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SOPHIA ANTIPOLIS

Aggregate and Fractal Tessellations

Konstantin Tchoumatchenko*, Sergei Zuyev |

Théme 1 — Réseaux et systémes
Projet Mistral

Rapport de recherche n° 3699 — Juin 1999 — 28 pages

Abstract: Consider a sequence of stationary tessellations {©", n = 0,1,...} of R% con-
sisting of cells {C™(z7)} with the nuclei {z}. An aggregate cell of level one, C§(z?), is the
result of merging the cells of ©! whose nuclei lie in C°(x?). An aggregate tessellation ©F
consists of the aggregate cells of level n, Cg'(z?), defined recursively by merging those cells
of ©™ whose nuclei lie in Cf'*(x?).

We find an expression for the probability for a point to belong to a typical aggregate
cell and obtain bounds for the probability of cell’s expansion and extinction. We give
necessary conditions for the limit tessellation to exist as n — oo and provide upper bounds
for the Hausdorff dimension of its fractal boundary and for the spherical contact distribution
function in the case of Poisson-Voronoi tessellations {©"}.

Key-words: Aggregate tessellation — fractals — Voronoi tessellation — Poisson process —
Hausdorff measure — hierarchical models — telecommunications

* KEcole Normale Supérieure, DMI, 45 rue d’Ulm, 75230 Paris cedex 05, France. tchoumatchenko@ens.fr
T Statistics and Modelling Science dept., University of Strathclyde, 26 Richmond str., Glasgow, G1 1XH,
UK. sergei@stams.strath.ac.uk



Tessellations Agrégées et Fractales

Résumé : Soit {©™, n = 0,1,...} une suite de tessellations stationnaires de R? constituées
de cellules {C™(2™)} avec des noyaux {z7}. Une cellule agrégée du niveau un, C}(z?), est
le résultat de I'union des cellules de ©! dont les noyaux sont dans C?(z?). Une tessellation
agrégée OF est composée des cellules agrégées du niveau n, Cg'(z?), qui sont définies comme
les unions des cellules de ©™ dont les noyaux se trouvent dans Cj~"(z?), etc.

Nous obtenons une expression de la probabilité pour un point fixe d’étre couvert par une
cellule agrégée typique ainsi que les bornes sur les probabilités d’expansion et d’extinction
d’une cellule. Nous donnons des conditions nécessaires de ’existence d’une tessellation limite
quand n — co. Dans le cas ot {©"} sont des tessellations de Poisson-Voronoi nous donnons
également des bornes supérieures de la dimension de Hausdorff de sa frontiére fractale et de
la fonction de contacte sphérique.

Mots-clés :  Tessellation agrégée — fractales — tessellation de Voronoi — processus de
Poisson — mesure de Hausdorff — modéles hiérarchiques — télécommunications



Aggregate and Fractal Tessellations 3

1 Motivation

A tessellation of R? is a countable collection of closed Borel sets called cells such that
(a) union of all cells is the whole space;
(b) intersection of any two different cells has d-Lebesgue measure zero;
(¢) each bounded set intersects a finite number of cells.

Tessellations are widely used to model different cellular systems: body’s tissues in biology,
granulated materials in material science, crystal arrangements in physics, etc (see, e. g., [10]
and references therein).

Many examples of tessellations can be constructed by division of R? between the elements
of a countable nuclei set II = {z;} C R? according to a certain rule. For example, the
Voronoi tessellation has cells defined as

C(z;)) ={z € R? : |z — || < ||z — x|, Vj#i},

where || - || is the Euclidean norm. Thus, the cell with nucleus z; consists of the points
that are closer to x; than to any other nucleus. Reciprocally, given a collection of cells, one
can always assign a unique nucleus to each cell by a certain rule, for instance, its center of
gravity. In this paper we deal with stationary tessellations with the cells being stationary
random closed sets. We will always assume that the rule relating the cells with their nuclei
set II satisfies an obvious compatibility condition:

C(6(x:), 6(ID) = 6(C(:,11))

for any shift transformation @ in R? for which the point process II is itself stationary.

