!. As such, the performance of the design development
process can be improved through both the strategic and
operational levels of management. The work presented in
this article is aimed at design coordination at the opera-
tional level of management only. However, research on
design coordination at the strategic level of management
has been conducted in collaboration with this work~Whit-
field et al., 2000a, 2000b!.

From an operational perspective, management of the
design development process of large, made to order prod-
ucts can be complex, expensive, and time consuming because
of the involvement of many resources and tasks and of
large quantities of data, information, and knowledge. This
complexity is further compounded by the fact that resources
are often skilled in a variety of disciplines and exhibit
varying proficiency regarding the completion of multiple
interrelated tasks. Furthermore, because of unforeseen cir-
cumstances, resources may not perform as intended or sched-
uled tasks may not progress as expected, the outcome of
which will influence the performance of the design devel-
opment process.

A well-organized approach to the design development
process lies at the heart of an effective engineering com-
pany because it can enable the reduction of cost and time

while meeting customer quality requirements. Thus, to
remain competitive, new approaches to managing the design
development process are needed to ensure efficient pro-
cesses. Indeed, the latter part of the 20th century saw the
introduction of an increasing number of new management
initiatives or philosophies aimed at improving the compet-
itiveness of companies. Engineering design has seen the
advent of a range of management approaches that have
been implemented within industry. Coordination has been
observed as an important and pervasive characteristic within
a number of these management approaches, such as models
of the engineering design process~Ray, 1985; Cross, 1994!,
concurrent engineering~Duffy et al., 1993; McCord &
Eppinger, 1993; Prasad, 1996; Tan et al., 1996; Perrin, 1997;
Coates et al., 1999!, work-flow management~Alonso et al.,
1996; Yu, 1996; Piccinelli, 1998; Du & Shan, 1999!, project
management~Oberlender, 1993; Bailetti et al., 1994; Clee-
tus et al., 1996; Lock, 1996; Bendeck et al., 1998!, design
integration~Hansen, 1995!, and computer supported coop-
erative work~Malone & Crowston, 1994; Schal, 1996!.

Despite being widely cited as an important characteristic
of the approaches mentioned, the understanding of coordi-
nation conveyed varies considerably. The existence of vary-
ing perceptions of coordination has lead to the recognition
that there is a requirement for further research in this field
with the aim of gaining a better understanding of its nature
and potential as an approach to engineering management in
its own right. Indeed, Duffy et al.~1999! indicated that
there is a growing interest within academia in calling for
further research in the area of design coordination. In
response to this call, an extensive review of literature has
been conducted that draws on perceptions from several dis-
ciplines; namely, engineering design, distributed artificial
intelligence, and organizational theory~Coates et al., 2000;
Coates, 2001!. On the basis of these reviews, the key ele-
ments of operational design coordination have been estab-
lished as coherence~Durfee & Montgomery, 1990; Jennings,
1996; Wilson & Shi, 1996; de Jong, 1997; Jamali et al.,
1999!, communication~Kleinman, 1990; Findler & Elder,
1995; Cleetus et al., 1996; de Jong, 1997; Hayden et al.,
1999!, task management~Kusiak & Wang, 1993; Duffy et al.,
1994; Eppinger et al., 1994; Malone & Crowston, 1994;
Decker & Lesser, 1995!, schedule management~Ray, 1985;
Malone, 1987; Dellen & Maurer, 1996; Bendeck et al., 1998;
Lesser, 1998!, and resource management~MacCallum &
Carter, 1991; Duffy et al., 1993; Andreasen et al., 1996;
Davis & Sydir, 1996; Durfee & So, 1997!.

With consideration of the various interpretations of the
authors named above, the key elements of operational design
coordination can be defined as follows:

• coherence:integrating, or linking together, resource
efforts and tasks in a harmonious manner to avoid chaos,

• communication:interactions involving the exchange
of structured and meaningful data, information, and
knowledge,
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• task management:that is, the organization and control
of tasks, and the dependencies between them, such
that they can be undertaken and completed in a struc-
tured manner,

• schedule management:that is, managing the dynamic
assignment of tasks to resources, and the enactment of
the resulting schedules, and

• resource management:that is, organizing and control-
ling resources to enable their continuous optimized
utilization.

It has been recognized that engineering design is change-
able as a result of the evolution of the multidisciplinary
groups, activities, and information involved~Andreasen
et al., 1996; Duffy, 1998!. Thus, a further key element of
operational design coordination is identified and can be
defined as

• real-time support:how to manage and adapt to a
changeable~i.e., dynamic and unpredictable! process.

Furthermore, we know that there is a requirement for an
approach to operational design coordination that integrates
the six key elements identified. Such an integrated approach
will provide an original and significant contribution to
knowledge in the field of operational engineering manage-
ment by allowing design to be coordinated in a coherent
manner. This article presents such an approach that pro-
vides knowledge of the constituent techniques of opera-
tional design coordination, the interrelationships and dynamic
interactions between the techniques, and the information
used and maintained within and between the techniques. As
such, it is not only do the individual techniques themselves
that define the approach but also, more significantly, the
interrelationships and interactions that enable them to be
integrated. Indeed, Harrison~1992! recognized that it is the
notion of an encompassing approach that is more important
than the specific groups of techniques used.

2. RELATED WORK

A number of concurrent engineering-based approaches to
design management focus on managing tasks~i.e., sequenc-
ing tasks according to their dependencies!. These approaches
involve, for example, decomposing a product or system
into sets of tasks and then representing their interactions
using a nonstructured matrix~Kusiak & Park, 1990; Pourba-
bai & Pecht, 1994!. Subsequently, techniques are used to
transform the matrix to enable the detection of groups of
tasks that may be scheduled and performed simultaneously.
Similarly, Eppinger~2001! employs the design structure
matrix~DSM! to make a product development process more
efficient by reducing iteration, which wastes time and
resources. The DSM represents the tasks required to develop
a product and the information flow between them. A variety
of techniques are then used to optimize information flow
~i.e., to reduce iteration!. Techniques such as partitioning,

resequencing, decoupling, and clustering can be used for
the purposes mentioned above~Kusiak & Wang, 1991;
Eppinger et al., 1994; Pimmler & Eppinger, 1994!.

Several coordination-based systems are aimed at the incre-
mental revision0development of project plans and sched-
ules. Within these systems, management activities such as
planning, scheduling, and enactment areinterleavedbecause
of the occurrence of changes or decisions being made dur-
ing the project as more information becomes available. For
instance, CoMo-Kit supports project planning and coordi-
nation for complex, distributed design projects0development
processes by alternating, planning, and enactment~Dellen
& Maurer, 1996!. In addition, Procura is a project manage-
ment model that allows planning and scheduling agent-
based design projects to occur concurrently~Goldmann,
1996!. Similarly, the system architecture presented by Ben-
deck et al.~1998! supports the coordination of management
activities in the software development process by interleav-
ing planning, scheduling, and enactment. MIDAS~Manu-
facturing Integration and Design Automation System! is a
distributed environment infrastructure for the planning and
execution of design and manufacturing processes~Kwon
et al., 2002!. A control mechanism and a common commu-
nication medium enable users of the system to share infor-
mation in a distributed environment such that design and
manufacturing activities can be carried out collaboratively.

Anumber of approaches are oriented toward coordinating
andmanaging taskagendasofhumanorcomputationalagents.
For instance, Decker and Lesser’s~1995! support tool for dis-
tributed, cooperative work consists of computational agents
assisting people in coordinating their activities by managing
their agenda. Situated at each user’s workstation, agents offer
task orderings according to user preferences and provide
agenda management to coordinate computational agents
according to these preferences. As such, a distributed coor-
dination process occurs, and agendas are produced in a col-
laborative manner. Similarly, PACT~ProjectAssessment and
Coordination for Teams! is aimed at managing projects and
coordinating people~Cleetus et al., 1996!. PACT is a multi-
user system with a communication interface enabling project
team members to notify or query others regarding tasks.
The ability to constantly be aware of each other’s activities
provides the mechanism to coordinate people.

Systems have been developed to assist in the arrange-
ment of meetings~Jennings & Jackson, 1995! and the con-
trol of meetings~Pena–Mora et al., 2000!. Jennings and
Jackson~1995! present an agent-based distributed meeting
scheduling system. Knowledge of the preferences and com-
mitments of each user of the system are used by their respec-
tive Meeting Scheduling Agent to arrange meetings. Pena–
Mora et al.~2000! present a conferencing architecture for
managing designers and engineers in a distributed design
meeting, called CAIRO~Collaborative Agent Interaction
and Synchronization!. The top-level system architecture of
CAIRO includes a directory of meeting controllers and
designers and engineers using the system and includes one
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Collaboration Manager per participant. The CAIRO system
employs a number of control strategies that are used to
decide which participant may contribute to a conference at
a given time. Software agents are said to be a further com-
ponent of CAIRO, as they work alongside designers and
engineers using the system to make the meeting effective
and productive through agenda and time management and
through proposing suitable control strategies given the nature
of the meeting.

The Virtual Design Team~VDT ! is presented as a com-
putational simulation model for project organizations~Jin
& Levitt, 1996!. In the context of the VDT, an organization
is viewed as “an information-processing and communica-
tion system, structured to achieve a specific set of tasks,
and composed of limited teams~called actors! that process
information.” As such, the VDT model consists of tasks,
actors, communication tools, and an organization structure.
The VDT simulation identifies significant information-
flow bottlenecks involving activities and actors~Kunz et al.,
1998!, which are resolved by users of the VDT.

