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Preamplified photodetectors for high-fidelity postselecting optical devices

John Jeffers
SUPA, Department of Physics, University of Strathclyde,

John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, U.K.

The fidelity of postselecting devices based on direct photon number detection can be significantly
improved by insertion of a phase-insensitive optical amplifier in front of the detector. The scheme
is simple, and the cost to the probability of obtaining the appropriate detector outcome is low.

PACS numbers: 03.67.-a, 42.50.Dv, 42.50.-p, 42.79.-e

I. INTRODUCTION

The reliable production of tailored quantum states
is one of the main challenges in quantum information.
Experiments in optics rely on postselection to do this
[1, 2, 3]. A general perfect postselecting device is shown
in Fig. 1. A multi-component quantum state is fed into a
device which transforms the input state. One of the out-
puts (arm 2) is measured, and when the measurement
gives a particular result (represented mathematically by
a probability operator measure element π̂c) the device
produces the correct useful state ρ̂c in arm 1. If one of
a set of incorrect measurement results (π̂ij) is found the
device produces an incorrect state ρ̂ij .
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FIG. 1: A general postselecting device.

Often in optics the unselected state is mixed, so post-
selection is essential. Simple examples include the gen-
eration of heralded single photon states from twin-beam
parametric downconversion [2], or the quantum scissors
device [3], which produces a superposition of zero and one
photon. Interest in the topic received a further boost
with the realisation that it might be possible to per-
form scalable linear optical quantum computing, with
both state production and logic gate operation relying
on postselection [4, 5, 6]. Variations on this include the
one-way quantum computer, which produces states from
measurements performed on cluster states [7].

Imperfections, either in internal device components or
in detection, are a serious problem for real postselectors.
As a result they do not make the state that they would
have made if they had been functioning perfectly. Pho-
todetectors are poor at present, suffering from low quan-
tum efficiency, from dark counts and from an inability to
distinguish between higher photon numbers. This means
that the single photon number readout from a detector,
which ought to correspond to a pure number-state mea-
surement, in fact corresponds to a mixed measured state

[8]. The effect of this on the postselector output state is
to mix ρ̂c with the set of incorrect states ρ̂ij .

The quality of device output can be quantified by the
fidelity, which is a measure of the closeness of the im-
perfect output state produced, ρ̂′c, to the required out-
put state, ρ̂c. The standard definition, if ρ̂c is pure, is
F = Tr (ρ̂cρ̂

′

c), which is unity for a perfect device [9].

Optical quantum information processors, which might
be composed of thousands of postselectors, require ex-
tremely high fidelities. The improvement of photode-
tectors to such levels is unrealistic, but there have been
proposals for novel detection schemes to improve fidelity.
For example, photon added homodyne detection [10] does
this, but with a high cost to the probability of detecting
the required state (reduced by more than 100-fold if the
fidelity is to be greater than 0.99). Another proposed
approach is to use a nonlinear optical material formed
by atoms in a dielectric waveguide to perform quantum
nondemolition detection of photon number [11]. This
scheme has the appealing feature that the detected pho-
tons can be re-used. Despite this, both schemes are much
more complicated than direct detection, and the former
requires photon number states as a resource.

Here a scheme is proposed which uses inefficient direct
photodetection preceded by a phase-insensitive optical
amplifier. Amplifiers are not typically used in quantum
optical experiments as they add noise photons [12], which
swamp any quantum characteristics of the amplified state
[13]. They have been used to offset detector inefficiency,
improving the signal to noise ratio for direct detection au-
tocorrelation measurements of laser light [14], but never
for quantum states. However, there have been recent im-
provements to amplifiers for quantum systems [15]. Also,
it has been shown, using retrodictive quantum theory
[16], that the state transformation made by an amplifier
of gain G forwards in time is the same as that made by
an attenuator with transmission 1/G backwards in time
and vice versa [17], which leads to seemingly strange in-
put photon number expectation values [18].

In the next section the retrodictive conditional proba-
bility is introduced as a measure of fidelity appropriate
for optical postselecting devices. Then results are pro-
vided for postselection based on recording zero or one
photocount, followed by a simple explanantion. An anal-
ysis of the cost of amplification follows, in terms of a
reduction in the photocount probability. In the final sec-
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tion the results are discussed and conclusions presented.

II. DEVICE FIDELITY BASED ON

PREAMPLIFIED DETECTION

A. Conditional probability as a fidelity measure

For a pure state postselector with perfect internal com-
ponents, based on detecting photon number states, sub-
stitution of ρ̂c and ρ̂′c allows the fidelity to be expressed
as a sum of terms [19]

F = P r(c|c) +
∑

j

P r(ij|c)Tr1[ρ̂cρ̂ij ]. (1)

Here P r(c|c) is the retrodictive conditional probability
that the number of photons in the measurement arm (2)
is the same as that indicated by the detector, and P r(ij|c)
is one of the set of probabilities that the number of pho-
tons is different from that indicated by the detector. The
first term, which we denote Fr, has been proposed as a
simple measure of fidelity [19]. It has advantages over
F . Firstly it depends only on measurement arm prop-
erties: the ‘prior’ probabilities [20] of detectable states
in the measurement arm and the properties of the mix-
ing performed there. Secondly, it is the natural quantity
to maximise in order to enhance fidelity (if Fr is unity
the confidence in the detector result is perfect, as is F )
[21]. Often the overlaps between the correct output state
and the incorrect ones will be small. Furthermore, as
the detection scheme is improved, the probabilities that
the measured state is not that indicated by the detector
diminish. Thus Fr forms a close lower bound on F .

