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We consider the onset of thermosolutal (double-diffusive) convection of a binary fluid in
a horizontal porous layer subject to fixed temperatures and chemical equilibrium on the
bounding surfaces, when the solubility of the dissolved component depends on temper-
ature. We use a linear stability analysis to investigate how the dissolution or precipita-
tion of this component affects the onset of convection and the selection of an unstable
wavenumber; we extend this analysis using a Galerkin method to predict the structure of
the initial bifurcation, and we compare our analytical results with numerical integration
of the full nonlinear equations. We find that the reactive term may be stabilising or desta-
bilising, with subtle effects particularly when the thermal gradient is destabilising but
the solutal gradient is stabilising. The preferred spatial wavelength of convective cells at
onset may also be substantially increased or reduced, and strongly reactive systems tend
to prefer direct to subcritical bifurcations. These results have implications for geothermal
reservoir management and ore prospecting.

1. Introduction

There are many geological systems in which buoyancy forces cause a fluid carrying
dissolved minerals to circulate vertically through a porous medium. In many of these
situations, the amount of solute in the fluid is not conserved, because it may be dissolved
from or precipitated onto the porous matrix as its solubility varies with temperature,
pressure and the local rock chemistry. The effect which this gain or loss of dissolved
minerals may have on the buoyancy of the fluid, and thus on its convective motion,
is largely unknown; the aim of this study is to develop understanding of this effect by
examining the effect of reactions on the onset of convective motion.

1.1. Thermal and thermosolutal convection

Natural convection in a fluid layer, first investigated by Bénard and by Rayleigh in
the early 20th century, remains a subject of active research and provides an important
paradigm for instability, for extended pattern formation and for the transition of a system
to chaos or turbulence (see e.g. Bodenschatz, Pesch & Ahlers 2000). The problem of
thermal convection in a porous medium dates back to the stability analyses by Horton
& Rogers (1945) and Lapwood (1948), and shares many features with the pure-fluid
problem, although in general the mathematical formulation is slightly simpler.
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Thermosolutal convection (also known as thermochemical convection) occurs when
both temperature and some dissolved substance contribute to the buoyancy of the fluid.
In a fluid layer, the crucial difference between the components is that they diffuse at
different rates, and the process is often referred to as double-diffusive convection (DDC).
In a porous medium, the system is also double-advective: because heat must be shared
between the fluid and the porous medium while solute is confined to the pore space,
thermal signals are advected more slowly than solutal signals, and this difference in
advection rates is crucial to the stability properties of the system (Phillips 1991, §5.2).
The first linear stability analysis of a double-diffusive system in a porous layer was carried
out by Nield (1968), who considered the limiting case in which transport is isoadvective,
and there has been much subsequent development of this work (Rudraiah, Siddheshwar
& Masuoka 2003).

The most interesting dynamics in DDC occur when the (rapidly-diffusing) thermal and
(slowly-diffusing) solute fields contribute in opposite senses to the buoyancy gradient.
What happens depends on which of these components is destabilising, and in particular
on whether the solutal gradient is stabilising or destabilising. In the solutally unstable
(SU) regime, as the solutal or thermal Rayleigh number is increased the motionless
conductive state loses stability through a supercritical bifurcation to a state of steady
convective motion with finite amplitude. The initial instability is through exponentially
growing perturbations: we will refer to this below as monotonic instability. The resulting
flow pattern is known as ‘fingering’ (Turner 1985); in some studies, the fingering regime
is implicitly identified with the SU regime, but since the nonlinear development of the
flow lies beyond the current study we will avoid this terminology here.

The solutally stable (SS) regime of convection, in which the solute is stabilising and the
temperature destabilising, is more complicated, and there are two important features of
the onset of convection in this regime. One is that the principle of exchange of stabilities
does not always hold, so the conductive base state may become unstable through a
growing oscillatory (‘overdamped’) mode. The other is that stable steady convective
rolls may occur even when the thermal Rayleigh number RaT is below its critical value,
so the flow observed in practice may not be well predicted by a linear analysis taking
the conductive state as its basis (Murray & Chen 1989). The onset of convection in
this case is through a subcritical bifurcation, with hysteresis possible as RaT is varied.
The numerical investigation of Mamou & Vasseur (1999) has indicated that additional
unsteady solutions may exist, including oscillatory nonlinear convection and travelling
waves. Ultimately, the system may become layered, with a series of vertically stacked
convective cells, or penetrative, where cells occupy the entire porous layer and may
extend into an overlying layer (see the discussion by Oldenburg & Pruess 1998). At
higher Rayleigh numbers still, fully chaotic motions are possible (Schoofs & Spera 2003).

1.2. Geological applications and reactive effects

Solutal and thermosolutal convection in porous media may be important in a range of ge-
ological processes, including the dolomitisation of carbonate platforms (Kaufman 1994),
soil salinisation (Gilman & Bear 1994; Wooding, Tyler & White 1997), and heat transfer
in geothermal reservoirs (Oldenburg & Pruess 1998). Large-scale convective circulations
of groundwater containing dissolved minerals in sandstone aquifers have also been pro-
posed to explain the location of uranium ore deposits (Raffensperger & Garven 1995a,b).
In many of these situations, the exchange of dissolved species with the porous medium
is directly significant, or may be significant through its effect on convection, but these
effects have received relatively little attention.

The earliest analysis of reactive effects on convection in a fluid layer was carried out
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by Wollkind & Frisch (1971a,b), who considered convection combined with a dissociation
reaction; complementary work (e.g. Bdzil & Frisch 1971) investigated situations where
this was catalysed at the lower boundary of the layer. This analysis was revisited and
developed by Bdzil & Frisch (1980), while similar work was carried out simultaneously by
Gutkowicz-Krusin & Ross (1980). In these pure-fluid systems, dissolved species cannot
be lost from the solution, but their reaction still affects the bulk density through changes
to the solutal component and (often more significantly) to the temperature.

The first study of reactive convection in a porous medium was due to Steinberg & Brand
(1983, 1984). The model which they considered was rather similar to that which we will
explore below, but they restricted their analysis to the regime where the reaction was
sufficiently fast that solutal diffusion could be neglected: we will discuss the effect of this
neglect in §3.6. Subsequent studies were carried out by Gatica, Viljoen & Hlavacek (1989)
and Viljoen, Gatica & Hlavacek (1990), who considered a more complicated exothermic
reaction term, and made some progress in investigating the stability boundaries of the
system; we note that they concentrated on the limiting case where the Lewis number
Le = 1, so that the thermal and solutal diffusion rates are identical and overdamped
behaviour is impossible.

1.3. Aims and structure of the current study

The aim of this study is to elucidate some fundamental mechanisms of reactive–convective
instability. We will consider convection in a horizontal porous layer, bounded above and
below by layers of constant temperature and solute concentration. This geometry is
particularly relevant to geothermal reservoirs, where the vertical flux of heat through
the layer may be substantially increased if convective motion occurs. It also resembles
the problem considered by Raffensperger & Garven (1995a,b), although our model is
considerably idealised. We will neglect the thermal contribution of the reaction, which is
reasonable when the fluid motion is driven by large geothermal temperature gradients,
and we will focus instead on the effect on convection of the solute exchange between the
fluid and the porous matrix as the temperature varies. We will not confine ourselves to
particular regimes of the Lewis number or reaction rate, and we will investigate more
thoroughly than in previous studies how the stability diagram changes with the reaction
rate.

Specifically, we will investigate the effect of temperature-dependent solubility on the
following questions. (i) Under what circumstances is purely diffusive heat and mass trans-
fer stable? (ii) What spatial structures (in particular, what horizontal wavelength) are
favoured at the onset of instability? (iii) What is the bifurcation structure at the onset of
instability? (iv) Under what circumstances does subcritical steady convection occur? In
a future study we intend to investigate in more detail the nonlinear behaviour possible
and to quantify the heat and mass transfer across the porous layer.

In §2 we derive a non-dimensional model of double-diffusive convection with thermally
controlled equilibrium solubility. In §3 we carry out a linear stability analysis of the con-
ductive basic state, with particular emphasis on the effect of precipitation or dissolution
on the stability. In §4 we extend the linear results into the weakly non-linear regime
using a Galerkin model, in order to investigate the bifurcation structure and to obtain
some predictions for the occurrence of subcritical modes. In §5 we test our analytical
results further by integrating the full system numerically. Finally, in §6 we summarise
and discuss the physical implications of our results.
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2. Description of a double-diffusive reaction–convection model

We consider a homogeneous, isotropic porous layer of depth Ĥ with temperatures T̂0

and T̂1 and solutal mass concentrations Ĉ0 and Ĉ1 imposed at the bottom and top respec-
tively. The bottom and top layers are presumed to be impermeable, and we also assume
chemical equilibrium at the boundaries. Boundary conditions which represent more com-
plicated geological structures and geochemical conditions could readily be considered (cf.
Mamou & Vasseur 1999), but are beyond the scope of the current analysis.

We take a horizontal co-ordinate x̂ and a vertical co-ordinate ẑ which increases up-
wards. Making a Boussinesq approximation, the flow is governed by

∇̂ · û = 0 and û = −K̂
µ̂
∇̂p̂− K̂

µ̂
ρ̂(Ĉ, T̂ )ĝez, (2.1)

where K̂ is the matrix permeability, µ̂ is the fluid viscosity and ρ̂ is the fluid density, and
the (two-dimensional) transport velocity is û = (û, ŵ).

The transport of heat and solute is described by the advection-diffusion equations
(Phillips 1991, §§2.8 and 2.9)

(ρ̂ĉ)m
∂T̂

∂t̂
+ (ρ̂ĉ)f

(

û · ∇̂
)

T̂ = (ρ̂ĉ)mκ̂T ∇̂2T̂ and (2.2)

φ
∂Ĉ

∂t̂
+
(

û · ∇̂
)

Ĉ = φκ̂C∇̂2Ĉ + k̂
(

Ĉeq(T̂ ) − Ĉ
)

. (2.3)

Here T̂ represents the temperature (we assume local thermal equilibrium between the
fluid and the matrix), Ĉ the mass concentration of solute in the fluid and Ĉeq(T̂ ) the
equilibrium concentration of solute at a given temperature. κ̂C is the molecular diffusivity
of the solute through the fluid, while κ̂T is the effective diffusivity of heat through the
saturated medium; φ is the porosity of the matrix and k̂ > 0 is a lumped effective
reaction rate. The volumetric heat capacity of the fluid is denoted by (ρ̂ĉ)f , and that of
the saturated medium as a whole by (ρ̂ĉ)m = φ(ρ̂ĉ)f + (1 − φ)(ρ̂ĉ)s, where a subscript s
denotes the properties of the solid matrix. In the spirit of the Boussinesq approximation,
we take all material properties except ρ̂ to be constant. In writing (2.2) and (2.3), we
have also assumed that the permeability and porosity of the matrix are constant in time
and space, and in particular that they do not evolve due to the reaction over the time
considered: this is equivalent (Phillips 1991, §4.7) to assuming that we need only consider

timescales of the order of k̂−1ρ̂s/Ĉtyp, where ρ̂s is the solid density of the mineral, and

Ĉtyp is a typical volumetric mass concentration of the dissolved mineral. In general, we

may expect ρ̂s/Ĉtyp to be quite large, and so our assumption is appropriate for a study
of the onset of convection; however, when considering the further evolution of the system
we would expect this interaction between the flow and the matrix properties to become
important.

We take the density to be given by

ρ̂(Ĉ, T̂ ) = ρ̂0 + α̂C(Ĉ − Ĉ0) + α̂T (T̂ − T̂0), (2.4)

and, following e.g. Jupp & Woods (2003), we will take the equilibrium solute concentra-
tion to vary linearly in T̂ . We write Ĉeq(T̂ ) = Ĉ0 + γ̂(T̂ − T̂0), and if we assume chemical

equilibrium at the boundaries we obtain γ̂ = (Ĉ1−Ĉ0)/(T̂1− T̂0). The coefficient α̂T may
be expected to be negative, while α̂C is positive. The static stability of the system is then
determined by the signs of α̂T (T̂1 − T̂0) and α̂C(Ĉ1 − Ĉ0): if either of these is positive, it
represents a destabilising contribution, while if it is negative, it represents a stabilising
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contribution. Meanwhile, the coefficient γ̂ may be positive or negative: if γ̂ > 0, the
solubility increases with temperature (a prograde mineral such as silica), while if γ̂ < 0,
the solubility decreases with temperature (a retrograde mineral such as anhydrite: see
Jupp & Woods (2003) and references therein). Because we assume chemical equilibrium
at the boundaries, we cannot choose the stability properties independently from the pro-
or retrograde nature of the mineral: for a prograde mineral, the gradients of concentra-
tion and temperature must be the same sign (so they contribute in opposite senses to
stability), while for a retrograde mineral, the gradients of concentration and temperature
must be of opposite sign, and so be either both stabilising or both destabilising.