The approaches mentioned provide valuable contribu-
tions in the field of operational engineering design manage-
ment. However, although these approaches recognize some
of the key elements of operational design coordination~i.e.,
coherence, communication, task management, resource man-
agement, schedule management, and real-time support!, no
single approach integrates all of them by incorporating the
appropriate techniques and knowledge of the interrelation-
ships between them. Indeed, a detailed critical review of
existing approaches related to operational engineering man-
agement with respect to the key elements of operational
design coordination has shown the need for an integrated
approach~Coates, 2001!. As such, the aim of this article is
to present a novel approach that integrates all six key ele-
ments identified. The approach developed has been real-
ized within an agent-oriented system, called the Design
Coordination System~DCS!.

3. THE DCS

The DCS is aimed at the real-time operational coordination
of a computational process. It incorporates the key ele-
ments of operational design coordination by encapsulating
the appropriate techniques and managing the interrelation-
ships between them. Section 3.1 gives an overview of the
agent composition within the DCS. The architecture of the
DCS is then presented in Section 3.2.

3.1. An overview of the DCS agent composition

The collection of agents operating within the DCS has been
defined to satisfy the objective of conducting a computa-
tional process in an operationally coordinated manner. That
is, the composition of agents, along with the role each ful-
fills, enables them to communicate with each other in real
time such that they can perform activities involving task

management, resource management, and schedule manage-
ment simultaneously in a coherent manner. The behavior of
all agents is complimentary in that they assist each other to
satisfy the overall objective mentioned. More specifically,
agents act as members of a cooperative, multifunctional
team operating in a coordinated fashion to ensure that inter-
dependent design tasks are completed in a structured man-
ner with respect to time and to the allocation and utilization
of the available resources. This process involves agents tak-
ing the opportunity to complete tasks concurrently when
and where appropriate. However, the emphasis is placed on
coordination, in that agent actions are performed appropri-
ately with respect to the time and order that they are per-
formed.As such, consistent with Lesser~1999!, the collection
of agents within the DCS can be described as a cooperative
or benevolent agent society.

Before presenting an overview of the various types of
agent, it is appropriate to define an analysis tool, a task, and
a resource in the context of the DCS.

An analysis tool is a codified algorithm in the form of
software that performs some numerical simulation~e.g., a
computational fluid dynamics model!. A task is a single
execution of an analysis tool that uses data within some
input files to create corresponding output files. Each execu-
tion of an analysis tool involves unique input files in terms
of their name and contents. In addition, tasks are executions
of analysis tools that, once started, must run to completion
if they are to produce full and meaningful output.

A resource is an entity that is utilized to undertake tasks.
In the context of the DCS, a resource is a workstation~e.g.,
a Sun Microsystems Ultra 10! in the computer network, on
which analysis tools can be executed for given input.

The approach to operational design coordination involves
tasks and resources being modeled appropriately, as shown
in Tables A.1 and A.2 of Appendix A. A detailed description
of the use of the knowledge attributes of tasks and resources
is given in the industrial case study in Section 4, and a
summary of the primary function of each agent type is pre-
sented in Table 1.

Table 1. Primary functions of agent types

Agent Type Primary Function

Activity director Implement schedules
Coordination manager Facilitate communication links between related

agents
Information manager Manage input0output files related to analysis

tool executions
Resource manager Maintain knowledge of resources
Resource monitor Sense, forecast, and disseminate resource

performance efficiency
Scheduler Perform scheduling
Task manager Execute analysis tools given unique input data

to create unique output data
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Figure 1 indicates the location of the agent types within a
computer network of workstations and the aspects of oper-
ational design coordination of each type of agent and com-
munication links. In Figure 1, the computer network is shown
as consisting of a workstation that is local to the user of the
DCS and four remote workstations. The local workstation
is that on which the user invokes the DCS. Remote work-
stations are used to perform executions of analysis tools.

With regard to Figure 1, and within any application of the
DCS, a single coordination manager, scheduler and resource
manager operate on the workstation local to the user of the
system. Information managers are also situated on the local
workstation, and one exists per analysis tool to be used in the
computational process. A task manager is present for each
analysis tool on every remote workstation being used in the
computer network. Each remote workstation is also allo-
cated a resource monitor and an activity director.

3.2. DCS architecture

As shown in Figure 2, the DCS comprises an agent frame-
work, modeled knowledge, and user knowledge. The agent
framework, which was reviewed in Section 3.1, acquires
knowledge provided by the user to derive modeled knowl-
edge. The agent framework then maintains and uses mod-
eled knowledge through the application of real-time
operational design coordination.

In Figure 2, a distinction is made between the communi-
cation between agents and the interactions between agents
and knowledge modules, as the nature of these exchanges
are different. That is, communication between agents
involves asynchronous message passing using transmission
control protocol0Internet protocol. Interactions between
agents and knowledge modules entail agents extracting or
modifying knowledge within the modules to enable them to

Fig. 1. The location of DCS agent types within a computer network of workstations.
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Fig. 2. The design coordination system architecture.
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perform some action. These interactions are discussed
throughout the industrial case study presented in Section 4.

With regard to Figure 2, a summary of the various mod-
ules associated with the modeled knowledge and user knowl-
edge components of the DCS architecture is presented in
Table 2.

The DCS is written in the C11 programming language
and operated on a Unix platform consisting of a network of
Sun Microsystems workstations~Ultra 10170 and Ultra 10!.
Before using the DCS, its executable and those of all analy-
sis tools must be copied into a directory on the local work-
station, as illustrated in Figure 1. Once the DCS executable
is invoked, knowledge must be provided by the user in
accordance with Table 2~i.e., knowledge of the analysis
tools, tasks and associated information, and resources!. That
is, the user defines a profile for each analysis tool, which
consists of knowledge of the input–output file require-
ments for each tool. On the basis of knowledge of the analy-
sis tools, task knowledge is provided by the user in regard
to the number of executions of each analysis tool. Any input
file or files for the first analysis tool to be executed in the
computational process are copied by the user and stored in
the task information repository. The user also provides
knowledge of the resources~i.e., host names of the remote
workstations within the computer network that can be used
by the DCS to execute analysis tools!. On the basis of the
knowledge provided by the user, the analysis tool depen-
dency matrix, task model, and resource model are con-
structed and are then used and maintained by DCS agents
throughout the computational process. The scheduler is the
only agent with direct access to the analysis tool depen-
dency matrix and task model. The resource model is only
accessible via the resource manager.

4. ENGINEERING INDUSTRIAL CASE STUDY

Siemens Power Generation Limited provided a practical
case study to enable the application of the DCS. Within the

company, the Turbine Engineering Department is responsi-
ble for the design and development of turbine modules to
upgrade0replace existing plants. The computational pro-
cess of turbine blade design involves a suite of analysis
tools that the designer uses in the selection of blades and
blade path and in the calculation of the associated stresses
and vibration characteristics of the blades. The determinis-
tic analysis tools are related as shown in Figure 3. The
naming convention of the analysis tools is company specific.

In Figure 3, the computational process is shown to in-
volve 8 analysis tools. Further, analysis tool TF23225 is
used for three purposes and, as such, is modeled as 3 indi-
vidual analysis tools~i.e. TF23225_1, TF23225_2, and
TF23225_3!. Thus, the case study to be used consists of 10
analysis tools. For reasons of confidentiality, descriptions
of these analysis tools were not divulged by the company.
As a result, throughout this section, the analysis tools are
referred to by their associated TF number.

Within Siemens Power Generation Limited, experienced
design engineers manually manage the computational pro-
cess of turbine blade design. That is, executions of analysis
tools are performed sequentially, with the appropriate man-
agement of the large quantity of information and data held
within files between each run. This means of managing
information and data is time consuming and error prone.
The manual enactment of a single run of the computational
process, shown in Figure 3, takes approximately 8 min using
a single workstation comparable to those used within the
DCS~Whitfield et al., 2002!. As such, the duration~min! of
the complete computational process is approximately a fac-
tor of eight applied to the number of process runs. For com-
parative purposes of this case study, a single run of the
computational process is considered.

4.1. Initialization

On instantiation of the DCS, a single coordination man-
ager, resource manager, and scheduler are created. In this

Table 2. Summary of modeled knowledge and user knowledge

Component Module Description

Modeled Analysis tool dependency matrix Holds knowledge of the relationships between analysis tools
knowledge Pending scheduled task repository Holds knowledge of tasks that have been scheduled, which are awaiting other tasks to be completed

Resource model Holds knowledge of resources~i.e., workstations within the computer network!
Schedule model Holds knowledge of tasks that are to be undertaken on a specific resource

~i.e., analysis tool executions for given input to be performed on specific workstations!
Task model Holds knowledge of tasks~i.e., analysis tool executions for unique input data!

User
knowledge

Task information repository Holds input files required to enable analysis tools to be executed and output files created
as a result of executing analysis tools

User analysis tool knowledge Knowledge of the input0output file requirements of each analysis tool
User resource knowledge Knowledge of the workstations within the computer network
User task knowledge Knowledge of individual executions of analysis tools
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case study, 10 analysis tools and four resources are used.
Thus, 10 information managers are also created, as well as
40 task managers, four resource monitors, and four activity
directors.