The detector is characterised by an efficiency η, and
discriminates between different photon numbers. This
is not typical, but detectors which discriminate between
zero, 1 and more than 1 photon exist [22], and here post-
selection based solely on recording zero or 1 count is con-
sidered, as this is the most prevalent. For practical pur-
poses then the detector is equivalent to a perfect discrim-
inating device preceded by an attenuator of transmission
η [23]. The detection system is completed by an ideal
amplifier of gain G (Fig. 2) which adds the minimum
amount of noise. Discussion of both extra amplifier noise
and dark counts is postponed until later. The fictitious
attenuator and real amplifier jointly form a compound
mixing device preceding the perfect detector [19].

FIG. 2: An amplifier precedes the imperfect detector, mod-
elled by an attenuator in front of a perfect detector.

Retrodictive conditional probabilities can be found
from Bayes’ Theorem. If the postselecting device is sup-
posed to produce the correct state when n photons are

detected then Fr is

Fr(n) =
pnPp(n|n)

∑

m pmPp(n|m)
, (2)

where pm is the prior probability of m photons in the
measurement arm, and Pp(n|m) is the predictive con-
ditional probability that n photons exit the compound
mixing device and are recorded as counts at the perfect
detector, given that m enter it. The required probabili-
ties can be straightforwardly calculated. The prior prob-
abilities are the diagonal elements, in the photon number
basis, of the arm 2 state formed by tracing the joint out-
put state of the two arms over arm 1. The conditional
probabilities are well-known from the quantum theories
of the amplifier and attenuator [18, 24],

Pp(n|m) =

∞
∑

q=n

(

q

n

)

ηn(1 − η)q−n

(

q

m

)

(G − 1)q−m

Gq+1
. (3)

The denominator in Fr(n) is the probability that n counts
are recorded, which is also altered by the amplifier.

B. Postselection based on zero or one photocount

First postselection based on recording 0 photocounts is
examined. The prior photon number probability distri-
bution will be fixed by the particular device under consid-
eration, but a distribution must be chosen for calculation
purposes. If all of the prior photon number probabilities
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FIG. 3: Fidelity against G and η for postselection based on
0 counts, for each photon number in the measurement arm
having equal prior probability.

are equal Fig. 3 is obtained, which shows Fr(0) as a func-
tion of η and G. The greater the gain, the greater is the
improvement over the no-amplifier, G = 1 limit [25]. The
device will show increase in fidelity as the gain increases
for any (p0 6= 0) prior probability distribution. A simple
example might be a two-photon state generator formed
by a single photon input into each input arm of a 50/50
beam splitter. If no photons are detected in one output
arm then two are produced in the other. For this device
all of the prior probabilities vanish except p0 = p2 = 1/2.
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FIG. 4: log
10

(1 − Fr(0)) against η for the two-photon state
generator. The lines are for (from top to bottom) G =1, 2, 4,
8 and 16.

A plot of the log of the difference between the fidelity and
1 against η is shown in Fig. 4 for various amplifier gains.
Here as G is increased the fidelity tends to 1 even more
rapidly, a function of the particular prior probability dis-
tribution. It is possible to reach extremely high fidelities
even for relatively modest gain.

For postselection based on one count, with equal prior
photon number probabilities fidelity can be increased for
low G only if η is below about 0.7. The situation is differ-
ent, however, if the measurement arm contains at least
one photon, which is illustrated by Fig. 5. Increasing

η 10.980.940.90.860.82
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-3

FIG. 5: log
10

(1− Fr(1)) against η for equal prior probability
of each nonzero photon number in the measurement arm. The
lines are for (from top to bottom) G =1, 2, 4, 8 and 16.

the gain increases the fidelity to arbitrarily close to unity.
Any prior distribution for which p0 vanishes will show im-
provement in fidelity as the gain increases for all values
of η.

C. Simple explanantions for fidelity increase

A clarification of the physics behind the effect is found
by considering the measurement arm states correspond-
ing to the measurment results. For a perfect detector
these are the pure states indicated by the detector, but
for an imperfect detector they are mixed [8]. Fig. 6 shows
histograms of the photon number probability distribution

photon number
109876543210

0.5

0.4

0.3

0.2

0.1

0

photon number
109876543210

0.8

0.6

0.4

0.2

0

FIG. 6: Photon number probability histograms for detection
of 0 photons by a detector with η = 0.5. The upper histogram
is the measured state if there is no amplifier present, and the
lower one is for G = 10.

of the mixed state corresponding to detection of zero pho-
tons by an imperfect detector. The effect of the amplifier
(lower histogram) is to ‘attenuate’ the state such that the
mean photon number in the projected state is 1/G times
the mean photon number in the projected state with no
amplifier present (upper histogram) [17, 18]. This causes
probability to ‘pile up’ at lower photon numbers, and in
particular on zero.