We seek an initial steady state in which û = 0 and there is no lateral variation. We then
find a linear distribution of temperature and thus of the equilibrium solute concentration,

T̂b(ẑ) = T̂0 + (T̂1 − T̂0)
ẑ

Ĥ
and Ĉb(ẑ) = Ĉ0 + (Ĉ1 − Ĉ0)

ẑ

Ĥ
. (2.5)

The initial distribution of solute is simply Ĉb = Ĉeq(T̂b). We note that by taking Ĉeq

to be linear in T̂ , we permit the existence of a steady basic state in which the solute
is everywhere in chemical equilibrium with the solid matrix, and so the vertical flux of
solute is constant in space. Under a non-linear model for Ĉeq, we would expect chemical
disequilibrium to cause a non-uniform solutal flux, as solute was exchanged with the
matrix. We will not consider here how this might affect the stability of the system, but
we note it as a topic for further investigation, which might exhibit new dynamical effects
(Bdzil & Frisch 1980).

2.1. Streamfunction formulation and non-dimensionalisation

It is helpful to write û(x̂, ẑ, t̂) in terms of a streamfunction ψ̂(x̂, ẑ, t̂), so û = −∂ψ̂/∂ẑ
and ŵ = ∂ψ̂/∂x̂. We then define dimensionless variables by

x̂ = Ĥx, t̂ =
Ĥ2

κ̂T
t, ψ̂ = φκ̂Tψ,

T̂ = T̂b(ẑ) + (T̂1 − T̂0)T
′ and Ĉ = Ĉb(ẑ) + (Ĉ1 − Ĉ0)C

′; (2.6)

we can then eliminate p̂ to obtain

∇2ψ = −RC
∂C ′

∂x
−RT

∂T ′

∂x
, (2.7)

∂T ′

∂t
+ λ

∂ψ

∂x
+ λ

(

∂ψ

∂x

∂T ′

∂z
− ∂ψ

∂z

∂T ′

∂x

)

= ∇2T ′, (2.8)

∂C ′

∂t
+
∂ψ

∂x
+

(

∂ψ

∂x

∂C ′

∂z
− ∂ψ

∂z

∂C ′

∂x

)

=
1

Le
∇2C ′ + k(T ′ − C ′), (2.9)

where the remaining parameters are

RC =
α̂C(Ĉ1 − Ĉ0)ĝĤK̂

φµ̂κ̂T
, RT =

α̂T (T̂1 − T̂0)ĝĤK̂

φµ̂κ̂T
,

λ =
φ(ρ̂ĉ)f

φ(ρ̂ĉ)f + (1 − φ)(ρ̂ĉ)s
, Le =

κ̂T

κ̂C
and k =

k̂Ĥ2

φκ̂T
. (2.10)
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The parameters RT and RC are related to the Rayleigh numbers which emerge naturally
from the pure thermal and pure solutal problems. We define

RaT ≡ α̂T (T̂1 − T̂0)(ρ̂ĉ)f ĝĤK̂

µ̂(ρ̂ĉ)mκ̂T
= λRT and RaC ≡ α̂C(Ĉ1 − Ĉ0)ĝĤK̂

φµ̂κ̂C
= LeRC .

(2.11)
We define RC in this way so that we may later take the limit 1/Le → 0 while keeping
RC finite. We recall that either of RT and RC may be positive or negative, with a
positive value encouraging instability. Meanwhile, the differential heat transport rate λ
clearly satisfies 0 < λ 6 1; the Lewis number Le is known to be greater than unity
(frequently much greater than unity); and the dimensionless reaction rate (Damköhler
number) k > 0.

Finally, the non-dimensional boundary conditions are

∂ψ

∂x
= 0, T ′ = 0 and C ′ = 0 at z = 0 and at z = 1. (2.12)

The governing equations derived above differ from those of Steinberg & Brand (1983,
1984) by including solutal diffusivity and by omitting any thermal contributions from
the reaction. As explained above, we expect the latter to be small compared to the
geothermal gradient, while we will examine the importance of solutal diffusion in §3.6.

3. Linear stability analysis

3.1. The linearised perturbation model

When we assume that the magnitudes of the perturbations to the base state are small,
we may simplify the equations (2.7)–(2.9) further to

∇2ψ = −RC
∂C ′

∂x
−RT

∂T ′

∂x
,

∂T ′

∂t
+ λ

∂ψ

∂x
= ∇2T ′ (3.1)

and
∂C ′

∂t
+
∂ψ

∂x
=

1

Le
∇2C ′ + k(T ′ − C ′). (3.2)

The boundary conditions are still given by (2.12).
We seek Fourier-mode solutions of the form

ψ = Ψ0e
σteimx sin(πnz), T ′ = Θ0e

σteimx sin(πnz), C ′ = χ0e
σteimx sin(πnz), (3.3)

where the real parts are assumed, where m is a positive real number, where n is a positive
integer, and where Ψ0, Θ0, χ0 and σ are in general complex. Substituting these in to
(3.1) and (3.2), we obtain the equations

−(m2 + π2n2)Ψ0 = −imRCχ0 − imRT Θ0, (3.4)

σΘ0 + imλΨ0 = −(m2 + π2n2)Θ0 and (3.5)

σχ0 + imΨ0 = −m
2 + π2n2

Le
χ0 + kΘ0 − kχ0. (3.6)

The solvability condition for this set of equations can be written as a quadratic, aσ2 +
bσ + c = 0, and thus

σ = σ± =
−b±

√
b2 − 4ac

2a
, (3.7)
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where, defining M = m2 > 0 and N = π2n2 > π2 for convenience,

a = M +N, b =

[

1 +
1

Le

]

(M +N)
2

+ k(M +N) −M(RC + λRT ) and

c = k (M +N)2 − kMλ(RT + RC) −M (M +N)

(

RC +
λRT

Le

)

+
1

Le
(M +N)3 .

(3.8)

For very large M or N , we find that σ+ ∼ −(M,N)/Le; hence, for given parameter
values, <(σ+) will be maximised for some finite values of M and N .

The stability boundaries of the system correspond to the condition maxM,N <(σ+) = 0:
much of this section will be concerned with identifying these boundaries, and in particu-
lar with drawing them in the (RC ,RT )-plane for various values of the other parameters.
Before doing this, however, it is useful to recall the classic results for non-reactive con-
vection.

3.2. Pure double-diffusive convection, k = 0

When we take k = 0, so there is no reaction, we recover classic double-diffusive convection
(see e.g. Phillips 1991, §5.3). The growth rate σ+ is given by equations (3.7) and (3.8)
with k = 0; instability will occur whenever we can find M > 0 and N/π2 ∈ N such that
<(σ+) > 0. This, in turn, will occur whenever either (i) b < 0 or (ii) b > 0 and c < 0 (so
that

√
b2 − 4ac > b). We will consider these in turn.

(i) The condition b < 0 can be written as

RT >

[

1 + Le

λLe

]

(M +N)
2

M
− RC

λ
. (3.9)

For a given set of parameters (λ, Le,RC), the lowest value of RT for which this condition
is satisfied occurs when N = π2 and M = π2; the condition then becomes

RT > R(b)
T (RC) =

4π2

λ

[

1 +
1

Le

]

− RC

λ
. (3.10)

(ii) The condition c < 0 can be written as

RT >
1

λ

(M +N)
2

M
− LeRC

λ
. (3.11)

Again, for a given (λ, Le,RC), the lowest value of RT for which this condition is satisfied
occurs when N = π2 and M = π2, and the condition then becomes

RT > R(c)
T (RC) =

4π2

λ
− LeRC

λ
. (3.12)

with the additional requirement that the condition (3.10) is not satisfied.
In summary, then, instability will occur if either (3.10) or (3.12) is satisfied, and the

system will be stable if neither is satisfied. Note that in general, the principle of exchange

of stabilities holds when crossing the stability boundary RT = R(c)
T , so the loss of stability

is through an exponentially growing perturbation (monotonic instability); crossing the

boundary RT = R(b)
T , on the other hand, in general b2 − 4ac < 0, and so the instability

is oscillatory (cf. Turner 1979, §8.1).

The intersection of R(c)
T with the RT -axis occurs at RT = 4π2/λ < R(b)

T (0), and so it

is R(c)
T which determines the well-known stability criterion RaT < 4π2 for pure thermal

convection (Lapwood 1948). Similarly, the stability criterion for pure solutal convection
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is given by RC < 4π2/Le, or RaC < 4π2. The lines RT = R(b)
T and RT = R(c)

T intersect
at

Rcrit
C = − 4π2

Le(Le− 1)
; (3.13)

for RC < Rcrit
C , the criterion RT < R(b)

T gives stability, while for RC > Rcrit
C , the

criterion RT < R(c)
T gives stability. An illustration of the stability boundaries will be

given in figures 2 a and b.

3.3. Reactive cases, k > 0: general features of the stability diagram

We now consider the full double-diffusive, double-advective, reactive problem. The pres-
ence of the extra parameter k makes this somewhat more complicated than pure double-
diffusive convection; our aim will be to determine as broadly as possible how the results for
pure DDC alter as k increases. As in the case of pure double-diffusive convection, we will

have to determine two boundaries in the (RC ,RT )-plane: the boundary RT = R(b)
T (RC)

above which there exist (M,N) such that b < 0, and the boundary RT = R(c)
T (RC)

above which there exist (M,N) such that c < 0. The unstable region is then the union

of the regions RT > R(b)
T and RT > R(c)

T .
(i) The condition b < 0 corresponds to

RT > f(M,N) =
1

λ

(

[

1 +
1

Le

]

(M +N)
2

M
+ k

(M +N)

M
−RC

)

. (3.14)

This is clearly least restrictive when N takes its minimum value of N = π2, and given
this it will be least restrictive when we choose M such that f(M,π2) is minimised over
M . The condition ∂f/∂M = 0 has the unique solution for positive M

M = Mb = π

[

kLe+ π2(1 + Le)

1 + Le

]1/2

, (3.15)

and we obtain the instability condition

RT > R(b)
T (RC) =

π2

λ

(

1 +
1

Le

)

(

1 +

√

1 +
kLe

π2(1 + Le)

)2

− RC

λ
. (3.16)

We note that Mb and R(b)
T are increasing functions of k, and so the effect of reaction

is to increase the threshold of instability given by this condition, and to increase the
wavenumber at the threshold of instability. To interpret this variation physically, we

recall that R(b)
T represents a boundary across which the rest state loses stability through

an oscillatory instability, =(σ+) 6= 0. Oscillatory instabilities require hysteresis between
the temperature and the concentration fields: this hysteresis is reduced by the coupling
between T ′ and C ′ introduced by the reaction, inhibiting the onset of instability. However,
this interpretation does not explain the increase in Mb with k, for which we are unable
to identify a simple physical mechanism.