Initially, the coordination manager receives messages from
all agents. Knowledge contained within each initial com-
munication relates to attributes of the agent, which is depen-
dent on agent type. After recording these attributes, the
manager replies to the agents, acknowledging their regis-
tration. Once registered, agents request knowledge of related
agents from the coordination manager. This knowledge
enables related agents to communicate directly with one
another, via message passing, as and when required, such
that they can work cooperatively and coordinate their actions.

4.1.1. Designer-defined tasks

The designer provides knowledge of the tasks to be under-
taken~i.e., executions of analysis tools with unique input
data!. The computational process involves a number of
executions of each of the analysis tools, as shown in Table 3,
whereTI is a unique identification index for each analysis

tool and nBR is the number of turbine blade rows under
consideration.

In this case study, the number of turbine blade rows under
consideration is 36~18 fixed and 18 rotating!. Thus, the
total number of tasks to be undertaken is 131.

Fig. 3. The computational process of turbine blade design: analysis tools. *Unique file qualifier.

Table 3. Number of analysis tool executions

TI Analysis Tool
No. of

Executions

0 TF04760 1
1 TF04710 1
2 TF23225_1 1
3 TF04720 1
4 TF23225_2 nBR

5 TF23225_3 nBR02
6 TF19062 nBR02
7 TF19024 nBR02
8 TF04843 nBR

9 TF04715 1

Total 3.5nBR 1 5
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For each task, the designer allocatesTI , TL, TDD, T@TIn# , and
T@TOut# . The variableTL is a task identification index that is
local to its associated analysis tool. As an example, within
the computational process, as analysis tool TF23225_2~with
TI 5 4! will be executed 36 times, each with a unique input
file, then forTI 5 4,TL ranges from 0 to 35. The variableTDD

is the datum duration of a task used for comparative pur-
poses when considering resources of varying performance
efficiency to undertake the task, andT@TIn# defines the infor-
mation~i.e., input files! needed to be available before a task
is undertaken. Similarly,T@TOut# defines the information~i.e.,
output files! produced on the completion of a task.

4.1.2. Resource model

The construction and maintenance of the resource model
is the primary responsibility of the resource manager. The
upkeep of the knowledge held within the resource model
provides the basis for the optimized utilization of the
resources throughout the computational process.

The resource manager acquires user-supplied knowledge
at the outset of the operation of the DCS and holds it in the
resource model. Specifically, for each of the four resources
to be used, the resource model consists of knowledge
attributes as shown in Table 4. Here,RI is a unique identi-
fication index, andRA is an indication of whether a resource
is available to be used, that is,RA 5 $0, 1%, where 0 indi-
cates that a resource is unavailable and 1 signifies that it is
available. The variableRFE is the forecasted performance
efficiency expressed as a percentage. Within the operating
environment of the DCS,RFE is a measure of the potential
performance efficiency that can be used andRLT andRUT

are lower and upper performance efficiency thresholds,
respectively, which if transgressed result in the consider-
ation of rescheduling.

The resource manager maintains values ofRFE within the
resource model with the assistance of the resource moni-
tors. The initial values assigned toRFE for each resource are
calculated by the respective resource monitor based on val-
ues of monitored performance efficiency,RME, observed
over a period of time before scheduling. The procedure of
obtainingRFE is explained in Sections 4.2.7 and 4.2.8.

4.1.3. Construct an analysis tool dependency matrix

An analysis tool dependency matrix is a representation
of the relationships between the analyses tools involved in

the computational process and is used to assist in the con-
struction of a task model. To construct a dependency matrix,
the scheduler uses knowledge provided by the user regard-
ing each analysis tool to be used in the computational pro-
cess. Knowledge of dependencies is established using the
input and output requirements~i.e., the input and output
files needed! for each analysis tool. By comparing the input
requirements of each analysis tool,T@TIn# , against the output
requirements,T@TOut# , of all other analysis tools, the sched-
uler is able to determine the dependency relationships
between them. Within the matrix, off-diagonal elements
marked 0 represent nondependency and elements marked 1
signify dependency. The diagonal elements of the depen-
dency matrix show the datum durations of executing each
analysis tool, which are obtained from the user by perform-
ing arbitrary executions using a reference resource in the
local area network. The dependency matrix for the compu-
tational process, shown in Figure 3, is presented in Table 5.

With regard to Table 5, as an example, for an execution
of TF23225_2, the corresponding executions of TF04710
and TF04720 must be completed.

4.1.4. Construct a task model

A task model represents knowledge of the tasks to be
undertaken in the computational process~i.e., executions of
the analysis tools and the unique files required to do so!.
The scheduler is responsible for ensuring that the task model
is constructed and maintained throughout the computa-
tional process. To construct a task model, the scheduler
uses knowledge provided by the user and contained within
the analysis tool dependency matrix.

Table 6 represents the analysis tool dependency matrix
shown in Table 5, with each analysis tool assigned a value
for TI in accordance with Table 3. In addition, Table 7 rep-
resents some of the knowledge of tasks held within the task
model. For the analysis tool withTI 5 6 ~i.e., TF19062!,
two tasks are shown, each with different values assigned
to TL because they have unique input and output files sig-
nified by T@TIn# and T@TOut# . Using the analysis tool depen-
dency matrix, it can be determined that input for each task
associated with the analysis tool withTI 5 6 is created as
output from the analysis tool withTI 5 5.

As stated in Section 4.1.1, knowledge of tasks defined by
the designer comprisesTI , TL, TDD, T@TIn# , andT@TOut# . Within
the task model, tasks are assigned additional knowledge
~namely,TG, TC, TN, andT@TG# !. The variableTG is an identi-
fication index for a task within the context of all tasks and is
used for scheduling and rescheduling purposes. With regard
to the computational process, because there are a total of 131
analysis tool executions, theTG value ranges from 0 to 130.
The variableTCrepresents whether or not a task has been com-
pleted such thatTC 5 $0, 1%, where 0 indicates noncomple-
tion and 1 signifies completion. In addition, the analysis tool
dependency matrix, which was constructed using knowl-
edge ofT@TIn# and T@TOut# for each analysis tool, is used to
determineTN andT@TG# for each task. The variableTN is the

Table 4. Resource model

RI RA

RFE

~%!
RLT

~%!
RUT

~%!

1 1 98.9 50 100
2 1 99.6 50 100
3 1 96.1 50 100
4 1 91.6 50 100
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number of dependencies of a task, andT@TG# is a matrix defin-
ing TG of each of these dependencies.

4.2. Operation

For the purposes of this case study, the operation of the
agents within the DCS has been divided into subsections
4.2.1 to 4.2.16. The order in which these subsections are
presented corresponds to the occurrence of agent actions
during the computational process.

4.2.1. Derive an original schedule

The primary role of the scheduler is to satisfy the objec-
tives of scheduling a number of tasks on the least number of

available resources while consuming the least amount of
those resources, such that dependencies are preserved and
the overall time to complete the tasks is minimized. At the
outset of the computational process, the scheduler derives
an original schedule using a multiobjective genetic algo-
rithm ~MOGA; Todd, 1997; Todd & Sen, 1997a, 1997b!
allied with knowledge of outstanding tasks and available
resources from their respective models. Initially, all tasks
are outstanding~i.e., for each taskTC 5 0! and, thus, all
need to be scheduled. Task knowledge required for use with
the MOGA comprisesTG, TDD, TN, andT@TG# for each task.
Furthermore, the scheduler notes the number of tasks to be
scheduled~nTS! and the cumulative number of dependen-
cies for those tasks~nTD!. As indicated in the resource model

Table 5. Analysis tool dependency matrix

TF04760 TF04710 TF23225_1 TF04720 TF23225_2 TF23225_3 TF19062 TF19024 TF04843 TF04715

TF04760 97 0 0 0 0 0 0 0 0 0

TF04710 1 6 0 0 0 0 0 0 0 0

TF23225_1 0 1 6 0 0 0 0 0 0 0

TF04720 0 0 1 14 0 0 0 0 0 0

TF23225_2 0 1 0 1 1 0 0 0 0 0

TF23225_3 0 1 0 0 0 2 0 0 0 0

TF19062 0 0 0 0 0 1 1 0 0 0

TF19024 0 0 0 0 0 1 1 1 0 0

TF04843 0 0 0 1 1 0 0 0 1 0

TF04715 0 1 0 1 0 0 0 0 0 11

Table 6. Analysis tool dependency matrix

TI 0 1 2 3 4 5 6 7 8 9

0 97 0 0 0 0 0 0 0 0 0
1 1 6 0 0 0 0 0 0 0 0
2 0 1 6 0 0 0 0 0 0 0
3 0 0 1 14 0 0 0 0 0 0
4 0 1 0 1 1 0 0 0 0 0
5 0 1 0 0 0 2 0 0 0 0
6 0 0 0 0 0 1 1 0 0 0
7 0 0 0 0 0 1 1 1 0 0
8 0 0 0 1 1 0 0 0 1 0
9 0 1 0 1 0 0 0 0 0 11

Table 7. Analysis tool task model

TI TL . . . T@TIn# T@TOut#

0 0 . . . hp1.760.inp hp1.720.inp
1 0 . . . hp1.b1d hp1.b1d
2 0 . . . hp1.b2d hp1.b2d
3 0 . . . hp1.720.inp hp1.720.sls, hp1.720.ben
. . . . . . . . . . . . . . .
6 12 . . . hp1.026.062.inp hp1.026.062.out, hp1.026.024.mat
6 13 . . . hp1.028.062.inp hp1.028.062.out, hp1.028.024.mat
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
9 0 . . . hp1.b2d, hp1.720.ben hp1.b3d
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shown in Table 4, each of the four resources are available
for utilization becauseRA 5 1 for all of them. With regard
to each of the available resources, the scheduler requests
that the resource manager provideRI andRFE. The sched-
uler also notes the number of resources to be considered for
scheduling,nRS.