Recently, tessellations were used as models of service zones of telecommunication stations.
Under the reasonable assumption that the network’s subscribers are served by the nearest
to them station and that the whole area is covered by the network’s service, the zones form
the Voronoi tessellation with the stations being the nuclei set. If the latter is modeled by a
point process then the spatial variability of the zones and related performance characteristics
of the network may be described in terms of functionals of the corresponding random sets
and studied by means of stochastic analysis. The main advantage of these models is that
they dramatically reduce the number of structuring parameters of the model to just a few
parameters of the underlying stochastic process and often allow for an analytical treatment
of complex networks characteristics (see [1], [2], [6]).

In many cases, however, models using Voronoi tessellation over-simplify the complex
geometry of service zones. First of all, unlike Voronoi cells, real zones are not necessarily
convex. The relative sizes of the zones are affected by capacities of different stations. In some
cases, a station may not be contained in its proper zone. Last but not the least, the zones’
boundaries may be very fuzzy as, for instance, in the case of wireless communications. In
such systems, the base station that will handle a call from a mobile terminal is decided upon

RR n° 3699



4 K.Tchoumatchenko and S.Zuyev

the signal’s strength rather than Euclidean distance to the stations. Affected by the wave
attenuation phenomena, the zones’ boundaries have extremely irregular, distorted shapes.
This calls for development of more complex tessellation models that are still described
in terms of a small number of parameters and simple enough to be analytically treatable.
For this we introduce an operation of aggregation on tessellations equipped with nuclei.
Let ©° = {C%(x?)} and ©! = {C'(z})} be two such tessellations. Define the cells of a new
tessellation O = ©% 0 ©! as

aeh= U ceh.

7t Z;ECO(Zg)

In words, C¢ (2?) is the union of all the cells of ©! whose nuclei lie in C%(z?) (see Figure 1).
The result of such operation is again a tessellation though some C}(z?) may be empty. Due
to the independence and stationarity assumptions, a.s. no x% lies on the boundary I'(01),
and hence each ©!-cell belongs to a unique ©}-cell. Tt is easy to verify that the operation
of aggregation is associative

@00(61062) :(@00@1)062,

and that the aggregate tessellation is stationary provided the initial tessellations are sta-
tionary. Let {©"},en be a sequence of tessellations with the nuclei sets II,, = {2}, n € N.
Consequent aggregation of the first n terms of the sequence yields the aggregate tessellation
of order n

0”:(900@10...0@"

with the nuclei set Iy = {20}. The cells of this tessellation will be called aggregate n-
cells and denoted by Cg(z9). Of course, aggregate cells constructed in this way depend on
positions of the nuclei and are, in general, neither convex nor connected; nor do they need
to contain the nucleus. Figure 2 shows several simulated aggregate cells with nucleus at
the origin generated by independent Poisson-Voronoi plane tessellations with exponentially
growing intensities.

It is clear that more the intensities of the consequent processes differ, less the boundary of
cell C3+t(x9) deviates from the boundary of C§(2?). On the other hand, for close intensity
values the boundary becomes very irregular, cells are more likely to split and quite often
there is no points of I, 41 in Cg(2?), so that C3+*(2?) is empty. Using an analogy with
branching processes, we may think of the nuclei of the ©™-cells that make up the aggregate
cell C(z?), as of n-generation offspring of a 0-level parent nucleus z?. If we connect by
segments the nuclei IT,, of each level n with their offspring in the next level nuclei II,, 41, we
will obtain a family of spanning trees studied for Poisson-Voronoi case in [3]. In the present
paper we address properties of the aggregate cells rather than those of the spanning trees.

New phenomena appear in the limit, when n tends to infinity. As we have seen above,
there exist models in which with positive probability some of the aggregate cells are empty,
which means that the densities of 0-level nuclei that have not died out till the n-th generation

INRIA
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0.4

Figure 1: First and second iterations in the construction of aggregate cells. The boundary
of the previous level cell is countered.