The onset of reactive thermosolutal convection in a porous layer 9

(ii) The other boundary is harder to locate. The condition c < 0 corresponds to

RT > R(c)
T (RC) = min

M,N
R(M,N), where

R(M,N) ≡

(M +N)
2

Mλ
+

1

Le

(M +N)
3

kMλ
−RC

[

1 +
(M +N)

kλ

]

1 +
(M +N)

kLe

. (3.17)

(We will write RT = R(M,N) to indicate the boundary c = 0 for a given mode, while

R(c)
T (RC) will represent the minimum over (M,N) of R, i.e. the stability boundary if M

and N are not imposed.)
In appendix A.1, we show that the global minimum of R(M,N) over M and N always

occurs on the boundary N = π2, and corresponds to a local minimum over M : for the
rest of this section we will use the notation M = Mc to denote this minimum and take
N = π2 throughout. The condition ∂R/∂M = 0 then leads to a quartic equation for Mc,

M4
c

Le2
+

(

2k

Le
+

2π2

Le2

)

M3
c +

(

k2 −RCk +
2kπ2 + RCkλ

Le

)

M2
c

+

(

−2kπ4

Le
− 2π6

Le2

)

Mc − k2π4 − 2kπ6

Le
− π8

Le2
= 0, (3.18)

and we will have R(c)
T (RC) = R(Mc, π

2).
We can in principle obtain an analytical expression for the positive real root of (3.18),

and thus for the stability boundary in the (RC ,RT )-plane. However, these expressions
are not informative, so before we carry out these calculations we will obtain some more
results to gain insight into the general shape of the stability boundaries. In particular, to
draw these boundaries in the (RC ,RT )-plane, we need to locate the axis-intercepts and

the limiting asymptotic behaviour of R(b)
T and R(c)

T .

3.3.1. Axis-intercepts

We first consider the intercepts at RC = 0: here there is no direct solutal contribution
to buoyancy, so we have pure thermal convection. When RC = 0, equation (3.18) has

the unique positive solution Mc = π2. Making this substitution in R(c)
T (Mc, π

2) from
equation (3.17), we deduce that, for all cases no matter what the relative magnitudes of

the parameters, instability will occur for RC = 0 if RT > R(c)
T (0) = 4π2/λ. (This result

can be obtained immediately by arguing that if RC = 0 then the quantities k and Le
which affect only the solutal component must be irrelevant, and the result must agree
with that for pure thermal convection.) We note from (3.16) that the axis-intercept of

R(b)
T is given by

R(b)
T (0) =

π2

λ

(1 + Le)

Le

(

1 +

√

1 +
kLe

π2(1 + Le)

)2

> R(c)
T (0), (3.19)

so that the boundary RT = R(c)
T always lies below the boundary RT = R(b)

T at RC = 0.
The other special case which we can consider occurs when the direct thermal contribu-

tion to buoyancy is zero, RT = 0, but the reactively-affected solute concentration does
affect the buoyancy. As before, instability will occur if there exists some M > 0 such
that either (i) b < 0 or (ii) b > 0 and c < 0.

(i) We already have the full solution (3.16) for the boundary RT = R(b)
T . Requiring
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that R(b)
T = 0 yields

RC = R(b)
C = π2

(

1 +
1

Le

)

(

1 +

√

1 +
kLe

π2(1 + Le)

)2

. (3.20)

(ii) The condition c < 0 for N = π and general M becomes

RC > S(M) ≡ k
(

M + π2
)2

+ 1
Le

(

M + π2
)3

M (kλ+M + π2)
. (3.21)

We have been unable to obtain a simple expression for the positive real root of
dS/dM = 0; however, we note that

S(M) 6
k
(

M + π2
)

M
+

1

Le

(

M + π2
)2

M
< S1(M) ≡

[

1 +
1

Le

]

(

M + π2
)2

M
+
k(M + π2)

M
,

(3.22)
and the quantity S1(M) represents (from equation (3.14)) the value of RC for which
c = 0 when RT = 0 and N = π. This in turn means that minM S(M) < minM S1(M), so

the curve RT = R(c)
T always intercepts the RC -axis to the left of RT = R(b)

T . Together

with the result that R(c)
T (0) < R(b)

T (0), this suggests (although it does not prove) that
for RC > 0 the stability boundary when k > 0 is still given by the criterion c = 0 rather
than by b = 0. (We will see that this is confirmed by direct evaluation of the stability
boundaries in §3.5.)

3.3.2. Asymptotic behaviour and regimes of relevance of the stability boundaries

For pure DDC, as we have seen, RT = R(b)
T provides the stability boundary for suffi-

ciently large negative values of RC , while RT = R(c)
T provides the stability boundary for

small negative and for positive values of RC . To investigate how this picture changes as
k increases, we will now examine the limits RC → ±∞.

From the explicit solution (3.16), we obtain R(b)
T ∼ −RC/λ as |RC | → ∞. To establish

the behaviour of R(c)
T we start from (3.18). We assume that, whatever the values of k

and 1/Le, we can take |RC | sufficiently large that only the magnitude of |RC | is relevant;
we then need to look for the possible asymptotic balances in (3.18).

As |RC | becomes large, the leading-order balance in (3.18) must be between the M 2
c

term and either the M4
c term or the O(1) term. The former case gives

Mc =
√

RCkLe

(

1 − λ

Le

)1/2

− (kLe+ π2) + O(R−1/2
C ), (3.23)

and clearly can be valid only for RC > 0; we then have

R(c)
T = −Le

λ
RC +

2
√

kLe(Le− λ)

λ

√

RC +
π2 − kLe

λ
+ O(R−1/2

C ). (3.24)

We note that the wavenumber only affects the result at O(1), so even though the value
of k controls at leading order the selected wavenumber Mc (cf. §3.2), it does not affect
the leading-order term in the position of the stability boundary.

The other possible balance gives us

Mc =
1√
−RC

[

π2(π2 + Lek)√
kLe2 − kλLe

+
π4(π2 + Lek)

Lek(Le− λ)

1√
−RC

+ O
(

1

|RC |

)]

, (3.25)
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which is clearly applicable only for RC < 0. Expanding R(c)
T for −RC � 1, we find

R(c)
T = − λk + π2

Lek + π2

Le

λ
RC +

2π2Lek(Le− λ)
√
−RC

λ(π2 + Lek)
√

kLe(Le− λ)
+
π2(π2 + 2kLe)

λ(π2 + kLe)
+O

(

1√
−RC

)

.

(3.26)
This is an obvious modification of the pure DDC result, with the stability boundary
lowering systematically as k increases from zero.

Putting these results together, we see that as RC → ∞, the curve RT = R(c)
T always lies

below the curve RT = R(b)
T , and so always provides the stability boundary. In the other

limit RC → −∞, for sufficiently small k the lower boundary is given by RT = R(b)
T , but

as k increases the curve RT = R(c)
T drops below RT = R(b)

T and so becomes the stability

boundary. The condition that R(c)
T < R(b)

T for large enough −RC is equivalent to

k > kcrit =
π2

1 − λ

(

1 − 1

Le

)

. (3.27)

We note that although the condition k > kcrit does not itself guarantee that R(c)
T lies

below R(b)
T for all RC , numerical investigation suggests that R(c)

T < R(b)
T for all RC

once k is even very slightly above this boundary, so we may take k ≈ kcrit as marking

approximately the reaction rate above which R(b)
T becomes irrelevant.

3.4. Asymptotics for slow or fast reactions

We have established by looking at the asymptotic behaviour of the stability boundaries
that varying k may change the shape of the stability diagram, in particular for RC < 0
(the solutally stabilised ‘SS’ regime). To gain some more insight into the effect of varying
k, we now consider how either a very small or a very large reaction term affects the
picture for pure DDC which was sketched in §3.2.

3.4.1. Asymptotics for slow reactions, 0 < k � 1

We will first consider slow reactions. Formally, we will consider the asymptotic regime
0 < k � 1 and Le = O(1), so reaction is a weaker influence on the solute concentration
than diffusion is. As before, we consider the two criteria b < 0 and c < 0 separately. We
have already dealt with the case b < 0 (equation (3.16)), and it is evident that the effect
of a weak reaction will be to raise this boundary slightly. We therefore concentrate on
the case c < 0.

As before, we start from equation (3.18). (For sufficiently small k, this will be the
relevant boundary for positive or sufficiently small negative values of RC , as in §3.2.)
Seeking solutions of the form Mc = M0 +M1k + O(k2), we find

Mc = π2 +
RCLe(Le− λ)

8π2
k + O(k2), (3.28)

and so

R(c)
T =

4π2

λ
− RCLe

λ
+
Le(Le− λ)RC

2π2λ
k + O(k2). (3.29)

The effect of a small reaction term is to stabilise the system against monotonic instabil-
ities for RC > 0, as destabilising solute is precipitated from the fluid, and to destabilise
it against monotonic instabilities for RC < 0, as stabilising solute is lost.
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3.4.2. Asymptotics for fast reactions, k � 1

It is also natural to consider the limit in which the reaction is very fast compared to
the other terms in the system. Formally, we consider the regime k � 1 with all other
parameters of order unity (compare the ‘fast reaction’ analysis of Steinberg & Brand

(1983), which assumes that k̂Ĥ2/κ̂C = kLe� 1).

It is simple to expand the expression (3.16) to obtain R(b)
T ∼ k/λ. To obtain asymptotic

results for Mc and R(c)
T we consider equation (3.18) in the limit k → ∞. An asymptotic

analysis indicates that the only positive root for Mc is of order unity, and has the expan-
sion

Mc ∼ π2 +
π2(Le− λ)RC

2Le

1

k
+ O

(

1

k2

)

, (3.30)

and thus

R(c)
T ∼ 4π2

λ
−RC − 2π2(Le− λ)RC

λLe

1

k
+ O

(

1

k2

)

. (3.31)

It is evident from these results that in the regime k � 1, the boundary R(c)
T must

lie below the boundary R(b)
T , so as the reaction rate is increased with other conditions

constant, the stability boundary always comes to be given by RT = R(c)
T .

Two points are worth noting. The first is that in this limit, the stability boundary
is independent at leading order of both k and Le. Essentially, the solute concentration
equilibriates instantaneously with the temperature field, so the condition for instability
is simply that the aggregate contribution to buoyancy is sufficient to overcome stabili-
sation by thermal diffusion, RT + RC > 4π2/λ. The next order correction depends on
solutal diffusion, and its sign is controlled by RC . For RC > 0, the effect of making the
reaction rate finite rather than infinite is to lower the boundary, i.e. to destabilise the
system, as destabilising solute is allowed to persist a little longer and so to drive fingering.
Conversely, for RC < 0, a finite reaction rate tends to raise the boundary (stabilise the
system).

We also note that as k → ∞, Mc approaches its limiting value of π2, with a correction
term which is controlled by RC . We may expect that the stabilising or destabilising effect
of the ‘extra’ solute which a finite reaction rate permits will be felt most strongly at higher
wavenumber, as in other fingering instabilities when diffusive effects are neglected (cf.,
e.g. Drazin 2002, §3.8). If the effect is stabilising, then, it will tend to lower the value of
σ+(M) for higher M , and so shift the maximum to lower values of M ; conversely, if the
effect is destabilising, it will tend to shift the maximum to higher values of M .

3.5. Examples of stability diagrams and dispersion relations

We are now in a position to examine in some detail how the stability boundaries vary
with the governing parameters, and in particular how the reaction rate k controls them.
We will first show some examples of the stability boundaries, then discuss how they fit
into the more general variation of the maximal growth rate σ+.

3.5.1. Variation of stability boundaries with k

Figures 1 a and b illustrate how the positions of the stability boundaries R(b)
T and R(c)

T

vary with k and with RC , while figures 1 c and d show the corresponding variation of
the critical wavenumber M at the onset of instability.

We first consider how the stability boundaries change with k and RC . As figure 1 a

illustrates, both R(b)
T and R(c)

T increase monotonically asRC decreases: a stronger thermal

instability is required to compensate for a weaker solutal instability. The boundary R(b)
T
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Figure 1. Contour plots showing stability boundaries and wavenumbers of marginally unstable
perturbations, plotted as a function of k and RC , for λ = 0.25 and Le = 10. (a) Stability

boundaries R
(b)
T

(solid; roman labels) and R
(c)
T

(dashed; italic labels): contours of R
(b)
T

are at

0 to 1000 by 250, while contours of R
(c)
T

are from −3750 to 4000 by 250. (b) Position of the

stability boundary R
(min)
T

= min(R
(b)
T

,R
(c)
T

): contours are at intervals of 250 with the highest at
500. (c) Wavenumbers Mb (solid; roman labels) and Mc (dashed; italic labels) corresponding to
the conditions b = 0 and c = 0 respectively: contours of Mb are at 10, 15 and 30, while contours
of Mc are at 4, 6, 8, 10, 15, 30, 50, 100, 150 and 200. (d) Wavenumber Mmin of the most unstable
mode: contour values as in (c). The blocky effect on contours near the discontinuity in Mmin is
an artefact of the contour interpolation routine.

also increases with k, whereas the boundary R(c)
T merely varies less strongly with RC

for higher values of k: this shows the stabilising effect of the reaction in the SU regime

RC > 0 and a destabilising effect in the SS regime RC < 0. Combining the results for R(b)
T

and R(c)
T to obtain the actual stability boundary R(min)

T , we obtain the more complicated
variation shown in figure 1 b. In the SU regime RC > 0, the stability is entirely controlled

by R(c)
T and the variation of R(min)

T with k remains monotonic. In the SS regime RC < 0,

for low values of k the boundary is given by R(b)
T , while only for higher values is it given

by R(c)
T . The result is that the boundary R(min)

T varies non-monotonically with k, first
increasing (so, as we have seen in §3.4.1, a weak reaction stabilises the system) and then
decreasing, so a sufficiently strong reaction removes stabilising solute from the fluid and
destabilises the system.