Executing the MOGA results in a set of solutions~i.e.,
schedules! being created that satisfy the three objectives
defined above. Figure 4 illustrates a set of solutions created
by using the MOGA with respect to minimizing the con-
flicting objectives.

Within the set of solutions created, a subset exists known
as the Pareto~1896! optimal set of solutions~i.e., sched-
ules!. A Pareto optimal set comprises solutions in which no
increase can be achieved in any of the criteria without result-
ing in a simultaneous decrease in at least one of the remain-
ing criteria.

The scheduler identifies the Pareto optimal set of solu-
tions and then uses multicriteria decision making to select
the most appropriate, or best, schedule from this set. The
criteria used coincide with the objectives of completing the
computational process in the least time using the least num-
ber of resources while consuming the least amount of those
resources. That is, they strive to minimize time, number of
resources, and resource use. The first criterion applied to
the Pareto optimal set is that of minimizing the time esti-

mate to complete all scheduled tasks. Thus, the schedule
with the least time estimate to complete the tasks scheduled
is selected. In the event that more than one schedule within
the Pareto optimal set satisfies this first criterion, a second
criterion is applied such that the schedule with the least
number of resources used to achieve the completion of the
tasks scheduled is chosen. Again, in the event that more
than one schedule satisfies the first and second criterion, a
third, and final, criterion is used. That is, the schedule exhib-
iting the least cumulative percentage utilization of the
resources employed is selected. If there are a number of
schedules within the Pareto optimal set that satisfy all cri-
teria, then a schedule is arbitrarily chosen because all of
these schedules are equally as good.

An example original schedule selected from the Pareto
optimal set of solutions is shown in Figure 5.

4.2.2. Construct original schedule models

The scheduler uses the best optimized schedule to con-
struct an original schedule model for each resource to be
used. The responsibility of administering the enactment of
each original schedule model lies with the activity director
of the corresponding resource. Thus, the scheduler notifies
and provides each activity director with the respective orig-
inal schedule model. In Table 8, the best schedule is pre-
sented in the form of an original schedule model for resource

Fig. 4. The trade-off between conflicting objectives.
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RI 5 1. Furthermore, tasks are listed in the order that they
should be undertaken.

In Table 8T@TI # andT@TL # are matrices definingTI andTL of
each dependency of a task.

4.2.3. Check dependencies and direct tasks

On being provided their original schedule models, each
activity director begins administering the designated tasks
to be undertaken. As indicated in Table 8, the task withTI 5
1 andTL 5 0 is the first task to be undertaken using resource
RI 5 1 ~i.e., the only execution of analysis tool TF04710
using input file hp1.b1d and creating output file hp1.b2d!.
For brevity, in the remainder of this article, a task’sTI and
TL will be abbreviated toT~TI , TL !; that is, the task previ-
ously stated is denoted asT~1, 0!.

On inspecting its associated original schedule model, the
activity director recognizes that this task is dependent on
the completion ofT~0, 0!; that is, the single execution of
analysis tool TF04760 as shown in Figure 6. This depen-

dency exists because TF04710 requires the output file pro-
duced on executing TF04760~i.e., hp1.b1d! as input. Thus,
the activity director confers with the scheduler to establish
whether the dependency has been completed. The sched-
uler checks the task model to determineTC of the depen-
dencyT~0, 0!.

Because the execution of TF04760 has not been com-
pleted~i.e.,TC 5 0!, the execution of TF04710 cannot com-
mence. As such, the scheduler records within the pending
scheduled task repository thatT~1, 0! is awaiting the com-
pletion ofT~0, 0!. Similarly, as shown in Figure 6, the first
task to be undertaken using resourceRI 5 3 @i.e., T~5, 4!#
andRI 5 4 @i.e., T~5, 11!# cannot start because it requires
information that will only become available on the comple-
tion of T~1, 0!. At the outset of the computational process,
onlyT~0, 0! on resourceRI 52 is able to commence, because
it has no dependencies. The pending scheduled task repos-
itory at the point described is shown in Table 9, wherei 5
$1, 2, . . . ,nPST%, j 5 $1, 2, . . . ,TON,i%, nPST is the number of

Fig. 5. An optimized schedule.

Table 8. Original schedule model for resource RI 5 1

TI TL TG TDD TN T@TI # , T@TL # TI TL TG TDD TN T@TI # , T@TL #

1 0 1 6 1 @0# , @0# 4 5 9 1 2 @1, 3# , @0, 0#
2 0 2 6 1 @1# , @0# 8 20 114 1 2 @3, 4# , @0, 20#
5 7 47 2 1 @1# , @0# 4 0 4 1 2 @1, 3# , @0, 0#
5 0 40 2 1 @1# , @0# 7 9 85 1 2 @5, 6# , @9, 9#
5 8 48 2 1 @1# , @0# 8 18 112 1 2 @3, 4# , @0, 18#
6 12 70 1 1 @5# , @12# 4 3 7 1 2 @1, 3# , @0, 0#
7 15 91 1 2 @5, 6# , @15, 15# 8 9 103 1 2 @3, 4# , @0, 9#
5 10 50 2 1 @1# , @0# 8 21 115 1 2 @3, 4# , @0, 21#
5 16 56 2 1 @1# , @0# 4 26 30 1 2 @1, 3# , @0, 0#
6 14 72 1 1 @5# , @14# 4 32 36 1 2 @1, 3# , @0, 0#
4 33 37 1 2 @1, 3# , @0, 0# 8 19 113 1 2 @3, 4# , @0, 19#
9 0 130 11 2 @1, 3# , @0, 0# 8 13 107 1 2 @3, 4# , @0, 13#
4 13 17 1 2 @1, 3# , @0, 0# 8 12 106 1 2 @3, 4# , @0, 12#
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pending scheduled tasks, andTON is the number of outstand-
ing dependencies of a pending scheduled task.

In the event of a task being ready to be undertaken that
has no dependencies, the activity director omits this con-
sultation with the scheduler and directly contacts the rele-
vant task manager, instructing it to commence undertaking
the specified task.

4.2.4. Request, provide, and supply task
information0undertake tasks

The principal duty of a task manager is the execution of
its associated analysis tool for a unique input file or files.
An instruction to a task manager indicating that a specific
task should commence is provided by its related activity
director. As such, before undertaking the taskT~0, 0!, that
is, executing analysis tool TF04760, the relevant task man-
ager requests that its related information manager provide
the necessary input file according toT@TIn# ~i.e., hp1.760.
inp!. In response, the information manager locates and
retrieves this input file from the task information reposi-
tory. On notification that the requested information has been
provided, the task manager commences with the execution

of its associated analysis tool. Once TF04760 has been
executed, the task manager informs its related information
manager such that the output file created~i.e., hp1.b1d, in
accordance withT@TOut# !, can be stored in the task informa-
tion repository, which is accessible by all information man-
agers. Thus, these files are available in the event of them
being required as input for the execution of other analysis
tools, specifically, at this time in the process, the pending
scheduled taskT~1, 0!.

4.2.5. Update task model

On completion ofT~0, 0!, the task manager informs its
related activity director, which then informs the scheduler
of this fact. The scheduler updates the task model to reflect
the completion of the task by settingTC 5 1. Updating the
task model ensures that in the event of rescheduling, only
outstanding tasks will be considered~i.e., tasks withTC5 0!.

4.2.6. Remove dependencies and commence direction
of pending scheduled tasks

In addition to updating the task model, the scheduler
updates the pending scheduled task repository. As such, any
tasks solely awaiting the completion of the recently com-
pleted dependency may be undertaken. Specifically, as
T~0, 0! has been completed, the scheduler removes this
dependency from the pending scheduled task repository and
decrementsTON where appropriate. As a consequence, as
TON becomes nil forT~1, 0!, that is, this task has no out-
standing dependencies, it can be undertaken. The commence-
ment of this task is instigated by the scheduler, who informs
the appropriate activity director.

Fig. 6. The initial tasks to be undertaken.

Table 9. Pending scheduled task repository

i TI TL TON @TI, i, j # @TL, i, j #

1 1 0 1 0 0
2 5 4 1 1 0
3 5 11 1 1 0
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4.2.7. Monitor resources

Each resource monitor is responsible for sensing, fore-
casting, and reporting performance efficiency of its associ-
ated resource. Throughout the computational process, each
resource monitor observes the various constituents of cen-
tral processing unit~CPU! utilization of its associated
resource such that any violations of the upper or lower per-
formance efficiency thresholds can be identified. In partic-
ular, a resource monitor establishes what percentage of the
current CPU utilization of its associated resource is attrib-
uted to

• user processes,Ruser, which are the computer pro-
grams being run by users;

• system processes,Rsystem, which is UNIX kernel code;
and

• idle, Ridle, which is not being utilized.