Figure 2: Aggregate cells C¢*(0) in PVAT model and the initial C°(0) Voronoi cell. Left
image: n = 2, A = 10. Right image: n =20, A = 1.1.

form a decreasing sequence. A priori it is not clear if the limit is positive, i.e., that we do
not end up with all the O-nuclei Il dying out with probability 1. Next, even if the limit
is positive, will @f converge in some sense to a limit, say, ©F° that is a tessellation? It is
easy to imagine that ©3° may have a fractal boundary (it also may not! — see Example 1

RR n° 3699



6 K.Tchoumatchenko and S.Zuyev

in Section 2) and thus it is unclear if the boundary has d-Lebesgue measure 0 and whether
only a finite number of the limit aggregate cells hits a bounded set. Finally, if the boundary
does have a positive measure and thus the cells overlap, does a typical cell contain with a
positive probability a “core” — an open set with all the points belonging only to this cell?

As the examples in the text readily show, different models may manifest very different
behavior. We illustrate this on two basic models: cubic lattices and Poisson- Vorono: aggre-
gate tessellations, quoted as PVAT in the sequel, for which the elements of the sequence
{©"},.en are all Voronoi tessellations generated, respectively, by mutually independent ho-
mogeneous Poisson point processes II,,, n € N.

The structure of the paper is the following. In Section 2 we find an expression for the cov-
erage probability function for a typical aggregate n-cell via the corresponding characteristics
of @%, ..., O™, This result is valid for any independent sequence of stationary tessellations
although a closed form expression can be obtained only in a few cases. In section 3 we find
a uniform upper bound on the diameter of a typical cell in PVAT (a typical cell is the one
with nucleus at the origin under the Palm distribution of the process IIp). Here we also
give estimates for the probability of cell’s extinction and show that with positive probability
there is a ball contained in all n-level aggregate cells CJ'(0). In the next Section we prove
that this property is sufficient in general case for the limit cells, defined as the set lower
limit of {CF(2?)}nen, to form a tessellation, so that their boundaries have almost surely
d-Lebesgue measure 0. Defined by a simple recursive procedure, the boundary of the limit
PVAT has an intricate auto-similar structure at any scale allowing us to call it fractal. To
characterize its degree of irregularity, we provide in Section 6 an upper bound for its Haus-
dorff dimension. It is based on the analysis of the boundary’s contact distribution function
in the preceding Section 5. Note that the parts of the cell’s fractal boundary are highly
dependent making most of previously developed techniques for random fractals inapplicable
in our case (a presentation of modern methods used in studying fractals can be found, e. g.,
in Kenneth Falconer’s book [5]).

The following notation is used throughout the paper. By P we denote the distribu-
tion in a probability space carrying the sequence of independent stationary point processes
My, 10, ..., and by P%  the Palm distribution with respect to the process of nuclei IT,, of
level n, n =0,1,... Most frequently we consider the Palm distribution with respect to I,
for which we simply write P? instead of PJ. Similar notation is used for the corresponding
expectations. II,(B) stands for the number of points of II,, in a Borel set B C R?. The
intensity of II,, is denoted by A,, so that E, II,,(B) = A,|B| and it is the only parameter
characterizing a homogeneous Poisson process. We also assume that A\g = 1, which is just a
matter of scale choice.

Finally,

fxg(y) = Rdf(z) g(y — z)dz

INRIA



Aggregate and Fractal Tessellations 7

is the convolution of two functions, b(z,r) is the closed ball centered in x with radius r, and
bg is the volume of a unit ball in R?:

Y

= rapT

2 Coverage probability

Consider a tessellation ©™ of fixed level n. Under Palm probability P2, there is almost
surely a point of IT,, at the origin 0. Since the density of cells is A,,, the volume of a typical
cell is E2 |C™(0)| = A\; ! (see, e. g., [9], Corollary 5.2, equation (5.6)). Therefore,

)\n/Pon{y € C™(0)} dy = M\, EY / I(y € C™(0)) dy = \, E2 |C™(0)| =1,

so that the function

Fa(y) = 2Po{y € C™(0)}

is a distribution density in R?. It has the following interpretation. Given a realization of

C™(0), let &, be a r.v. uniformly distributed in the scaled set )\}/dC’”(O). Then f, is the
density of the the unconditional distribution of &, in R?.