The variation of the critical wavenumber at the onset of instability is more complicated.
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We first consider figure 1 c. The wavenumber Mb which minimises R(b)
T is independent of

RC , and simply increases monotonically with k (see equation (3.15)). The wavenumber

Mc which minimises R(c)
T , on the other hand, increases with small but increasing k in

the SU regime and decreases with small but increasing k in the SS regime (§3.4.1); for
large k (§3.4.2) it approaches π2 again, and so it must have a local extremum over k
for any given RC . Combining these results yields the variation of Mmin shown in figure
1 d. In the SU regime RC > 0, the maximum value of Mmin occurs for higher k as RC

increases. Rather large values of Mmin can be attained for moderate k and RC , indicating
that the shape of the cells deviates strongly from the square rolls characteristic of pure
DDC, and throughout this regime the wavenumber is greater than π2. The SS regime
RC < 0 may be divided into two parts as before. For small k, the boundary is given

by RT = R(b)
T and the wavenumber remains close to π2. The line where R(b)

T = R(c)
T

is marked by a discontinuity in the value of Mmin (which corresponds to the ‘blocky’
line in the interpolated contour plots). (It is not surprising that Mmin is discontinuous
across this line, since the mode of instability changes as we cross it: this will be discussed

further in §4.) For higher values of k, where R(min)
T = R(c)

T and reactions are stabilising,
the critical wavenumber is less than π2, though it increases towards π2 with increasing
k (see §3.4.2).

3.5.2. Dispersion relations

The results which we have obtained for the marginal stability curves in the (RC ,RT )
plane only tell part of the story: to get a fuller picture of what the dispersion relation
(3.7) means, we must evaluate some cases directly. For the moment, we will consider
only cases for which N = π2, although it is only in the region of the stability boundary
that we can assume that this represents the fastest-growing modes. Figure 2 illustrates
how the stability boundaries and the growth rate σ+ and wavenumber Mmin of the most
unstable mode vary as k is increased from zero: the results presented here were obtained
numerically using Maple 9.

In figures 2 a, c and e, we see the evolution of the stability boundaries in the (RC ,RT )

plane. As we have seen, as k increases, the unstable region first decreases in size, with R(b)
T

moving up everywhere and R(c)
T moving upwards and rightwards in the region RC > 0,

though downwards in the region RC < 0 (see figure 1 a). The result is that the intersection

between R(b)
T and R(c)

T moves to the left, so that =(σ+) = 0 along a greater part of the
stability boundary. As k is increased further, the region RC > 0 is further stabilised, and

as k passes kcrit, the descending boundary R(c)
T for RC < 0 passes below R(b)

T entirely:
the transition to instability is now always through monotonic rather than oscillatory
perturbations, and the unstable region in RC < 0 grows everywhere as k is increased.

Figure 2 b shows the variation of the growth rate σ+ and the most unstable wavenumber
for pure double-diffusive convection. The variation of <(σ+) is simple, increasing with
increasing RT and RC . There is a region in RC < 0 in which the dominant mode has a
non-zero imaginary part: this region actually comes into existence for RT slightly smaller

than R(b)
T , and for any given RC there is an upper limit on the values of RT for which

=(σ+) 6= 0. Along the stability boundary, the wavenumber of the marginally stable mode
is constant at Mmin = π2, but it rapidly increases, particularly in the unstable region for
which RC > 0 and RT < 0.

For 0 < k < kcrit (figures 2 c and d), this picture does not change significantly. Larger
negative values of RC are now required to find significant values of =(σ+); numerical
experimentation suggests that the imaginary region does shift to the left and diminish
in size as k increases, but that it persists while k < kcrit. (Overall, the criteria which
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Figure 2. (a, c, e) Linear stability boundaries and (b, d, f) growth rates σ+ in the (RC ,RT )
plane for λ = 0.25, Le = 10 and (a,b) k = 0; (c, d) k = 10; (e, f) k = 50 (note that kcrit ≈ 11.84).
In (a), (c) and (e) the solid lines represent stability boundaries on which σ+ = 0, the heavy
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T

above the boundary. Plots (b), (d) and (f)
show contours of <(σ+) (heavy dashed), =(σ+) (light dashed) and Mmin (solid): the contours
in each case are at intervals of 10 with the lowest being at 10−5. The blocky effect on some
contours is an artefact of the contour interpolation routine.
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describe the boundaries do not give much insight into the behaviour in the rest of the
(RC ,RT )-plane.) The main difference from the case k = 0 is that, as we have seen in
figure 1 d, Mmin now varies along the stability boundary, increasing with increasing RC .

For still larger values of k, more significant changes occur. In figures 2 e and f, there
is now no evidence at all of a region in which =(σ+) 6= 0. The behaviour of the fastest-
growing wavenumber Mmin has also changed, and this change appears to happen at
around k = kcrit: instead of continuous variation of Mmin with RC and RT , there is
now a sharp discontinuity across which Mmin jumps from zero to a value which increases
rapidly with RC . Along the stability boundary, Mmin now increases rapidly with RC .

3.6. Asymptotics for weak solutal diffusion, 1/Le� 1

For plotting purposes, and to gain insight into the effect of a reaction term, we have
so far assumed implicitly that the Lewis number Le = O(1), so the solutal diffusivity
is not asymptotically small. In geological applications, however, the ratio between the
molecular diffusivities of many minerals and the thermal diffusivity in the rock-water
system may be of the order of 100 (see e.g. Bear 1972, p. 651). This makes it useful to
investigate the asymptotic regime Le� 1 (we again recall that the analysis of Steinberg
& Brand (1983) assumes that kLe� 1, and on this basis disregards the solutal diffusion
term altogether).

We note that in the limit 1/Le = 0, the results for pure DDC break down in the
fingering regime RC > 0, because there is no longer any diffusion to stabilise the system.
We may therefore expect this limit to be singular: knowing that in this regime the reaction
term tends to stabilise the system by removing solute from solution, it is natural to ask
in particular whether the reaction term on its own can ever provide stability, or whether
diffusion remains essential.

We note first that in the absence of reaction (k = 0), in the limit 1/Le → 0 the
criterion for instability derived in section 3.2 becomes simply RC > 0 or λRT + RC >
4π2: the SU regime is completely unstable while in the SS regime the system can be
stabilised by the non-diffusing solutal buoyancy gradient. In the SS regime, the marginally
stable perturbations at the stability boundary have wavenumber Mmin = π2. We will
now consider in more detail the asymptotics of the stability boundaries when k is of
order unity; at the end we will make some brief comments on the case when k is also
asymptotically small.

As before, we consider separately the conditions (i) b < 0 and (ii) c < 0. (We recall

from §3.3.2 that we expect the boundary to be given by RT = R(c)
T for positive or small

negative values of RC whatever the value of the other parameters, while for sufficiently

large values of k it may be given by RT = R(c)
T for all values of RC .)

(i) Starting from the expression for R(b)
T given by equation (3.16), we expand in powers

of 1/Le to obtain

R(b)
T = −RC

λ
+
π2

λ

(

1 +

√

1 +
k

π2

)2 [

1 +

(

1 +
k

π2

)−1/2
1

Le

]

+ O
(

1

Le2

)

. (3.32)

We can also expand the most unstable wavenumber M = Mb given by equation (3.15),
obtaining

Mb = π
√

π2 + k − πk

2
√
π2 + k

1

Le
+ O(Le−2). (3.33)

Including diffusion is then a regular perturbation to this stability curve, slightly increasing
the threshold for instability and reducing the wavenumber of the most unstable mode.
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This is not unexpected, since diffusion will tend to preferentially inhibit the growth of
the higher-wavenumber modes.

(ii) The criterion c < 0 is more problematic. As we have seen, the condition that
∂R/∂M = 0 at M = Mc provides a quartic in Mc, equation (3.18). When we take
1/Le = 0, we lose the first two terms in Mc, indicating that this limit is singular. In
fact, three different asymptotic balances are possible in this equation for 1/Le � 1.
The simplest balance occurs when Mc = O(1), and (3.18) reduces at leading order to
a quadratic in Mc. Another balance occurs when we seek solutions which preserve the
higher-order terms in (3.18): this corresponds to very short-wave perturbations damped
by lateral diffusion, as the wavenumber Mc ‘comes in’ from infinity with decreasing Le.
A final balance occurs when RC is very close to k, so the coefficient of M 2

c in (3.18) is
O(Le−1). It can be shown (appendix A.2.1) that each of these balances corresponds to a
particular range of RC .

When RC < k and |RC − k| = O(1) or larger, we find that

Mc ∼ π2

(

k

k −RC

)1/2

− 1

Le

π2RC

2

(

2π2

√

k

k −RC
+ 2π2 + kλ

)

√
k(k −RC)3/2

+ O
(

1

Le2

)

(3.34)

and

R(c)
T ∼ π2

λ

(

1 +

√

k −RC

k

)2

−RC +
R(c1)

T

Le
+ O(Le−2), (3.35)

where R(c1)
T is given by equation (A 10). In this regime, then, the system can be stabilised

by the combined effects of solutal buoyancy and the reaction term; the marginally stable
wavenumber is controlled by the reaction rate. It is particularly noteworthy that in the
absence of solutal diffusion the reaction alone can stabilise the system even for some
positive values of RC .

When RC > k and |RC − k| = O(1) or larger, we find that

Mc ∼
√
k(
√

RC −
√
k)Le and R(c)

T ∼ − (
√
RC −

√
k)2Le

λ
. (3.36)

In this regime, stabilisation depends crucially on the presence of solutal diffusion: in
the limit Le → ∞, the critical wavenumber and the (negative) value of RT required for
stability both become unbounded. In other words, if the solutal buoyancy gradient is
sufficiently destabilising then the reaction cannot stabilise the system on its own.

Finally, when |RC − k| = O(1/Le), we find that

Mc =

(

Lekπ4

2

)1/3

−R + kλ+ 2π2

3
+O(Le−1/3) where R = Le(k−RC), (3.37)

and thus

R(c)
T =

π2

λ
− k +

3

λ

(

π8

4k

)1/3
1

Le1/3
+ O(Le−2/3). (3.38)

In this regime the system can in principle be stabilised by reaction in the absence of
diffusion, but asymptotically high wavenumbers are favoured since Mc ∼ Le1/3.

Finally, we comment briefly on the regime in which k = O(1/Le) � 1, so the reaction
is slow while solutal diffusion remains weak. (This may be relevant in geological situa-
tions.) The details of the analysis for this case are given in appendix A.2.2; the principal
conclusions are that in the SU regime RC > 0 the weak reaction term is unable to sta-
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bilise a solutally unstable system, while in the SS regime RC < 0 the boundary, given

by R(b)
T (RC), is identical to leading order with that for k = 0.

Our overall conclusion from this brief examination of the limit Le→ ∞ is that while a
reasonably strong reaction term may be able to stabilise a somewhat solutally unstable
system, and to control the wavenumber of instabilities in the presence of weak diffusion, it
cannot on its own stabilise a system in which the solutal buoyancy gradient is sufficiently
strongly unstable.

4. Nonlinear development: a Galerkin model

To explore how a reaction term affects the nonlinear development of double-diffusive
convection it is necessary to integrate the full nonlinear system (2.7)–(2.9) numerically:
this will be the subject of §5, and will be developed in a future study. Before doing so,
however, we will briefly consider the early stages of nonlinear convection, when the basic
structure of the convective rolls is still determined by the behaviour of the linearised
solution.