Furthermore,Ruser is divided into the proportion of CPU
utilization attributed to computer programs that are being
executed within the DCS~i.e., analysis tools,RDCS! and
that are unrelated to the DCS~Rother!. On the basis of obser-
vations of CPU utilization over a period of time, each
resource monitor calculates the monitored performance effi-
ciency of its associated resource at timet, RME t

, using the
equation

RMEt
5 RCF 3 FRidlet

1 RDCSt
1

Rothert

nps

~11 Rsystemt
!G.

The resource coefficient~RCF! is a relative measure of the
processor speed of a resource such that the forecasted per-
formance efficiencies determined for all resources are
directly comparable. This is required for purposes of sched-
uling and rescheduling. In addition,nps is the number of
processes being executed on the resource.

The CPU utilization and monitored performance effi-
ciency of resourceRI 5 4 over a period of the computa-
tional process are shown in Figure 7 as observed by the
associated resource monitor.

In Figure 7, it can be seen that at approximatelyt 5 60 s
there is a deviation in monitored performance efficiency
that transgresses its lower threshold ofRLT 5 50%, which
instigates the consideration of rescheduling. Further, for
this resource,RME fluctuates between 38 and 48% during
the remainder of the computational process. Although not
shown in Figure 7, for resourcesRI 51, 2, and 3, monitored
performance efficiency is approximately 99% for the remain-
der of the computational process.

4.2.8. Forecast and revise resource model
Because of the monitored performance efficiency of

resourceRI 5 4 falling below the lower threshold of 50%,

Fig. 7. The constituent usage and monitored performance efficiency versus time forRI 5 4.
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the associated resource monitor forecasts future perfor-
mance efficiency. This is achieved by performing a regres-
sion analysis using orthogonal polynomials with recent
values of monitored performance efficiency. The regres-
sion equation derived for resourceRI 5 4 is

RFE,t 5 20.1979t 4 1 7.7977t 3 2 111.97t 2 1 683.18t 2 1395.9.

The resource monitor supplies the forecasted performance
efficiency to the resource manager, which updates the
resource model accordingly. The resource manager also
resets the values ofRLT or RUT to 10 and 70%, respectively.
The reason for resetting these values is to avoid resched-
uling being considered again as a result of insignificant
deviations in monitored performance efficiency about the
previous lower threshold. The resource manager also requests
that all other resource monitors determine and report fore-
casts of performance efficiency for their associated resource.
The resource manager then updates the resource model, as
shown in Table 10.

Subsequently, based on the up to date knowledge of
resource forecasted performance efficiencies, the resource
manager instructs the scheduler to consider rescheduling.

4.2.9. Decision making for rescheduling0deriving
interim schedule models

The decision-making process for rescheduling involves
the scheduler assessing whether it would be more econom-
ical timewise to continue adhering to the current schedule
or to derive and enact a revised schedule. If the time taken
to complete the current schedule is greater than the time
taken to derive and complete a revised schedule, then the
decision is made to reschedule. Otherwise, the current sched-
ule is continued.

If rescheduling a proportion of the outstanding tasks is
performed, during this period the remaining outstanding
tasks can be completed in accordance with interim schedule
models. These models are derived as a by-product of esti-
mating the time to derive a revised schedule. The concept
of interim schedule models ensures that if rescheduling does
occur, then the resources remain utilized appropriately dur-
ing this period.

Before calculating the time estimates mentioned above,
the scheduler requests that all activity directors suspend

their original0revised schedule models. This ensures that
knowledge of tasks considered by the scheduler is not sub-
ject to change during the decision-making process. Deter-
mining the time needed to complete the current schedule,
derive a revised schedule, and enact a revised schedule
involves the consideration of the 104 outstanding tasks within
the original schedule models of each activity director, as
presented in Table 11. Shaded cells in Table 11 signify those
outstanding tasks that could potentially be included within
an interim schedule model because they are independent
~i.e., TN 5 0! at the point at which the scheduler considers
rescheduling. Further, the estimated durations of tasks~TED!
are summed to determine the cumulative time required to
complete the tasks that could potentially be included in the
interim schedule models.

4.2.10. Estimated time to complete
the current schedule

Estimating the time to complete the current~i.e., origi-
nal! schedule~TCCS! initially involves the scheduler supply-
ing up to date resource forecasted performance efficiency
to each activity director. The activity directors then apply
the forecasted performance efficiency of their associated
resource to the cumulative datum duration of the outstand-
ing tasks within their original schedule models, as shown in
Table 12.

Each activity director provides the scheduler with this
estimation of the time to complete the associated original
schedule model. The scheduler then determines that the orig-
inal schedule model with the greatest estimated completion
time, indicated by the shaded cells, corresponds with resource
RI 5 4. That is, the resource that experienced the significant
reduction in forecasted performance efficiency from 91.6
to 41.8%. Thus, if the original schedule models continue to
be adhered to under the prevailing forecasted performance
efficiency, it is estimated that they would be completed in
approximately 79 s~i.e., TCCS5 79 s!.

4.2.11. Estimated time to derive a revised schedule

To estimate the time to derive a revised schedule~TDR!,
the scheduler uses empirically derived knowledge of the
execution time of the MOGA and knowledge of the out-
standing tasks within the original schedule models. Fig-
ure 8 presents the empirical relationship between the number
of tasks to be scheduled~nTS! for a number of resources to
be utilized ~nR! and the estimated execution time of the
MOGA ~TMOGA!. The number of tasks to be scheduled ranges
from 20 to 127 because using the MOGA to reschedule
beyond these limits would be uneconomical in terms of
time.

Estimating the time to derive a revised schedule involves
establishing the most appropriate combination of outstand-
ing tasks to reschedule, whereas the remainder can be com-
pleted during this period such that the most appropriate
utilization of resources is maintained. Determining the appro-
priate combination of tasks involves the application of an

Table 10. Revised resource model

RI RA

RFE

~%!
RLT

~%!
RUT

~%!

1 1 99.1 50 100
2 1 99.2 50 100
3 1 99.0 50 100
4 1 41.8 10 70
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iterative procedure. Step 1 involves estimating the execu-
tion time of the MOGA given the number of tasks to be
rescheduled and the number of resources to be utilized. On
the basis of the time estimate from step 1, step 2 entails
using the original schedule model for each resource to ascer-
tain the number of outstanding tasks that could be com-
pleted during rescheduling. Step 3 involves deducting the
cumulative number of outstanding tasks able to be com-

pleted utilizing all resources determined in step 2 from the
number of tasks considered for rescheduling in step 1. The
results from applying the procedure are shown in Table 13,
wherenTRS is the number of outstanding tasks to resched-
ule, nTCRS is the number of tasks that could be completed
using a particular resource during rescheduling given the
estimated time to derive a revised schedule using the MOGA,
andTTCRS is the time taken to complete a number of tasks
using a particular resource during rescheduling.

The procedure converges when the time taken to resched-
ule a number of outstanding tasks is as nearly coincident as
possible with the completion of those remaining. Thus, the
idle time of each resource is minimized. Table 13 shows
that convergence to the optimum solution with respect to
concurrent rescheduling0task completion is reached after
four iterations. That is, the scheduler should reschedule 60
tasks, estimated to take approximately 20 s~i.e., TDRS 5
20.3 s!, according to the regression equation associated with
four resources shown in Figure 8. During the period of
rescheduling, 44 tasks are estimated as being able to be

Table 11. Outstanding tasks within original schedule models

RI 5 1, RFE 5 99.1% RI 5 2, RFE 5 99.2% RI 5 3, RFE 5 99.0% RI 5 4, RFE 5 41.8%

TG TN TDD STED TG TN TDD STED TG TN TDD STED TG TN TDD STED

72 1 1 — 76 1 1 — 28 0 1 1.01 65 0 1 2.39
37 0 1 1.01 43 0 2 2.02 86 1 1 — 83 1 1 —

130 0 11 12.11 88 0 1 3.02 74 0 1 2.02 58 0 1 4.78
17 0 1 13.12 60 0 1 4.03 34 0 1 3.03 49 0 2 9.57
9 0 1 14.13 54 0 2 6.05 64 0 1 4.04 81 0 1 11.96

114 1 1 — 53 0 2 8.07 12 0 1 5.05 68 0 1 14.35
4 0 1 15.14 24 0 1 9.07 102 1 1 — 78 1 1 —

85 2 1 — 35 0 1 10.08 39 0 1 6.06 16 0 1 16.75
112 1 1 — 33 0 1 11.09 87 0 1 7.07 118 1 1 —

7 0 1 16.15 18 0 1 12.10 21 0 1 8.08 25 0 1 19.14
103 1 1 — 19 0 1 13.11 66 0 1 9.09 92 1 1 —
115 1 1 — 109 1 1 — 31 0 1 10.10 123 1 1 —
30 0 1 17.15 22 0 1 14.11 117 1 1 — 8 0 1 21.53
36 0 1 18.16 90 2 1 — 67 1 1 — 26 0 1 23.92

113 1 1 — 108 1 1 — 15 0 1 11.11 116 1 1 —
107 1 1 — 38 0 1 15.12 105 1 1 — 129 1 1 —
106 1 1 — 128 1 1 — 94 1 1 — 14 0 1 26.32

111 1 1 — 96 1 1 — 104 1 1 —
121 1 1 — 59 0 1 12.12 27 0 1 28.71
100 1 1 — 97 1 1 — 10 0 1 31.10
99 1 1 — 61 1 1 — 32 0 1 33.49
6 0 1 16.13 79 1 1 — 71 1 1 —
5 0 1 17.14 23 0 1 13.13 98 1 1 —

122 1 1 — 11 0 1 35.89
13 0 1 18.15 101 1 1 —
89 2 1 — 95 1 1 —
82 1 1 — 84 1 1 —
20 0 1 19.15 29 0 1 38.28

120 1 1 — 127 1 1 —
77 1 1 — 110 1 1 —

124 1 1 — 126 1 1 —
119 1 1 — 125 1 1 —

Table 12. Estimated times to complete current schedule models

RI

STDD

~s!
RFE

~%!
STED 5 STDD0RFE

~s!