The next statement provides a formula for calculating the probability that a point y € R?
is covered by a typical aggregate cell of level n.

Theorem 1 Let fo,,(y) = P°{y € CF(0)}. Then for each natural n,
Jon(y) = fox fux-x fu(y). 1)

Proof. By definition, for n = 0, obviously,

foly) =P°{y € C°(0)}.

Suppose, the statement of the Lemma holds for n — 1. By the Campbell theorem (see,
e. g., [11, p. 119]),

Ply e Cp(0)} =E° Y L(a} € C77'(0) Ly € C"(a7))

z? ell,

=X [ P{zeCy(0)} P2y —z € C™(0)} do.
Rd

It is easy to see that this expression is equivalent to

Jon(y) = /Rd Son—1(2) fuly — 2) dz.

RR n° 3699



8 K.Tchoumatchenko and S.Zuyev

Example 1 Consider a stationary tessellation ©™ of R? obtained by shifting the regular
mesh of d-hypercubes of side A\, with a vertex at the origin by a random vector uniformly
distributed in [0, A\;!]%. Note that the d-dimensional stationary mesh is simply a Cartesian
product of d one-dimensional independent components. Therefore, it is sufficient to study
the case d = 1 when O™ is a stationary sequence of the intervals of length A;;! on the line.

Assume that {\,} is a non-increasing sequence and Ag = 1. It is easy to see by induction
that the size of any ©F-cell along each coordinate axis is at least A, !, so there is always
at least one nucleus of IL,, ;1 in each cell. As a result, all aggregate cells are rectangles and
the cells never die. Moreover, for each n, the sizes of the aggregate cells along the line do
not change if A,4+1/), is a natural number and change periodically if A\,,41 /A, is a rational
one. By construction, the boundaries of the ©®"-cells have coordinates A\;!(k + u..), k € Z,
where u,, are independent uniformly distributed in (0,1) random variables describing the
shift. Define the nuclei set as

IL ={\,"(a+k+u,)}, k€Z, ae01]

so that the nucleus of each cell divides it in proportion a : (1 — &) from left to right.
According to (1), the characteristic function of fJ'(y) is given by

n - )\k iz)\_l(l—a) —izA la
X (2) = [ 55 (e 0me) - ematie).
k=0
In fact, a complete analysis of this model is possible. Let aj be the right boundary point of
the n-aggregate cell with the nucleus o + k + ug, k € Z. It is straightforward to verify that

the evolution of the boundaries are given by the following recursion

ap =ap ' +dy, where

P (1- o - (g — o= un))

with (z) = z —max{k € Z : k < z} being the fractional part of a real number z. Note that
for any z and for any w uniformly distributed in (0,1), the r.v. (z + u) is again uniform in
(0,1). Therefore,

Ed} =),'(1/2-a)
vardy = 1/(12)2),

so that there is a systematic drift to the right or to the left if @ < 1/2 or o > 1/2, respectively.
We have |d?| < 1. By the well known theorem on random series convergence (see, e. g., [4,
p. 239]), the boundaries of the aggregate cells almost surely stabilize as n — oo if and only
if both series (1/2 —a) Y., A;* and Y, A2 converge. We see a noticeable dependence on
the nuclei choice when, say, A, = n. In this case the cells stabilize only if @ = 1/2 and float
to plus or minus infinity depending on whether « is smaller or greater than 1/2.

INRIA
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Let us take a closer look at the coverage probability for Poisson-Voronoi aggregate tes-
sellations. For PVAT we have:

Fa(y) = An exp{—Anbally[|*} . (2)

The next two statements provide explicit formulas for the coverage probability in R' and R2.