In the immediate vicinity of the stability boundary, we could develop a weakly-nonlinear
analysis in which the small parameter is no longer the perturbation amplitude but the
deviation of one or another Rayleigh number from its critical value (e.g. Palm, Weber &
Kvernvold 1972). Such analyses tend to become mathematically complicated, so to avoid
these complexities, we will instead employ a simpler but more heuristic Galerkin method.
In this method (e.g. Rudraiah, Srimani & Friedrich 1982), we choose a suitable ansatz
for the form of the solution and develop a series of ordinary differential equations for
the evolution of this structure. Mamou & Vasseur (1999) have employed it to investigate
the bifurcation structure at the onset of thermosolutal convection, and demonstrated
reasonable agreement between the Galerkin results and their numerical integrations of
the full nonlinear equations.

4.1. Galerkin ansatz

Following Mamou & Vasseur (1999), we will assume that close to the threshold of convec-
tion, the basic circulation remains undistorted, but the temperature and concentration
fields are distorted by the addition of a second harmonic with no x-dependence, so

ψ(x, z, t) = Ψ1(t) sin(mx) sin(πz),

T ′(x, z, t) = Θ1(t) cos(mx) sin(πz) + Θ2(t) sin(2πz)

and C ′(x, z, t) = χ1(t) cos(mx) sin(πz) + χ2(t) sin(2πz), (4.1)

where the amplitudes Ψ1, Θ1,2 and χ1,2 are real. We assume that the horizontal wavenum-
ber m is known, having been selected, for example, by the dynamics of the linear regime.
(We will consider briefly below how the region of subcritical convection may be maximised
by choosing an appropriate value of m.)

To set up the Galerkin model, we substitute the ansatz (4.1) into (2.7)–(2.9) and
equate the Fourier components up to 2πz inclusive, ignoring the higher-frequency terms.
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We obtain the five equations

−(m2 + π2)Ψ1 −mRCχ1 −mRT Θ1 = 0, (4.2)

dΘ1

dt
− λπmΨ1Θ2 + λmΨ1 + (m2 + π2)Θ1 = 0, (4.3)

dΘ2

dt
+ 4π2Θ2 +

1

2
λπmΨ1Θ1 = 0, (4.4)

dχ1

dt
− πmΨ1χ2 +mΨ1 +

m2 + π2

Le
χ1 + k(χ1 − Θ1) = 0, (4.5)

dχ2

dt
+

4π2

Le
χ2 +

1

2
πmΨ1χ1 + k(χ2 − Θ2) = 0. (4.6)

4.2. Galerkin analysis for the non-reacting problem

We will first briefly consider the Galerkin analysis for the non-reacting problem (cf.
Mamou & Vasseur 1999): in other words, we take k = 0 in equations (4.2)–(4.6).

4.2.1. Steady state solutions

The first step towards understanding the system (4.2)–(4.6) with k = 0 is to seek
steady-state solutions. Setting the time derivative terms equal to zero and eliminating
Θ1,2 and χ1,2, we obtain the equation Ψ1(AΨ4

1 +BΨ2
1 + C) = 0, where

A = − 1

64
Leλ2(m2 + π2)m4,

B = −(m2 + π2)

[

λ2(m2 + π2)m2

8Le
+
Le(m2 + π2)m2

8

]

+
m4(λ2RC + λLeRT )

8
,

C = − (m2 + π2)3

Le
+ (m2 + π2)m2RC +

λ(m2 + π2)m2RT

Le
. (4.7)

Since A < 0, the non-trivial solutions can be written as Ψ2
1 = (B ±

√

B2 + 4|A|C)/2|A|.
We therefore conclude that: (i) if B2 − 4AC < 0 then there are no non-trivial solutions;
(ii) if B2 − 4AC > 0 and C > 0 then there is exactly one positive solution for Ψ2

1; (iii) if
B2 − 4AC > 0 and C < 0 then the roots both have the same sign as B, so (a) if B > 0
there are two positive solutions for Ψ2

1, and (b) if B < 0 there are no positive solutions.
We will now write each of the marginal conditions B = 0, C = 0 and B2 − 4AC = 0 as
a curve in the (RC ,RT )-plane.

The condition B = 0 gives

RT = R(B)
T (RC ;m) ≡ (m2 + π2)2

m2

[

1

λ
+

λ

Le2

]

− λ

Le
RC . (4.8)

The condition C = 0 gives

RT = R(C)
T (RC ;m) ≡ (m2 + π2)2

m2
λ− Le

λ
RC , (4.9)

which is identical to the c = 0 condition RT = R(M,π2) from the linear analysis for
non-reactive DDC, equation (3.17).

The condition B2 − 4AC = 0 gives a bivariate quadratic equation in RC and RT ,
which can be written after a little manipulation as the parabola

(X + Y )2 + 2δ(X − Y ) + δ2 = 0, (4.10)
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where X = λRC and Y = LeRT , and where the single remaining parameter is defined as

δ =
(m2 + π2)2

m2

(

Le

λ
− λ

Le

)

> 0. (4.11)

The parabola intercepts the lines RT = R(B)
T (RC) and RT = R(C)

T (RC) at the point

(R(BC)
C ,R(BC)

T ) =
(m2 + π2)2

m2

1

Le2 − λ2

(

−λ
2

Le
,
Le2

λ

)

; (4.12)

note that R(B)
T is parallel to the axis of the parabola while R(C)

T is tangent to the parabola.

To the left of R(BC)
C , steady subcritical convection is possible above the upper boundary

of the parabola, while to the right of it no steady subcritical convection can occur: we

will denote the portion of the parabola to the left of R(BC)
C by RT = R(sub)

T . Finally,

combining the conditions B2 −4AC = 0 and RT = R(b)
T yields a quadratic for RC which

has discriminant (1 − λ2)(λ2 − Le2) < 0, and so there are no real intersections between

the parabola and RT = R(b)
T .

The analysis so far has been carried out assuming that m is given. We recall that the

lowest positions of the boundaries R(b)
T and R(C)

T occur for m = π, and it is easy to see
from (4.10) that the choice m = π also minimises the value of RT for which subcritical
nonlinear solutions are available: in other words, not just the linear perturbations to the
base state, but also the subcritical non-linear rolls, occur most readily with equal height
and width. (We recall, though, that the Galerkin analysis is unlikely to predict accurately
the solution some distance from the boundary of linear stability, or the structure of
nonlinear modes even near the boundary, since there is no guarantee that the higher
Fourier modes will be insignificant in these cases.) Since it appears that this wavenumber
is favoured at all transitions of the system, we are justified in restricting our investigation
to m = π when considering k = 0. This will not be the case when we come to consider
k > 0.

4.2.2. Stability diagram and bifurcations

Combining the results from the linear stability analysis and the steady-state Galerkin

analysis, we have four ‘boundary’ curves to consider: the three straight lines R(b)
T , R(B)

T

and R(C)
T , and the parabolic arc R(sub)

T . The line R(b)
T is a stability boundary, across

which the zero solution Ψ1 = 0 becomes unstable through an oscillatory instability when

RC < Rcrit
C . The line R(c)

T is a bifurcation boundary everywhere and a stability boundary
when RC > Rcrit

C . For RC < Rcrit
C it represents a subcritical bifurcation in which two

nonlinear solutions merge with the zero solution as RT increases, while for RC > Rcrit
C it

represents a supercritical pitchfork bifurcation, in which the zero solution loses stability,
through monotonically growing perturbations, to two nonlinear steady solutions which

branch out from the zero solution. The line R(B)
T has no direct significance, but determines

the position of the parabolic arc R(sub)
T ; this arc marks a double saddle-node bifurcation

at which two pairs of finite-amplitude modes appear.
Figure 3 a shows a typical stability diagram in the (RC ,RT )-plane, combining the

results of the linear stability analysis with the (less rigorous but suggestive) results of
the Galerkin analysis and of some numerical integrations of the Galerkin system. (We

note that R(C)
T (0) < R(B)

T (0) < R(b)
T (0); meanwhile |dR(B)

T /dRC | < |dR(b)
T /dRC | <

|dR(C)
T /dRC |: these inequalities ensure that the relative positions of the boundary curves
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Figure 3. Results of Galerkin analysis with k = 0, for λ = 0.25, Le = 10 and m = π (note that

Rcrit
C ≈ −0.44 and R

(BC)
C

≈ −0.0025). (a) Boundaries of stability regions in the (RC ,RT )-plane.
Solid lines represent regime boundaries; dashed lines represent extensions of these lines or other
boundaries between cases considered. (See text for explanation of regions I to IV.) (b,c) Ampli-
tude of the steady solution for Ψ1 against RT for λ = 0.25, Le = 10, m = π and (b) RC = −5; (c)
RC = 2. Solid lines represent solutions found (numerically or analytically) to be stable; dashed
lines represent unstable solutions; dotted lines represent regime boundaries (regimes labelled I
through IV).

are always as shown in figure 3 a.) Meanwhile, figures 3 b and c show the bifurcations of
the steady solutions as RT varies, for two values of RC .

There are four distinct stability regions. In region I (RC < R(BC)
C and RT < R(sub)

T ),
the only steady solution available is the unperturbed solution, Ψ1 = 0, and this is linearly

stable. In region II (RC < R(BC)
C and R(sub)

T < RT < min(R(b)
T ,R(C)

T )), Ψ1 = 0 remains
linearly stable but there are two pairs of steady nonlinear solutions (the positive and
negative solutions for Ψ1 correspond to different senses of rotation of the cells). Numer-
ical integration of the Galerkin system (4.2)–(4.6) with k = 0 indicates that the outer
branches (the larger magnitudes of Ψ1) are stable, while the inner branches are unstable.
A perturbation of sufficiently small initial magnitude tends to collapse onto Ψ1 = 0 (gen-
erally after some oscillation), while a perturbation of rather larger magnitude collapses
after some oscillation onto the outer steady solution. In region III (RC < Rcrit

C and

R(b)
T < RT < R(C)

T ), Ψ1 = 0 is linearly unstable, while the four non-zero steady solutions

persist. Finally, in region IV (RT > R(C)
T ), Ψ1 = 0 is linearly unstable and there are

only two non-zero solutions, which are found numerically to be attracting. (Numerically,
there is no observable difference between the behaviour of the system in regions III and
IV, because they differ only in the number of unstable solutions.)
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If we fix RC and treat RT as the bifurcation parameter, then, three patterns of tran-
sition are possible. For RC < Rcrit

C , the system passes through all four regions as RT

increases (figure 3 b): from region I it passes through a double-saddle-node bifurcation

at R(sub)
T into region II; it then crosses the stability boundary at R(b)

T to enter region III,

and finally passes through the subcritical pitchfork bifurcation at R(C)
T to enter region

IV. For Rcrit
C < RC < R(BC)

C , the transition is from region I to region II as before; the
loss of stability of the zero state then coincides with the subcritical pitchfork bifurcation

at R(C)
T , and the system passes into region IV. Finally, for RC > R(BC)

C (figure 3 c),
the system passes directly from region I to region IV as RT is increased: the transition

corresponds to the supercritical pitchfork bifurcation at R(C)
T .

4.3. Galerkin analysis for the reacting problem

To investigate the full system (4.2)–(4.6), we start as above by seeking steady solutions
to this set of equations. We will first consider the problem assuming that m has been set
(for example, by the dynamics associated with the loss of stability of the base state); we
will consider afterwards how the variation of m affects the results. Solving for Θ1,2 and
χ1,2, we obtain in particular

Θ2 =
λ2m2Ψ2

1

π[8(m2 + π2) + λ2m2Ψ2
1]

and (4.13)

χ2 = Θ2

2κ2 + (8π2 Le
λ + 2(m2 + π2))κ+ 8π2 Le2

λ2 (m2 + π2) + Le2π2m2Ψ2
1

2κ2 + (10π2 + 2m2)κ+ 8π2(m2 + π2) + Le2π2m2Ψ2
1

(4.14)

where κ = Lek. Changing the reaction rate k, then, affects both the amplitude of the
convective motion and the relative magnitudes of the thermal and solutal perturbations.