1 27 99.1 27.2
2 35 99.2 35.3
3 23 99.0 23.2
4 33 41.8 78.9
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completed using the four resources. On the basis of their
most recent forecasted performance efficiency, resources
RI 5 1, 2, and 4 would be utilized for approximately 19 s,
whereas resourceRI 5 3 for approximately 13 s. As a con-
sequence, not only has the optimized time to reschedule an
appropriate number of outstanding tasks been determined
but also the tasks to be completed during this period have
been identified~i.e., those for inclusion within the interim
schedule models!. Values ofTG within the interim schedule
models are shown in Table 14.

Concurrent rescheduling0task completion results in a
mean resource idle time of approximately 3 s. Because
resources idle time is minimized, the arrival of the revised

schedule is expected to be as close as possible to the com-
pletion of the interim schedule models.

4.2.12. Estimated time to complete a revised schedule

Estimating the time to complete a revised schedule~TCRS!
involves simulating the grouping and assignment of tasks
to be rescheduled to the allocated resources. Grouping tasks
enables the identification of groups that must be under-
taken sequentially, which consist of tasks that may be com-
pleted concurrently. Assigning tasks to resources is done in
accordance with these groups such that the greatest cumu-
lative time to complete the tasks can be obtained.

Fig. 8. The estimated execution time of MOGA.

Table 13. Determination of time to reschedule and concurrently complete tasks

Resources

RI 5 1 RI 5 2 RI 5 3 RI 5 4

Iteration nTRS

TMOGA

~s! nTCRS

TTCRS

~s! nTCRS

TTCRS

~s! nTCRS

TTCRS

~s! nTCRS

TTCRS

~s! SnTCRS

1 104 37.6 8 18.16 16 19.15 13 13.13 14 35.89 51
2 53 18.6 8 18.16 15 18.15 13 13.13 6 16.75 42
3 62 20.8 8 18.16 16 19.15 13 13.13 7 19.14 44
4 60 20.3 8 18.16 16 19.15 13 13.13 7 19.14 44
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Step 1. Determine task groups:To determine the groups
into which the 60 tasks to be rescheduled could be divided,
an assessment of the tasks dependencies is made~i.e.,
whether it0they was0were completed in accordance with
an original schedule model, will be completed in accor-
dance with an interim schedule model, or will be resched-
uled for inclusion with a revised schedule model!.

Forty-eight tasks would not have any outstanding depen-
dencies once rescheduled because

• they never had any dependencies,

• their dependencies were completed in accordance with
the original schedule models before the consideration
of rescheduling, or

• their dependencies will be completed in accordance
with the interim schedule models during the period of
rescheduling.

Similarly, as a result of rescheduling, only 12 tasks will
have outstanding dependencies within the revised schedule
models. As a consequence, the 60 tasks to be considered for
rescheduling can be divided into two groups, the first group
comprising 48 tasks and the second group consisting of 12
tasks. Further, these groups must be completed sequen-
tially. However, tasks within each group may be completed
in parallel because they are independent of other tasks in
the same group.

Step 2. Distribute group tasks among resources:Given
that the datum duration of each outstanding task to be
rescheduled is 1 s, Table 15 presents information regarding

how the groups of tasks identified in Step 1 could be dis-
tributed among the four resources such that their collective
time to completion is minimized.

Based on Table 15, theTCRS is approximately 18 s. This
corresponds to the greatest cumulative time to complete the
groups of tasks, as indicated by the shaded row of Table 15.

4.2.13. Decision to reschedule

The scheduler makes the decision to reschedule because
the estimated time to complete the original schedule is greater
than the time it is estimated to derive and complete a revised
schedule, which is

TCCS ~79 s! . TDRS ~20 s! 1 TCRS ~18 s!.

Furthermore, the scheduler instructs each activity director
to administer the interim schedule model during the period
of rescheduling. These models~Table 14! were constructed
as a by-product of determining the estimated time to derive
a revised schedule. In addition, the completion of the interim
schedule models is intended to be near coincident with the
completion of rescheduling. Thus, the transition delay
between the current and revised schedules is minimized.

4.2.14. Modify task model

Before rescheduling, the scheduler modifies the task
model. This is required because knowledge held in the task
model is used in the derivation of the revised schedule mod-
els. Knowledge in the task model modified by the scheduler
consists of theTC of those tasks to be completed in accor-
dance with the interim schedule models, theTG, T@TG# , and

Table 14. Interim schedule models

RI TG

1 37 130 17 9 4 7 30 36
2 43 88 60 54 53 24 35 33 18 19 22 38 6 5 13 20
3 28 74 34 64 12 39 87 21 66 31 15 59 23
4 65 58 49 81 68 16 25

Table 15. Assignment of rescheduled tasks

Group 1: 48 Tasks Group 2: 12 Tasks

RI

RFE

~%!
No. of

Tasks Assigned
STED 5 STDD0RFE

~s!
No. of

Tasks Assigned
STED 5 STDD0RFE

~s!
Total Time

~s!

1 99.1 14 14.13 4 4.04 18.17
2 99.2 14 14.11 4 4.03 18.14
3 99.0 14 14.14 3 3.03 17.17
4 41.8 6 14.35 1 2.39 16.74
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TN of the 60 outstanding tasks to be rescheduled and con-
sidered in Table 15.

4.2.15. Derive revised schedule models0complete
interim schedule models

To derive the revised schedule models, the scheduler uses
the MOGA with knowledge held within the modified task
model and revised resource model. The actual duration of
rescheduling the 60 tasks was approximately 23 s, which is
3 s greater than estimated. As such, the decision to resched-
ule was not affected.

During rescheduling, the activity directors administer the
enactment of their respective interim schedule models.
Because the tasks included within the interim schedule mod-
els have no outstanding dependencies, the need for depen-
dency checking is not required. The omission of dependency
checking is essential because it requires scheduler involve-
ment, which is not possible because this agent is occupied
performing rescheduling during the enactment of the interim
schedule models.

4.2.16. Complete revised schedule models

Once rescheduling has been performed and the interim
schedule models are completed simultaneously, then the
revised schedule models are enacted. The computational
process then progresses until all tasks have been completed
in accordance with the revised schedule models.

In the application of the DCS presented in this article,
the time taken to complete one run of the computational
process is approximately 3 min, while utilizing four work-
stations of variable performance efficiency. As stated at the
outset of Section 4, an experienced engineer can complete
one run of the process in approximately 8 min using a sin-
gle workstation. However, it is not only the additional work-
stations employed by the DCS that contributes to the
reduction in the duration of the computational process but
also the approach to real-time operational design coordina-
tion. That is, the techniques and their links and interrela-
tionships within the approach demonstrate the coherent
management of tasks, resources, and schedules can result in
the computational process being performed in a timely and
appropriate manner. More specifically, the integrated
approach provides a means of undertaking tasks in a struc-
tured fashion, and resource utilization is continuously opti-
mized throughout the computational process, in accordance
with appropriately and dynamically generated schedules,
within a computer environment that is susceptible to fluc-
tuations in performance at any time. Indeed, Siemens Power
Generation Limited indicated in correspondence that, “while
there are obvious benefits of automating the process involv-
ing the use of the analysis tools on a network of machines,
I appreciate that it is the underlying real-time operational
design coordination approach and the work in setting up the
architecture for this that is of key importance”~Coates,
2001!.

5. DISCUSSION

This section presents a discussion of the approach based on
the application of the DCS to the industrial case study. As a
result of the discussion, strengths and weaknesses of the
approach are identified. With regard to the DCS, in Sec-
tion 3.1, it was stated that “the composition of agents, along
with the role each fulfills, enables them to communicate
with each other in real time such that they can perform
activities involving task management, resource manage-
ment and schedule management simultaneously in a coher-
ent manner.” As such, in this section, the key elements of
coherence, communication, and real-time support are not
covered explicitly but, rather, are discussed in the context
of managing tasks, resources, and schedules.

5.1. Task Management

In terms of task management, the approach aims to orga-
nize and control tasks and their dependencies such that they
can be undertaken in a structured manner.