Example 2 Consider PVAT in R! and assume that all \; are pairwise different. Then
fon(y) =D cidiexp{—2\ily|}, (3)
i=0

where

n )\ -1 n )\ -1 n )\ -1
— 1 T ]
c=2l[(1-3) Z(+y) I (1-3)
1=0 =0 m=0
l#7 m#j

Indeed, from Theorem 1 it follows that fo »(y) is the density of the sum of independent r.v.’s
oo & whose densities fi(y) are given by (2) with d = 1. Note that & = v; — v}, where
v;, v, are independent exponentially distributed r.v.’s with parameter 2);. The density of
i vi equals (see, e. g., [4, p. 170])

n n )\1 —1
Zmi exp{—2\y} [] (1 —~ )\—l> I(y > 0).
=0 =0
l#1
Finding its symmetrization, we obtain (3).

Example 3 Consider PVAT in R2. According to (2), in R? the r.v. & has normal distri-
bution with zero mean and the covariance matrix

(75" @) (4)

Thus )"} , & is also normal with zero mean and the covariance matrix being the sum of (4):

(5" )

where

e (%)

=0

RR n° 3699



10 K.Tchoumatchenko and S.Zuyev

The corresponding density is therefore

fO,n(y) =L, eXp{—Lnﬂ'”yHQ}

that is the same as for a typical cell in the ordinary Voronoi tessellation with the nuclei
intensity L,,. Such “mean field” approximation is valid only in this planar case, the reason
being the stability of the distributions of &;’s in d = 2.

Example 4 For PVAT in R?, as follows from (1), the characteristic function of fo ,(y) is
given by

TIx(/a519),
where x(t) is the characteristic function of the density fo(y) in (2). It can be shown that

T(4) & (=1)™ || A\ T(m+ 1T (1 + 22
X<f>=ﬁ5/2)2((zm))! I [F(1+§)] (mr(fif%) z)

m=0

An alternative representation uses Bessel functions of the first kind (see, e. g., [7]):
om)4/2 [ b d
Xt = s [T e sl
#1472 Jo
3 Evolution of aggregate cells

In this section we will investigate the behavior of the typical aggregate cell C7'(0) as n tends
to infinity on the Palm space of the process IIg. The maximal and the minimal distance
from a point z to the cell’s boundary can be defined, respectively, as

Ro(z) = min{r : b(z,r) D CF(0)} if CF(0)#0,
ni#) = 0 otherwise;

rn(z) = max{r : b(z,r) C Cy(0)} if z € CF(0),
00 otherwise.

The definition takes into account the fact that the aggregate cell of order n > 1 might not
contain z or might be empty. Our aim is to characterize the distribution of

R (z) =sup R,.(2),

Too(2) = ir&f rn(2).

INRIA
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Theorem 2 Let ¢(y) be the inverse of the function y(z) = xe*. Assume that

c= i (@)Ud = ie“”“")/‘i < 00. (5)
n=1 n n=1
Then for PVAT the following inequalities hold for all p > ¢v/d and any z € R%:
PO {Ran(z) > o+ 2]} S a1 3 e#Om140), ©)
n=1
P {re(2) =0|r0(2) > p} < i e ¢(n)Ale) (7)
n=1

where
ar = 2bgd?/ it

A(p) = (ﬁ)d+1/d—1.

Proof. We begin from inequality (6). Since
PY{Ru(2) > p+ 1211} < P'{Ruc(0) > p},

it is sufficient to prove (6) for z = 0. Let {p,} be a monotonously increasing sequence of
positive numbers converging to p, then

{Roo(0) > p} C UL {Rn(0) > pn}.

Next, we use the following inequality: if B C US2 B, then

P(B) < P(By) + f: P(B,NB,_1).
n=0
Hence,
P{R(0) > p} <P°’{Ro > po} + i P°{R,(0) > pn, Rr—1(0) < pp_1}. (8)
n=0
The event,

{Rn(o) > Pn, Rn—l(()) S pn—l}

implies the existence of a Voronoi cell C™(x?) with the nucleus inside of the ball b(0, p,,—1)
containing some point y on the sphere 9b(0, p,,). Therefore, the interior of the ball b(y, ||y —
x7||) contains no points of II,, (see Figure 3).