Continuing as before, we obtain the equation Ψ1(AΨ4
1 +BΨ2

1 + C) = 0, where

A = −π2m4Le2λ2(m2 + π2),

B = −2λ2Le2k2m2
(

m2 + π2
)

− 2λ2Lekm2(m2 + π2)(m2 + 5π2)

+ 8π2m4λLe (λRC + LeRT ) − 8π2m2(m2 + π2)2(Le2 + λ2),

C = 16Le2k2
[

λm2(RC + RT ) − (m2 + π2)2
]

+ 16Lek
(

m4(λRT + LeRC)

+π2m2(5λRT + 4λRC + LeRC) − (m2 + π2)2(m2 + 5π2)
)

+ 64
[

m2π2(m2 + π2) (LeRC + λRT ) − π2(m2 + π2)3
]

. (4.15)

As before, we need to locate the boundaries in the (RC ,RT )-plane which correspond to
the conditions C = 0, B = 0 and B2 − 4AC = 0.

The condition B = 0 becomes RT = R(B)
T (RC ;m), where

R(B)
T =

λ

4

(m2 + π2)

m2π2
k2 +

λ

4

(m2 + π2)(m2 + 5π2)

π2m2Le
k +

(m2 + π2)2

m2

[

1

λ
+

λ

Le2

]

− λ

Le
RC .

(4.16)
The condition C = 0 becomes

RT = R(C)
T (RC ;m) =

Lek(m2 + π2)2 + (m2 + π2)3

λ(Lek +m2 + π2)m2
− λLek + Le(m2 + π2)

λ(Lek +m2 + π2)
RC . (4.17)

As for the non-reacting case, this is identical to the c = 0 boundary RT = R(M,π2)
given by equation (3.17), and this suggests that the presence of reactions does not alter
the structure of the bifurcation across this boundary.

The condition B2−4AC = 0 also defines a parabola in the (RC ,RT )-plane. The details
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Figure 4. Results of Galerkin analysis with k > 0, for λ = 0.25, Le = 10 and m = π. (a)
Boundaries of stability regions in the (RC ,RT )-plane, for k = 20; legend as for figure 3 a. (b,c)
Amplitude of the steady solution for Ψ1 against RT for λ = 0.25, Le = 10, m = π, RC = −5 and
(b) k = 10; (c) k = 40; legend as for figures 3 b and c. (d,e) Stability and bifurcation boundaries
in the (k,RT )-plane, for (d) RC = −5, (e) RC = 2. Legend is the same as in (a).

are given in appendix A.3: as for k = 0, the parabola is centred on the line RT = R(B)
T ,

and the line RT = R(C)
T is tangent to the parabola.

Figure 4 illustrates how the linear and nonlinear stability properties of the system
change as k is varied, for fixed m. We first consider figure 4 a, comparing it with figure

3 a for k = 0. As k increases, the intersection (R(BC)
C ,R(BC)

T ) between R(B)
T and R(C)

T
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moves up and to the left. The parabola B2 − 4AC = 0 continues to be tangent to the

RT -axis, and it becomes correspondingly wider as R(BC)
C moves away from this axis.

Meanwhile the gradient of R(C)
T reduces more rapidly than that of R(b)

T , with the effect
that region IV occupies an increasing region (this is the contribution of reaction to

instability). For sufficiently large k, the slope |dR(C)
T /dRC | becomes less than the slope

|dR(b)
T /dRC | = 1/λ, and the shape of the stability diagram changes. This transition

occurs when k = (1 − 1/Le)(m2 + π2)/(1 − λ) > kcrit; we will not consider it further,

because when k & kcrit we know that R(c)
T provides the stability boundary everywhere,

and the position of R(b)
T is no longer physically relevant.

Figures 4 b–e show how the stability picture alters as k is increased for a fixed value
of RC , both in the SS regime RC < 0 (figures 4 b–d) and the SU regime RC > 0 (figure
4 e). In the SU regime, the transition is always the pitchfork bifurcation from I to IV

at RT = R(C)
T . In the SS regime, at low k, the picture is essentially identical to that

for k = 0 (see figure 3 b). As k increases, region III disappears (figure 4 b): the loss
of stability of the zero solution coincides with the disappearance of the unstable finite-

amplitude solution branches, so R(C)
T marks a subcritical pitchfork bifurcation. Finally,

for sufficiently large k, our fixed value of RC lies to the right of the point where R(C)
T

glances against the parabola, and we again have a supercritical pitchfork bifurcation from
region I to region IV (figure 4 c).

4.3.1. Interpretation of results when m is not externally imposed

It is necessary to consider how we should interpret these results for k > 0, given that
the preferred wavenumber at the onset of instability may now vary strongly with the

other parameters. The interpretation is easiest for values of RC such that R(c)
T < R(b)

T ,

so the stability boundary is given by R(c)
T . In this case, the stability boundary for any

given m is identical to the line R(C)
T for the same value of m; consequently, whichever

mode is selected by the linear instability, the mechanism will be the same, and the loss
of stability is through a pitchfork bifurcation.

When R(b)
T < R(c)

T , the stability boundary is given by R(b)
T , and we know that the

onset will be through an oscillatory instability which, when RT is close to the stability
boundary, selects a mode of wavenumber m2 = Mb. For the cases plotted in figure 4,

the stability boundary is always above the bifurcation boundary R(sub)
T at which the

nonlinear steady solutions appear, and so it is always possible for the growing perturba-
tion ultimately to ‘lock on’ to one of these solutions. It is necessary to show that these
solutions are always available (otherwise the wavenumber of the convective rolls would
have to change for a steady solution to emerge, and it is conceivable that no steady

behaviour would be available). This will occur if the bifurcation boundary R(sub)
T for the

mode m2 = Mb lies below the boundary R(b)
T for all values of RC , λ, Le and k. This in

turn will occur if there are no intersections between the line RT = R(b)
T and the parabola

B2 − 4AC = 0, where A, B and C are evaluated at m2 = Mb. Seeking such an inter-
section leads to a quadratic equation for RC , and while we have not been able to prove
that the discriminant of this equation is always negative, extensive numerical experimen-
tation indicates that this is the case across the whole range of parameters (0 < λ < 1,
1 < Le 6 100, 0 6 k 6 50) investigated. We may therefore be fairly confident that the
bifurcation structure suggested by figure 4 does represent the means by which the onset
of convection occurs.

Finally, it is also interesting to consider how the position of the boundary RT = R(sub)
T
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between regions I and II varies with m. In general, there does not appear to be a closed-

form expression for the value of m that minimises R(sub)
T . However, it is straightforward

to carry out the minimisation numerically for given parameter values and thus to obtain
an estimate of the maximal region in which the Galerkin analysis predicts that steady
subcritical convection is possible. An example of this estimate will be shown below in
figure 6.

5. Numerical tests of the linear stability analysis

In general, linear stability analysis and the Galerkin method described in §4 have
proved reliable methods of investigating convective systems. However, it is useful to test
their predictions by comparing them with a full numerical integration of the system (2.1)–
(2.4), for several reasons. Firstly, the complexity of the analysis makes an independent
check desirable. Secondly, numerical methods can give information about the fully non-
linear behaviour of the system, including the presence or absence of subcritical modes,
which the methods employed above can only suggest rather than establish. Thirdly, a
numerical approach is not restricted to considering initial conditions which differ only
slightly from the conductive state, and it can therefore test not only whether the conduc-
tive state is stable, but whether it is more generally attracting, thus strengthening the
conclusions which can be drawn from the linear analysis. (This is particularly valuable in
regions where the Galerkin analysis suggests that multiple steady solutions are available.)
Finally, the inevitable restrictions of numerical methods (for example, to a horizontally
bounded or periodic domain) provide a test of how applicable the conclusions drawn
from the idealised analysis are to less idealised geometries. We have therefore carried out
a series of numerical experiments to test the predictions of §3 and to examine briefly the
possibility of subcritical instability.

5.1. Numerical approach

5.1.1. Numerical integration scheme

The equations (2.1)–(2.4), nondimensionalised according to equation (2.6), were in-
tegrated numerically using a standard Cholesky factorisation solver for the pressure
field, combined with the semi-Lagrangian Crank–Nicolson (SLCN) scheme described by
Spiegelman & Katz (2006) for the transport–reaction equations. This scheme, which was
developed for geological transport–reaction problems, is computationally efficient and is
stable even for large timesteps, allowing large series of numerical experiments to be run
in a relatively short time.

In the SLCN scheme, the transport–reaction equations are discretised in time over the
interval tn 6 t 6 tn+1 using the values of T and C on the spatial grid points at t = tn+1,
while the values of T and C at t = tn are calculated by interpolation at spatial points
which are ‘back-projected’ from the grid points using a velocity field interpolated at the
half-way time tn+1/2 = (tn+tn+1)/2. The purely advective part of the transport equation
is thus accounted for automatically in the time-discretisation; meanwhile the diffusion
and reaction terms are evaluated using interpolated values of T and C on the spatial
mid-way points at tn+1/2. This gives an implicit scheme which, given the variables at
t = tn together with some estimate of the velocity at tn+1/2, may readily be solved for
T and C at t = tn+1 by standard methods.

The integration procedure at each timestep t = tn is iterative. First the pressure is cal-
culated from the existing T and C fields, and the velocity at tn is calculated from this. A
‘half-way’ velocity field at tn+1/2 is now obtained by interpolation, and this is used in the
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SLCN scheme to obtain the T and C fields at t = tn+1. (On the first iteration, the esti-
mate u(x, tn+1/2) = u(x, tn) is used; thereafter u(x, tn+1/2) = [u(x, tn) +u(x, tn+1)]/2.)
An improved estimate of the pressure and velocity fields at tn+1 is now calculated by
solving for p with the new estimates of T and C at this time; the procedure can then be
iterated until it has converged. (In the computations shown here, all fields were calculated
to an accuracy of 10−9.) To reduce diffusive errors, the time steps in all calculations were
chosen adaptively to be close to the Courant condition.

5.1.2. Initial and boundary conditions, numerical parameters and validation

For all the numerical experiments described here, the initial condition was taken to be

C = T =
1

2
− 1

2
tanh

(

10

[

z − 1

2
+ δ sin

(

2πjx

5

)])

for j ∈ N. (5.1)

The boundary conditions (2.12) were applied on the horizontal boundaries, while peri-
odicity was imposed at the vertical boundaries.

Equation (5.1) provides a smooth initial condition in which the initial vertical gradients
occur away from the boundaries: by varying the parameter δ the integration can be
‘seeded’ more strongly with a periodic disturbance having wavenumber m = 2πj/5 (so
there are j periods within the computational domain of width 5 used in our calculations).
Values δ = 1 (a ‘strongly periodic’ initial condition) and δ = 10−5 (a ‘weakly periodic’
initial perturbation) were used in the numerical experiments described below: j was
taken to be 1 unless otherwise stated. This initial condition clearly does not represent a
small perturbation to the conductive base state, as investigated in §3. In comparing our
numerical results with the linear analysis, then, we do not investigate directly the growth
or decay of perturbations to this base state; rather, we use the initial condition (5.1) to
investigate the long-term state of the system, thus testing whether the linear and Galerkin
analyses, despite their specialised nature, capture the overall behaviour of the system.
A further advantage of starting far from the conductive base state is that it is easier to
access the nonlinear steady states available in region II of the stability plots (figures 3
and 4). Within this region, we expect the initial condition to be important; outwith it,
we do not expect the initial condition to matter, and a series of preliminary experiments,
varying j and δ in equation (5.1) as well as considering initial conditions comprising a
conductive profile plus some small-amplitude noise, supported this expectation.