5.1.1. Construction and management of the task model

The construction of the task model, and the subsequent
management of the knowledge held within it, provided the
basis for the structured undertaking of tasks. Initially, tasks
were established based on knowledge provided by the
designer regarding the analysis tools within the computa-
tional process. Tasks and their associated analysis tools were
assigned unique indices~i.e.,TI , TL, andTG!, such that they
could be identified within the application of the DCS. Knowl-
edge of each task’s datum duration~TDD! was used such
that, once scheduled, the estimated duration~TED! of the
task could be determined on the basis of the forecasted
performance efficiency of the assigned resource. Knowl-
edge of the completion of a task~i.e., TC! was required for
purposes of rescheduling such that once a task was com-
pleted it could not be considered again. Establishing knowl-
edge of dependencies involved the construction and use of
an analysis tool dependency matrix. Using the matrix, depen-
dency knowledge was established by comparing the input
requirements of each task’s associated analysis tool~T@TIn# !
with the output requirements of all other task’s associated
analysis tool~T@TOut# !. During the computational process,
knowledge of dependencies was checked when and where
appropriate such that tasks could only be undertaken if their
dependencies had been completed.

Preparation for rescheduling involved the task model being
modified such that only the tasks to be included within the
revised schedules would be considered. Further, knowl-
edge attributes of these tasks, and their dependencies, were
modified such that revised schedules would accurately reflect
the outstanding tasks. In addition, although not yet under-
taken, completion indicators were modified regarding the
tasks to be completed during rescheduling~i.e., within the
interim schedule models!.
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5.1.2. Information management

Within the DCS, the organization, provision, and storage
of task input0output information was supported such that
tasks could be undertaken when required. A consequence of
managing task dependencies was the assurance that in the
event of a task being required to be undertaken, any neces-
sary information was available. When a task manager
requested information to undertake a task, the necessary
input files were retrieved from the task information repos-
itory and provided by the related information manager. On
completion of a task, the resulting output files were stored
by the relevant information manager so that they could be
retrieved in the future if needed. This process of requesting,
providing, and supplying task information was performed
for every task within the computational process. As a result
of managing information in this manner, in no case was
information not provided on request because it was not
available.

5.2. Resource management

In relation to resource management, the approach aims to
organize and control resources to enable their continuous
optimized utilization throughout the computational pro-
cess. Resource management in the case study is assessed by
considering resource utilization during the computational
process in terms of the enactment of the original, interim
and revised schedules.

5.2.1. Resource utilization during the enactment
of the original schedule model

The DCS supported the forecasting of resource perfor-
mance efficiency to aid the derivation of schedules such
that resource utilization could be optimized. Before the orig-
inal schedule was derived, each resource monitor fore-
casted performance efficiency of their associated resource
using regression analysis and orthogonal polynomials. These
forecasts were then supplied to the resource manager, which
updated the resource model. As a consequence, the original
schedule produced enabled the optimized utilization of the
resources because the appropriate type and number of tasks
were assigned to them.

Initially, resources were used in an optimized manner for
a proportion of the original schedule models. However, at a
certain point in time~i.e., t 5 60 s!, the monitored perfor-
mance efficiency of resourceRI 5 4 began to decrease,
which change was observed by the associated resource mon-
itor. Thus, although the monitored performance efficiencies
of three of the four resources closely adhered to their orig-
inal forecasted performance efficiencies, resourceRI 5 4
started to affect their utilization. Because of this decrease,
tasks expected to be undertaken on resourceRI 5 4 were
prolonged. In addition, dependencies of these tasks were
delayed themselves, thus affecting the utilization of the other
resources. Although resourceRI 5 4 continued to be uti-

lized, rescheduling was considered and, because it was appro-
priate, was performed to avoid any further delays being
encountered. As such, resources were utilized in an opti-
mized manner for the proportion of the original schedule
models that were enacted. In addition, the timely recogni-
tion of the need to consider and perform rescheduling ensured
that the future utilization of resources could also be
optimized.

5.2.2. Resource utilization during the enactment
of the interim schedule model

In considering whether or not to reschedule, interim sched-
ule models were derived by applying an iterative proce-
dure, rather than using the MOGA. The application of this
procedure resulted in tasks being included within the interim
schedule models that would ensure, as near as possible, that
resources would be utilized in an optimized manner during
rescheduling. The interim schedule models reflected the tasks
able to be completed by each of the resources, taking into
account their respective newly forecasted performance effi-
ciencies. Because rescheduling was performed, the interim
schedule models enabled the continuation of optimized
resources utilization during this period. Furthermore, because
of the appropriate division of outstanding tasks being
rescheduled and being included within the interim sched-
ule, the completion of and was near coincident, thus mini-
mizing resource idle time between the original and revised
schedules.

5.2.3. Resource utilization during the enactment
of the revised schedule model

As with the original schedule, the revised schedule was
derived using the MOGA. Thus, the revised schedule mod-
els reflected the tasks able to be completed by each of the
resources considering their respective newly forecasted per-
formance efficiencies. In the application of the DCS, the
revised schedule models were completed in the time esti-
mated because the forecasts of performance efficiency
approximately corresponded to those subsequently moni-
tored during the remainder of the computational process.
As such, resources were utilized in an optimized manner
during the enactment of the revised schedule models.

5.3. Schedule management

In Section 1, schedule management was defined as “man-
aging the dynamic assignment of tasks to resources, and the
enactment of the resulting schedules.”

5.3.1. Dynamic scheduling

Within the DCS, dynamic scheduling involves accessing
appropriate task and resource knowledge for use with the
MOGA. This knowledge was maintained within the task
and resource models throughout the operation of the DCS.
Thus, when scheduling0rescheduling was performed, the
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resulting schedules ensured that tasks were undertaken in a
structured manner and resource utilization was optimized.

5.3.2. Schedule enactment0pending scheduled tasks

To facilitate the structured undertaking of tasks, the enact-
ment of schedules was supported by managing tasks and
the dependencies between them. During the computational
process, three types of schedules were enacted~i.e., origi-
nal, interim, and revised!.

The procedure for enacting the original and revised sched-
ule models involved the relevant agents ensuring that tasks
could be undertaken by checking dependencies and provid-
ing the required information. However, in situations in which
tasks could not commence when scheduled, because of
dependencies not being completed, the pending schedule
task repository provided support such that they were only
undertaken when appropriate. Thus, on the completion of
every task, in addition to updating the task model, the pend-
ing scheduled task repository was checked and, if appropri-
ate, any awaiting tasks could commence. As a consequence,
throughout the computational process, no situation occurred
in which a task was attempted to be undertaken when it was
not possible.

Enacting the interim schedule models differed from that
of the original and revised schedule models in that task
dependency checking was not required. The reason for omit-
ting this action was that interim schedule models only
included independent tasks. By omitting this checking dur-
ing the enactment of the interim schedule models, the sched-
uler was free to perform rescheduling uninterrupted, and
the task model was not altered such that it would effect the
enactment of the revised schedule models.

5.3.3. Decision making for rescheduling

Before making the decision regarding whether or not to
reschedule, the scheduler instructed each activity director
to suspend the associated original schedule model. At the
point in time when suspension was instructed, 3 tasks were
being undertaken and 1 was pending. Because of tasks being
nonpreemptive, the 3 tasks being undertaken were com-
pleted. However, the pending task was not undertaken, and
knowledge of this task was removed from the pending sched-
uled task repository. This removal was required because
failure to do so would cause deadlock on the enactment of
the following interim or revised schedule models. Once all
activity directors had suspended the enactment of their asso-
ciated original scheduled models, 27 tasks had been com-
pleted and 104 remained outstanding.

To ensure that rescheduling was only undertaken if appro-
priate ~i.e., would lead to a reduction in the time taken to
complete the computational process! time estimations were
determined for the completion of the original schedule, der-
ivation of the revised schedule, and completion of the revised
schedule. The scheduler made the decision to reschedule
because a revised schedule could be derived and completed
in an estimated 38 s, whereas continuing to adhere to the

original schedule models would take an estimated 79 s. As
such, these estimations provided in excess of a 50% reduc-
tion in time to complete the computational process from the
point at which rescheduling was considered. This feature of
the approach demonstrates that by adjusting in real time
when appropriate in a coordinated manner, benefits can be
made in terms of reducing the time to complete the compu-
tational process.

5.3.4. Concurrent rescheduling and undertaking tasks

An outcome of determining the estimated time to derive
a revised schedule was the identification of those tasks that
could be undertaken during the period of rescheduling~i.e.,
included within the interim schedule models!. In addition
to the identification of these tasks, the DCS supported their
undertaking during the period of rescheduling. Further, appli-
cation of the procedure used to determine the tasks for inclu-
sion within the interim schedule models resulted in their
completion occurring within several seconds before the
arrival of the revised schedule.

5.4. Strengths and weaknesses

The integrated approach realized within the DCS was shown
to coordinate a computational process in real time through
agents communicating and interacting with each other coher-
ently. That is, the agent composition within the DCS ensured
the continuous optimized utilization of resources by adapt-
ing to unforeseen changes in resource performance effi-
ciency. Further, communication between agents was
meaningful, enabling them to interact in a nonchaotic fash-
ion, leading to resource effort and tasks being integrated
harmoniously. In terms of the management of tasks,
resources, and schedules, the approach integrated the respec-
tive mechanisms within a unified manner to facilitate the
computational process to be coordinated at an operational
level.