The same effect is responsible for fidelity increase based
on 1 count. For high enough gain the most likely pho-
ton number, if 1 is counted, is zero, then 1, then 2 etc.
The prior distribution then becomes important. Exclud-
ing the possibility of zero photons entering the detector
amounts to omitting the zero photon component of the
projected state and then renormalizing, so that 1 photon
is the lowest possible photon number in the distribution.
Otherwise the fidelity decreases with G for high η.

An alternative view is that the amplifier shifts the pho-
ton number of the n-photon component of its input (the
state represented by the prior distribution) from exactly
n to a mean of (n + 1)G− 1. In other words it separates
photon numbers by a factor G and adds G − 1 photons
(although the random nature of the process means that
there is some overlap between the shifted distributions for
different initial photon numbers). For reasonable values
of η it is very unlikely that zero counts will be obtained
from a shifted 1 or 2 photon state, as it is very unlikely
that so many photons will be lost at the attenuator. If
zero counts are obtained, it is therefore more likely that
no photon was present.
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D. Photocount probability cost

There is a cost associated with the large fidelity in-
creases which are possible using preamplification, and
this is seen in the photocount probabilities. The ratio of
the probability that the detector records zero counts to
this same probability for perfect detection quantifies this
cost, and is shown in Fig. 7 (for equal prior probabilities).
The curve is insensitive to η. The relative probability is
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FIG. 7: Relative probability P (0)/P (0, η = G = 1) of no
counts being recorded at the detector as a function of G for
η = 0.8. Also plotted (dashed) is the fidelity.

reduced, but not excessively so. Even for G = 10 the
probability is only reduced to 1/8th of its value for per-
fect detection. The fidelity obtained for η = 0.8, G = 10
is 0.975, but this is for a flat prior photon number distru-
bution (the corresponding figure for η = 0.9 is close to
0.99). For states with distributions with small or vanish-
ing probabilities of higher photon numbers the improve-
ment can be vast, as Fig. 4 shows.

III. CONCLUSIONS

In this paper it has been shown that an optical pre-
amplifier can significantly improve the fidelity of posts-
electors based solely on imperfect direct photodetection.
A further advantage is that the amplifier does not drasti-
cally decrease the probability of device operation. Even
this modest decrease in probability could be offset by
including other detection results as a signature of the re-
quired number of photons in the measurement arm (e.g.
if Gη ≫ 1 and one count is obtained the most likely
photon number in the measurement arm is zero).

The scheme works best if the detected photon num-
ber is the minimum number possible in the measurement
arm. Thus it is especially useful for improving the fi-

delity based on detecting zero photons. For detecting
single photons the improvement is almost as great, but
the benefit of the method rests on the ability to produce
measurement arm states which do not contain a signifi-
cant vacuum component. This is a matter of postselector
design and photon production technique, which is rapidly
improving under the impetus of the quantum information
challenge [26, 27]. For postselectors with detections in
more than one output arm, such as the quantum scissors
[3] amplifiers can be placed in front of each detector, and
similar improvements in fidelity can be found.

Up to this point the amplifier has been assumed to add
the minimum number of noise photons. The main effect
of extra noise photons is to decrease the fidelity obtained
for a particular gain. As was stated earlier the amplifier
shifts and separates different input photon numbers, and
spreads the output distributions. Extra noise spreads
the distributions more, so that different photon number
components of the input are not so distinguishable. This
decrease in fidelity can sometimes be partially offset by
increasing G, or the effect itself may be small because of
the particular prior photon number distribution in the
measurement arm. One might think that detector dark
counts would cause a similar decrease in fidelity but this
is not the case. Fidelity based on zero counts is unaffected
by dark counts (no counts obtained =⇒ no dark counts
obtained). Fidelity based on 1 count can be improved
slightly by a nonzero dark count rate. These effects will
be explored more fully in later work.

Optical amplifiers are overlooked in quantum informa-
tion experiments, largely because of the necessary added
noise photons, but it should be noted that these ‘noise’
photons are indistinguishable from amplified signal pho-
tons. Provided that the noise photons added into non
signal modes can be excluded from the detection process,
the photons added in the signal mode can play a useful
role, and can sometimes be regarded as an additive com-
ponent to the multiplicative gain G. For direct detection
in postselectors both the quantum nature and the phase
of the detected signal state are unimportant, but the re-
sult of the detection process and the confidence in that
result are paramount. Amplifiers will not help the first
two quantities, but can significantly improve the last.
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