The equations were solved in a rectangular domain of 30 × 150 square grid cells, i.e.
0 < x < 5 and 0 < z < 1. This size was chosen to allow a large number of calculations
in a short time, while providing an aspect ratio of 5 (which is sufficient for multiple cells
to develop). The stability calculations for k = 50 and for selected values of (RC ,RT )
with k = 10, and the wavenumber calculations in §5.3, were repeated at double this
resolution with practically identical results, suggesting that the resolution was adequate
to resolve the convection. The only region in which there were systematic differences
was that of very high RC and k, where the number of convective cells becomes large
and could not be adequately resolved at the lower resolution. (The results shown in §5.3
were obtained at the higher resolution.) In addition to these repeated experiments, the
method was validated for pure DDC by testing it against simple analytical results for the
advection and diffusion of a point source of heat or solute, and by testing its predictions
of heat transfer across the layer against the results tabulated by Schoofs (1999) (§3.4.1):
agreement to within 1% was obtained in the latter case. Finally, its ability to reproduce
the stability diagram for k = 0 (figure 2 b) was tested and found to be satisfactory.
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5.2. Stability boundaries and subcritical convection

Figures 5 and 6 summarise the results of a large number of numerical experiments car-
ried out to validate the linear stability analysis against the numerics. In each experiment,
the integration was started from the initial condition (5.1), and the numerical experi-
ments were continued for 1000 iterations, corresponding to dimensionless times t between
around 40 and 2500; the criterion used to distinguish between ‘conductive’ and ‘convec-
tive’ cases was whether by the end of the experiment the maximum value of |u| in the
domain was greater or less than 10−5. (In a real reactive fluid-rock system, the reactions
might conceivably cause significant changes to the porosity or permeability of the rock
over these very long times (cf. §2): our object here is not to consider the effect of such
feedback, but we note it as an important topic which we hope to address in future work.)

Figure 5 a shows the results for k = 50, when the stability boundary is given everywhere

by RT = R(c)
T . The linear analysis agrees very well with the numerical results, with only

a few anomalies very near the boundary. Possible explanations for these include the fact
that growth or decay rates in this region are small (making it hard to distinguish between
stable and unstable cases); the restrictions on m imposed by the horizontally periodic
domain; and the limits of the numerical resolution (see the discussion of figure 7 f, below.)
However, the results overall are very encouraging and confirm the strong effect of the
reaction term on the stability of the system.

The picture for weaker reactions is more complicated. In the SU regime RC > 0, the
linear analysis again predicts the boundary between conductive and convective behaviour
very well (figure 5 b). In the SS regime RC < 0, there is clear evidence of a region of
subcritical convection. This is explored further in figure 6, which summarises the results
for six series of experiments carried out in the SS regime, with δ = 1 and 10−5 and j = 1,
3 and 10.

The most striking feature of the results for a strongly periodic initial condition, δ =
1 (figure 6 a) is the strong dependence of the eventual state on the initially imposed
wavenumber j. Of the values tried, j = 3 was the one from which steady nonlinear
convection was most readily accessible, and thus corresponds to the lowest pair of lines
in figure 6 a. With j = 1, the subcritical convective solutions were slightly less accessible,
and for j = 10 there is no evidence that subcritical convective solutions were accessible at
all: the highest conductive and lowest convective cases neatly straddle the linear stability
boundary. (In all cases in which a subcritical convective state was established, it consisted
of three complete convective cells within the computational domain, i.e. m = 6π/5; it
is therefore not surprising that these states were most readily accessed from the initial
condition with j = 3.) Bearing in mind that even for δ = 0, the initial condition (5.1) is
somewhat different from the conductive base state, it appears that the key to accessing
subcritical convection is the presence of a marked horizontal variation with an appropriate
scale, which favours horizontally non-uniform convective rather than horizontally uniform
conductive behaviour.

In contrast, the results with small δ (figure 6 b) all follow the linear stability boundary
reasonably closely, and there is very little difference between the results for various values
of the imposed wavenumber j. (A close examination reveals that the results for j = 3
track the linear stability boundary almost exactly, while those for j = 1 and j = 10 are
slightly more stable than the linear analysis predicts: this may be an effect of the very
slow growth rates near the stability boundary, which mean that perturbations take an
extremely long time to emerge unless the initial state is ‘seeded’ with some disturbance
close to the maximally unstable wavenumber.)

The difference between the small- and large-δ results makes it clear that in the region
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subcritical convection.

immediately below the stability boundary for RC < 0, nonlinear convective solutions
are available even though the conductive base state is stable, and that the accessibility
of these solutions may depend crucially on the initial condition of the system. It is
interesting that the Galerkin analysis predicts that subcritical convection can occur in a
slightly wider region than that in which we have found it: this may reflect the inaccuracy
of the Galerkin ansatz far from the linear stability boundary, or simply the restrictions of
the particular initial conditions we have employed. We intend to investigate this region
further in a future study.
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5.3. Wavenumbers

The other key prediction of the linear stability analysis is that for k > 0 the favoured
wavenumber of the convective motion increases strongly with increasing RC . To test this
prediction, we carried out a series of experiments, taking transects across the (RC ,RT )-
plane just above the stability boundary. In each case, the perturbation was initiated and
allowed to reach a steady or near-steady state as in §5.2. The number nc of cells in the
periodic domain 0 6 x 6 5 was counted for each steady state, providing the wavenumber
M = (2πnc/5)2.

A summary of these experiments and some specimen plots of the steady convective
motion are shown in figure 7. These illustrate well the changing pattern of convection
which occurs along the stability boundary as RC is increased: for large negative RC

(figure 7 b) the convective rolls are slightly wider than they are square; as RC increases
the cells become increasingly narrow, until in figure 7 f they have reached an aspect ratio
of more than 4:1. Note also that there is a slight suggestion of irregularity in figures 7 d
and e, which suggests that the convection may not have completely stabilised by the end
of these experiments. (Typically in our experiments, the dominant wavenumber became
established rapidly, but there was some long-wave variation inherited from the initial
condition which took longer to die away.)

This variation is described quantitatively in figure 8. The results cover a range of
predicted wavenumbers from M = 6.15 (at RC = −100, RT = 400) to M = 184.2 (at
RC = 100, RT = 350), capturing the strong increase of M along the stability boundary
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which is apparent in figures 1 d and 2 d. Allowing for the quantisation of M which
is imposed by the horizontal periodicity of the computational domain, the agreement
between the numerical results and the linear stability analysis is good, indicating that
the eventual convection pattern is indeed determined by the favoured linear mode, and
that a strong change in the convection pattern can be caused by the reaction. There
are occasional anomalies, where the number of cells is one more or fewer than might be
expected. This indicates that the growth rate of the favoured wavenumber is sometimes
not very much greater than those of the adjacent wavenumbers, and so the eventual
steady state may be affected by the choice of initial perturbation or by numerical error.
However, the overall trend in M survives these minor anomalies.

The results of these numerical tests suggest that the linear stability analysis successfully
captures the processes around the onset of instability, and in particular that imposing
horizontal periodicity does not affect the character of these processes. They also indicate
the need to investigate more thoroughly the nonlinear dynamics in the SS regime and
possibly also further from the linear stability boundary. However, these investigations lie
beyond the scope of the current study.

6. Discussion and conclusions

We have used a combination of stability analysis and numerical integration to build
up a picture of how temperature-dependent mineral solubility affects the onset of ther-
mosolutal convection in a porous medium. In contrast to most previous studies, we have
focussed on cases in which the dominant contribution of the reaction to buoyancy comes
from the change in solute concentration rather than from changes in temperature. As
expected, we have found that the precipitation and dissolution of the mineral may have
a significant effect on the stability of the conductive base state and on the patterns of
convection which occur.

One important finding is that in general, the presence of reactions affects the critical
wavenumber at which the onset of instability occurs: similarly strong, though qualita-
tively different, dependences of critical wavenumber on reaction rate were found in the
problems considered by Gutkowicz-Krusin & Ross (1980) and by Steinberg & Brand
(1983). In the solutally unstable (SU) regime RC > 0, reactions may strongly increase



The onset of reactive thermosolutal convection in a porous layer 31

this wavenumber, so the convective cells which result are narrower than a model of pure
double-diffusive convection would predict. In the solutally stabilised (SS) regime RC < 0,
it may increase or decrease the wavenumber, depending whether the conductive state is
subject to a monotonic or an oscillatory instability. This change in the spatial pattern of
convection has obvious applications to ore deposition problems such as that considered
by Raffensperger & Garven (1995a,b).

Precipitation and dissolution also change the positions of the stability boundaries from
those in pure DDC. In the SU regime, they tend to stabilise the system, as destabilising
solute is removed from solution. For weakly destabilised cases (0 < RC < k), the stabil-
ising effect of the reaction term can stabilise the system even in the absence of diffusion,
while for higher values of RC , diffusion is essential to the stability. This demonstrates the
danger of disregarding the solutal diffusion term even for very fast reactions (cf. Steinberg
& Brand 1983), and indicates when particular care may be necessary in the handling of
solutal diffusion in more detailed numerical simulations of convecting geothermal sys-
tems. In the SU regime, the transition to instability is always through a supercritical
(pitchfork) bifurcation, as in pure DDC.

In the SS regime, the effect of precipitation and dissolution is more complicated. In
pure DDC, instability may occur, as RT is increased, through either an oscillatory or a
monotonically growing perturbation; the bifurcation structure near the stability bound-
ary may be sub- or supercritical. For sufficiently solutally stable systems (RC < Rcrit

C ),
the instability is oscillatory and stability is lost to a pair of finite-amplitude steady so-

lutions. For very weakly solutally stable systems (R(BC)
C < RC < 0), the instability is

monotonic and the bifurcation is a supercritical pitchfork (as in the SU regime). For

intermediate cases (Rcrit
C < RC < R(BC)

C ), the instability is still monotonic, but stability
is again lost to a pair of finite-amplitude steady solutions.

One effect of the reaction is to inhibit oscillatory instabilities, increasing the critical

thermal Rayleigh number R(b)
T which corresponds to oscillatory onset. This may occur

because the reaction term couples together the temperature and concentration fields and
so inhibits double-diffusive and double-advective effects. For RC < 0, the effect of the
reaction on the monotonic mode of instability is destabilising: the corresponding bound-

ary R(c)
T is reduced as k increases and stabilising solute is removed from the system. The

consequence of this is that, if we hold RC < 0 fixed and increase k, we may see the
stability threshold first rise and then fall with increasing k. For RC > Rcrit

C , the insta-
bility is always monotonic, and the system becomes more unstable as k increases. For
RC < Rcrit

C , initially the preferred mode of instability is oscillatory and the reaction is
stabilising; as k is increased further, the preferred mode of instability becomes monotonic,
and the reaction becomes destabilising. As k increases, the region of supercritical bifur-
cations increases at the expense of the region of subcritical bifurcations, and ultimately
the subcritical region disappears altogether for sufficiently high k. These predictions are
all supported by the numerical experiments described in §5.

While the results presented here were obtained for a rather idealised geometry, we
expect our qualitative findings to be more widely applicable. From a practical point of
view, the key implication of our results is that when simulating convective geochemical
systems, the treatment of reaction rates may be crucially important. Reaction rates
in geochemistry are often poorly constrained to within orders of magnitude, and as
we have show here, this uncertainty might lead to significant errors in the prediction
of fluid motion. This may be of particular interest in studies of geothermal systems,
where the onset of convection may substantially increase the heat flux in the system: our
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results suggest that the geochemical controls on this process should be more thoroughly
investigated.

There are many opportunities for further theoretical work to explore the thermosolutal
reaction–convection system described here. Natural extensions of the stability analysis
include considering other boundary conditions at the upper and lower surfaces (for exam-
ple, heat flux conditions or chemical disequilibrium), or studying the role of effects such
as anisotropic permeability or nonlinear equilibrium solubility curves. In a future study,
we intend to investigate further the nonlinear dynamics of the system, with a particular
focus on behaviour in the subcritical SS regime (which Mamou & Vasseur (1999) found
to be particularly rich in the case of pure DDC), on quantifying heat and mass transfer
across the layer, and on the long-term evolution of the porous matrix as precipitation and
dissolution affects its porosity and permeability. It is likely that in this paper we have
done no more than to scratch the surface of an interesting and complicated problem.
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helped to clarify and strengthen this paper substantially. DP acknowledges financial
support at the BP Institute through a postdoctoral fellowship under the NERC/EPSRC
EMS scheme (ref. NE/B50188X/1), as well as the hospitality of the Institute during a
visit in April 2006.

Appendix A. Technical details of various results

This appendix includes various mathematical details which have been omitted from
the main text for brevity.

A.1. Minimising R(M,N) over M and N

We start from the condition (3.17). We wish to minimise R(M,N) over M and N in the
semi-open ranges M > 0 and N > π2, with the additional condition that N/π2 ∈ N. For
the moment we will ignore the last condition and address the problem assuming that N
varies continuously; we will consider the consistency of this later.