The approach manages and models tasks, and the depen-
dencies between them, such that any schedule derived will
ensure that they can be undertaken in a structured manner,
ceasing opportunities for concurrency when and where
appropriate. The structured undertaking of tasks is also
ensured through the organization, provision, and storage of
information. A weakness of the approach is that it only
caters for tasks that cannot be interrupted if they are to be
successfully completed. The approach, and the DCS, would
need development to be able to manage tasks such that they
could be suspended at any point during their undertaking.
Further, incorporating this development would affect the
integration between task management and aspects of sched-
ule management.

The approach enables resource utilization to be continu-
ously optimized throughout the computational process
despite the occurrence of changes in performance effi-
ciency. This is achieved through monitoring resources and,
thus, detecting significant discrepancies in performance effi-
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ciency that violate defined thresholds, which are then
reported in order to activate the consideration of resched-
uling. Further, the forecasting of resource performance effi-
ciency is enabled, as and when required, to assist in the
derivation of more appropriate schedules such that the opti-
mized utilization of resources can be maintained. However,
the forecasting technique used only allows a prediction of
resource forecasted performance efficiency to be made at
one time step ahead.

Dynamic scheduling and the subsequent enactment of
derived schedules is enabled within the approach such that
resource utilization can be continuously optimized with
respect to the structured undertaking of interrelated tasks.
In addition, decision making ensures that rescheduling only
occurs if appropriate~i.e., will lead to a reduction in time to
complete the computational process!. Finally, the approach
provides a mechanism allowing concurrent rescheduling and
undertaking of tasks such that their completion is near coinci-
dent. As such, this mechanism facilitates minimum transi-
tion delay between adjacent schedules and also ensures that
resource inactivity is minimized.Ashortcoming of this mech-
anism is that the interim schedule models derived only con-
sist of tasks that are independent at the time of being
considered for inclusion. The procedure of determining
which outstanding tasks could be included within the interim
schedule models would need to be developed for them to
include dependent tasks.

6. SUMMARY AND FUTURE WORK

Efficient design management is recognized as a means of
ensuring that engineering companies remain competitive.
Within contemporary approaches to design management,
coordination has been identified as an important and per-
vasive characteristic. However, there exists a broad and
varied understanding of coordination. Rather than being
regarded as a ubiquitous characteristic of other approaches,
this article focuses on coordination as the foundation of an
improved approach. The ethos of coordination is to do the
right thing at the right time for the right reasons. Thus, the
focus is not on cooperation or concurrency but on optimiz-
ing the design process with respect to timeliness and appro-
priateness. On the basis of literature dedicated to coordination
within several disciplines, including engineering design,
knowledge of the key elements of operational design coor-
dination has been established: coherence, communication,
task management, resource management, schedule manage-
ment, and real-time support.

A novel integrated approach to operational design coor-
dination is the main contribution of the work presented in
this article. The approach is founded on a more comprehen-
sive set of key elements of operational design coordination
than previously identified. As such, the approach provides
knowledge of the constituent techniques of operational
design coordination, the interrelationships and dynamic inter-
actions between the techniques, and the knowledge used

and maintained within and between the techniques. It is not
only do the individual techniques themselves that define
the approach but also, more significantly, the interrelation-
ships and interactions that enable them to be integrated.
Further, as the individual problems, which are associated
with the respective key elements of operational design co-
ordination, are not mutually exclusive, the techniques
employed within the approach have been developed simul-
taneously and in consideration of each other. Thus, tech-
niques have been integrated such that the approach exercises
real-time operational design coordination to achieve the
coherent, timely, and appropriate structured undertaking of
interrelated tasks while continuously optimizing the utili-
zation of the resources in accordance with dynamically
derived schedules. The approach is supported by the appro-
priate modeling of the knowledge attributes of tasks and
resources.

An agent-oriented computer-based system, the DCS, has
been developed to facilitate the application of the approach.
The DCS architecture provides knowledge of how the
approach is realized within an agent-oriented system. That
is, knowledge is provided regarding how task, resource,
and schedule management responsibilities are attributed
among the agents within the DCS and, further, how the
agents communicate and interact, enabling a computational
process to be performed in a coherent manner in real time.
As such, the novelty of the approach lies in the integrated
style of simultaneously managing the complexities of the
structured enactment of tasks, continuous optimized utili-
zation of resources, and appropriate dynamic scheduling.
That is, the approach both enables and demonstrates how
resources can be utilized in an optimized fashion through-
out a dynamic process and environment, dependencies
between tasks are managed in real time such that tasks can
be undertaken at the appropriate time while seizing oppor-
tunities for concurrency when and where possible, and sched-
ules can be managed in real time and decisions made to
determine whether to dynamically generate new schedules
or to continue adhering to a current schedule. In addition,
the approach as a whole consists of the appropriate mech-
anisms to ensure that these items are managed irrespective
of when changes happen during the process or where they
occur in the environment. Further, the novel configuration
of agents within the DCS enables them to operate coher-
ently in real time through meaningful communication and
interaction. Jointly, these novel aspects provide a more
efficient approach to coordination than those already in
existence.

The integrated approach, using the DCS, has been applied
to a computational process of turbine blade design. The
application of the system has been shown to support the
coherent, timely, and appropriate communication and inter-
action between the various DCS agents that have desig-
nated responsibilities with regard to the management of
tasks, resources, and schedules. That is, throughout the com-
putational process, agents adapt to changes such that the
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right tasks are undertaken using the right information while
utilizing the right resources at the right time.

Within the approach, tasks are modeled and managed
such that they can be undertaken in a structured manner.
This is assisted by managing the dependencies and infor-
mation required to undertake such tasks. Through the appro-
priate modeling and management of resources, the approach
enables and sustains their continuous optimized utilization
throughout the computational process, even in the event of
unforeseen changes in performance efficiency. This is
achieved by monitoring, forecasting, and disseminating
resource performance efficiency as and when necessary.
On the basis of knowledge of the tasks to be undertaken
and the resources to be used, the approach incorporates
schedule management, which involves performing dynamic
scheduling and enacting the resulting schedules. Further,
the approach provides decision-making support for resched-
uling such that schedules are only created if appropriate in
terms of reducing the time to complete outstanding tasks. In
addition, if rescheduling is performed, it is done so in par-
allel with undertaking tasks, thus making best use of the
resources during this period.

Future work will be directed toward theoretical improve-
ments to the approach, further developments of the DCS,
and further applications of the approach. Theoretical
improvements to the approach will involve enabling coor-
dinated utilization of resources before the derivation of an
original schedule and developing a method to manage the
complexities involved in enabling interdependent tasks to
be undertaken and completed during rescheduling. Further
developments to the DCS are proposed as providing a means
of forecasting over longer ranges and of reimplementation
in a platform independent programming language to enable
multiplatform operational design coordination. Finally, rel-
atively significant reductions in the time to complete the
computational process have been achieved as a result of
applying operational design coordination in real time. To
demonstrate the approach further in terms of scalability, it
should be applied within an engineering company to estab-
lish whether similar savings in time could be achieved on a
larger absolute scale~i.e., on the order of human weeks or
months!.
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APPENDIX A

Table A.1. Modeled task knowledge

Knowledge
Attributes Description

TI Analysis tool identification index
TL Task identification index in the context of tasks associated with a specific analysis tool
TDD Datum duration of a task
T@TIn# Matrix defining the input files for a task
T@TOut# Matrix defining the output files for a task
TG Task identification index in the context of all tasks
TC Completion indicator of a task
TN Number of dependencies of a task
T@TG# Matrix definingTG of each dependency of a task
nTS Number of tasks to be scheduled
nTD Cumulative number of dependencies of the tasks to be scheduled
T@TI # Matrix definingTI of each dependency of a task
T@TL # Matrix definingTL of each dependency of a task
TON Number of outstanding dependencies of a pending scheduled task
@TI, i, j # Matrix of the i th pending task definingTI of its j dependencies
@TL, i, j # Matrix of the i th pending task definingTL of its j dependencies
nPST Number of pending scheduled tasks
TON,i Number of outstanding dependencies of thei th pending scheduled task
TED Estimated duration of a task
nTRS Number of outstanding tasks to reschedule
nTCRS Number of tasks that could be completed using a particular resource during rescheduling
TTCRS Duration to complete a number of tasks using a particular resource during rescheduling

Table A.2. Modeled resource knowledge

Knowledge
Attributes Description

RI Identification index
RA Availability status
RFE Forecasted performance efficiency
RLT Lower performance efficiency threshold
RUT Upper performance efficiency threshold
RME Monitored performance efficiency
Ruser CPU utilization attributed to user processes~i.e., computer programs being run by users! expressed as a percentage
Rsystem CPU utilization attributed to system processes~i.e., UNIX kernel code! expressed as a percentage
Ridle CPU utilization attributed to idle~i.e., not being utilized! expressed as a percentage
RDCS CPU utilization attributed to DCS processes~i.e., analysis tools being run within the DCS! expressed as a percentage
Rother CPU utilization attributed to other processes~i.e., computer programs being run that are unrelated to the DCS! expressed as a percentage
RCF Coefficient~i.e., a relative measure of resource speed!
nps Number of processes being run on a resource
nR Number of resources to be utilized in a schedule
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