The global minimum may occur within the (M,N)-region of interest, in which case
it must also be a local minimum over M and N simultaneously, or it may occur at the
boundary of the region, or in one of the limits N → ∞ or M → ∞. If it occurs at the
boundary N = π2 but not in one of the limits of M , then it must correspond to a local
minimum over M ; similarly if it occurs at the boundary M = 0 but not in one of the
limits of N , it must correspond to a local minimum over N .

We will first dispose of the limits of large M or N . As M → ∞, R ∼ M/λ, while
as N → ∞ or M → 0, R ∼ N2/(Mλ). The global minimum therefore cannot occur
in any of these limits. We are left with two possibilities: either the global minimum
occurs internally or on the boundary N = π2. We will attempt to locate an internal
local minimum in the region N > 0, M > 0: if no such minimum exists, then the global
minimum must occur on N = π2, while if such a minimum does exist then we will have
the additional task of determining whether it occurs for N > π2 and whether it is a
global minimum.

We now consider how many local minima we may expect over M and over N .
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For general values of M , we find that ∂R/∂N = 0 if and only if f(N) = 0, where

f(N) = N3 + (2kLe+ 3M)N2 + (k2Le2 + 4kLeM + 3M2)N

+M(M + kLe)2 +
1

2
kLeMRC(λ− Le). (A 1)

We note that df/dN > 0 for all N > 0, and so f(N) has a root for N > 0 if and only if
f(0) < 0; i.e. R(M,N) has a local minimum over N if and only if

M <Mf =

[

1

2
kLeRC(Le− λ)

]1/2

− kLe. (A 2)

In other words, any local minimum over N can be a local minimum over both M and
N only if M < Mf , and in our search for a local minimum over (M,N) we can confine
ourselves to the range 0 < M < Mf . This immediately tells us that for RC < 0, the
global minimum over N must occur at N = π2. It also means that if Mf < 0, then the
global minimum over N must occur at the boundary N = π2 for any physical value of
M ; we need therefore worry about a local minimum over N if and only if Mf > 0, i.e. if
and only if

k < kf =
(Le− λ)

2Le
RC . (A 3)

Keeping N general, we now consider the variation of R(M,N) with M . The condition
∂R/∂M = 0 at M = Mc leads to the quartic equation (3.18), so there can be at most four
local extrema of R(M,N). Looking at the limiting behaviour of R(M,N) for small and
large M , we find that there must be at least one local minimum over M in the (physical)
range M > 0, and one local maximum over M in the (unphysical) range M < 0. With a
little further effort, we can show that

∂2R

∂M2
=

2N2

λM3
+

2kLe(Le− λ)

λ(kLe+M +N)3
RC , (A 4)

and so, at least for RC > 0, we cannot have more than a single local minimum in the
range M > 0. Since our search for a global minimum has already restricted us to the
range RC > 0, we know that there is exactly one minimum over M to be concerned
about.

We now return to the question of optimising over N . If we can prove that the (unique)
value of M which minimises R must always be greater than Mf (regardless of the value
of N), then we will have shown that the minimum must correspond to N = π2. This in
turn will follow if we can prove that ∂R/∂M(Mf , N) < 0 ∀N > 0.

The sign of ∂R/∂M is the same as the sign of g(M,N), where g(M,N) is the LHS of
(3.18), multiplied by a factor of Le2. Substituting in M = Mf and rearranging, we find
that

g(Mf , N) = −P 4 − P 3 − β

(

1 − β

4

)

P 2 +
1

4
(1 − β)2P − 1

16
(1 − β)2, (A 5)

where

P =
N

√

2kLe(Le− λ)RC

and β =

√

2kLe

RC(Le− λ)
. (A 6)

We note that 0 < β < 1 for k < kf , and it is simple to show by plotting g(P ;β) that
there are no points in the range P > 0, 0 < β < 1 at which g > 0.

We have now established that there is no local minimum over (M,N) within the range
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M > 0, N > 0, and this, in conjunction with our earlier results, means that the global
minimum over (M,N) must occur on the boundary N = π2. We note, finally, that this
is consistent with the condition that N/π2 ∈ N.

A.2. Asymptotics for R(c)
T and Mc when 1/Le� 1

A.2.1. Fast or moderately fast reactions, k = O(1)

We will first consider the case where 1/Le� 1 but the reaction rate k is of order unity.
As we have seen, the limit Le → ∞ is a singular limit of the equation (3.18), and it is
possible to find three different leading-order balances. We will consider each of them in
turn.

(a) M = O(1). We seek solutions of the form M = M0 + M1/Le + O(Le−2), where
M0 > 0. At leading order, (3.18) becomes

(

k2 −RCk
)

M2
0 − k2π4 = 0. (A 7)

When RC < k, this has the unique positive solution M0 = π2
√

k/(k −RC). When
RC > k, on the other hand, there is no positive solution forM0. This indicates that in the
non-diffusive limit 1/Le = 0, reaction can only stabilise the system at finite wavelengths
for RC < k, and for higher values of RC some diffusion must be necessary.

Considering the next-order terms in 1/Le, we find that

M1 = −π
2RC

2

(

2π2

√

k

k −RC
+ 2π2 + kλ

)

√
k(k −RC)3/2

, (A 8)

and substituting the expansion for M into R(c)
T and expanding in 1/Le, we obtain

R(c)
T ∼ π2

λ

(

1 +

√

k −RC

k

)2

−RC +
R(c1)

T

Le
+ O(Le−2), (A 9)

where

R(c1)
T = −

(

π2 +
π4

λk

)

k −RC

k
+

(

π2 +
2π4

λk

) RC
√

k(k −RC)
+ π2 +

π4

(k −RC)λ
.

(A 10)

We note that in the region of RC = k, this expansion breaks down since R(c1)
T /Le is no

longer small compared to the zero-order term.
(b) To investigate the irregular root, we have to take a little more care. We now seek

solutions to (3.18) of the form M = µLeα where µ = O(1); substituting this in, we find
that the only consistent dominant balance which includes the leading terms in M occurs
when α = 1, and at leading order we have

Le2µ4 + 2kLe2µ3 + (k2 −RCk)Le
2µ2 + O(Le) = 0. (A 11)

The positive solution is easy to obtain: we find

µ ∼ −k +
√

RCk, i.e. M ∼
√
k(
√

RC −
√
k)Le, (A 12)

with the condition that RC > k in order that M > 0. (This result is independent of the
vertical wavenumber π2, because it represents a short-wavelength mode in which lateral
rather than vertical diffusion is dominant.) Seeking an expansion in powers of Le−1 with
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this leading-order term, we find

M = Le

(

−k +
√

RCk −
[

π2 +
λ
√
RCk

2

]

1

Le
+ O(Le−2)

)

, (A 13)

and substituting this expansion into R(c)
T yields

R(c)
T ∼ − (

√
RC −

√
k)2Le

λ
+
π2

λ
−
√

RCk + O(Le−1). (A 14)

(c) The final case occurs when k −RC = R/Le, for some R = O(1). Substituting this
into (3.18), and again seeking solutions of the form M = Leαµ, we find that the only
consistent balance for µ > 0 occurs when α = 1/3 and

2kµ3 − k2π4 + O(Le−1/3) = 0. (A 15)

The leading term in the solution is then given by M = (Lekπ4/2)1/3. To find the next-
order term, we substitute into (3.18) the expansions RC = k−R/Le andM = Le1/3(M0+
Le−1/3M1 + O(Le−2/3)), obtaining

M =

(

Lekπ4

2

)1/3

− R + kλ+ 2π2

3
+ O(Le−1/3) (A 16)

and thus

R(c)
T =

π2

λ
− k +

3

λ

(

π8

4k

)1/3
1

Le1/3
+ O(Le−2/3). (A 17)

A.2.2. Slow reactions k = O(1/Le)

It is also natural to investigate the limit of a large Lewis number and a slow reaction
rate. We may express this formally as 0 < k ∼ 1/Le � 1, so we set k = K/Le where
K = O(1), and consider the regime 1/Le � 1. As before, we consider the two criteria
b < 0 and c < 0.

(i) The condition b < 0 is given as before by equation (3.16). Setting k = K/Le and
expanding for 1/Le� 1, we find

R(b)
T =

4π2

λ
− RC

λ
+

2(2π2 +K)

λ

1

Le
− K2

4π2λ

1

Le2
+ O(Le−3), (A 18)

so the two stabilising terms combine to raise slightly the threshold of instability.
(ii) To tackle the condition c < 0, we investigate equation (3.18). Substituting in

k = K/Le, we find that there are two possible consistent scalings for Mc, depending on
the sign of RC .

(a) If RC > 0, the only consistent scaling is Mc ∼ Le1/2, and we then obtain

Mc = Le1/2

[

√

RCK − K + π2

√
Le

+
π4 −RCKλ

2
√
RCK

1

Le
+ O(Le−3/2)

]

. (A 19)

It follows that

R(c)
T = −RCLe

λ
+

2
√
RCK

√
Le

λ
+
π2 −K

λ
+ O(Le−1/2). (A 20)

The weak reaction term now does not alter the leading-order result from pure DDC, and
cannot stabilise a solutally unstable system.

(b) If RC < 0, the only consistent scaling is Mc ∼ Le−1/2 (very long waves), and

the corresponding value of R(c)
T scales as R(c)

T ∼ −LeRC . This boundary lies above the

boundary RT = R(b)
T and so is physically irrelevant.
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(c) The results above suggest that we should consider separately the regime in which
RC ∼ 1/Le. However, this regime does not offer a significant simplification of equation
(3.18), so we do not pursue this analysis here.

A.3. Properties of the boundary B2 − 4AC = 0 when k > 0

In the reactive problem, k > 0, the condition B2 − 4AC = 0 becomes

(X+Y )2+(δX2k
2+δX1k+2δ)X+(δY 2k

2+δY 1k−2δ)Y +(δ4k
4+δ3k

3+δ2k
2+δ1k+δ

2) = 0,
(A 21)

where we have defined X = λRC and Y = LeRT and δ as before, and where

δX2 = (2Le− λ)Le
(m2 + π2)

2π2m2
> 0,

δX1 =
(

2Le
[

4π2λ+ Le(m2 + π2)
]

− λ2(m2 + 5π2)
) (m2 + π2)

2π2m2λ
> 0,

δY 2 = λLe

(

m2 + π2
)

2π2m2
> 0, δY 1 = (m2 + 5π2)λ

(

m2 + π2
)

2π2m2
> 0, (A 22)

δ4 = Le2λ2

(

m2 + π2
)2

16π4m4
> 0, δ3 = (m2 + 5π2)λ2Le

(

m2 + π2
)2

8π4m4
> 0,

δ2 =
(

λ2(m4 + 18π2m2 + 33π4) − 8π2Le2(m2 + π2)
)

(

m2 + π2
)2

16π4m4
R 0,

and δ1 = (λ2 − Le2)(m2 + 5π2)

(

m2 + π2
)3

2π2m4Le
< 0. (A 23)

The form of the quadratic terms indicates that this curve always represents either a
parabola or a pair of parallel lines. Numerical experimentation further indicates that the
boundary remains a non-degenerate parabola for 0 < λ < 1 and Le > 1, regardless of the
value of k.

It can be shown (we omit the algebra here for simplicity) that when X = 0, equation
(A 21) has a single solution for RT : in other words, the parabola is tangent to the RT -axis
(as it was in the case k = 0). However, the parabola is no longer tangent to the RC-axis.

We can also show that the intercept of R(B)
T and R(C)

T always occurs for some value of
RC < 0 regardless of the value of k. As before, the parabola B2−4AC must pass through
this point, and it is the only point at which it can intersect either line. There are only
two ways in which a parabola can have a single intersection with a straight line: either
the line is parallel to the symmetry axis of the parabola, or the parabola is tangent to
the line at the point of intersection. Since the gradient of the tangent is unique, and the

gradient of the symmetry axis is unique, we conclude that one of (R(B)
T ,R(C)

T ) must be
the symmetry axis of the parabola and the other must be tangent to it; we already know
which is which for k = 0, and assuming smooth variation we conclude that as before,

R(B)
T is parallel to the symmetry axis and R(C)

T is tangent to the parabola. Numerical
experimentation confirms this deduction.
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