RR n° 3699



12 K.Tchoumatchenko and S.Zuyev

- Tl 0y lly = 27)

Figure 3: Large increase in R, (0) implies existence of a large empty ball.

Denote A, = p, — pn—1 and consider the collection of mesh cubes of side A,,/ V/d that
lie entirely in the annulus b(0, p, + Ay) \ (0, pr—1). Denote by N their number. At least
one of the mesh cubes lies entirely in the ball b(y, ||y — 27||) (e.g., the cube containing y).
Thus for the summands in (8) we obtain a bound, which is the probability that at least one

of the mesh cubes contains no points of I,

1- (1 —exp { —)\n(An/\/E)d}>N. 9)

Write the corresponding inequality for the volumes of the union of the cubes and the volume
of the annulus:

N(52)" < bal(pn + An)" = (o = A

Vd
d—1
= 2b4A, Z(pn + An)k(pn - An)d_k_l
k=0
d—1
< 2dbaAn Y pFp?F T < 2dbaAnp? Tt
k=0

This yields

N < 2bddd/2+1(AL)d_1.

n

Since for any 0 < a<1land N > 1,
1-(1-a)¥ <aN,

INRIA
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the value of (9) does not exceed

2ad (L) exp { — Aa(2n/ V) (10)

n

Next, choose a special sequence {p,} with the increments A,, given by

A, = P o0
C

with ¢ defined in (5). It is easy to see that p, monotonously converges to p. For such choice
of {pn}, from (10) it follows that the right-hand side of (8) is bounded by

2b,d%/ 21 iexp{ — (ﬁ)dfﬁ(/\n) +(d—1)(logc + @)}’ (11)
n=0

which is equivalent to (6). We have used here the definition of ¢, due to which e=¢(») =
#(An)/An. The function A(p) = O(p?) increases to infinity and is greater than 1/d for all
p > cV/d. Therefore, for such p, the series in (6) converges and the whole bound tends to 0
as p — oo providing the almost sure finiteness of Ro.(z).

Inequality (7) is proved much in the same manner. Fix a small 0 < ¢ < 1 and consider
a sequence {p! } with p{j = p that monotonously decreases to ep. First, from

{reo(2) =0, 70(2) > p} C UpZ 1 {rn(2) < py,, T0(2) > p}
it follows that

P’ {reo(2) =0|r0(2) > p} < i P{rn(2) < plh, Tn-1(2) > pl,_1 | 10(2) > p}. (12)

The event

{rn(2) < pn, Tn-1(2) 2 pl_1}

implies the existence of a Voronoi cell C™(z}") with the nucleus outside of the ball b(z, p!,_4)
having some point y € C™(2?) inside b(z, p!,). Hence, there exists a ball of radius at least
Al = pl_, — pl centered on the sphere 9b(z, pl,_;). Note that this event is independent
of the event {ro(z) > p}. Thus the summands in (12) can be bounded as in (9) with
Al = (1 —e)A,. With that choice of A/ the right hand side of (12) is bounded by
an expression similar to (11) with ¢ replaced by (1 —e)c. Due to the arbitrariness of e,

expression (11) also provides an upper bound. The rest of the proof remains unchanged.

Remark 1 By definition, log ¢(z)+¢(z) = logz. Therefore, for z > 1 one has ¢(z) < log z.
Since e~ %) = &(An)/An and A, > 1 for all sufficiently large n, the condition

o0

Z (lof)\”)l/d <00 or i)&/d_e < o0
n n=1

RR n° 3699



14 K.Tchoumatchenko and S.Zuyev

for some 0 < ¢ < 1/d is sufficient for (5) to hold. Moreover, ¢(z) > (1 + logz)/2 for all .
Thus

a Z e P AP) < g0 AP)/2 Z A, AR)/2

n=1 n=1

and the last function can also be used in (6-7).

Corollary 1 For PVAT with exponentially growing intensities A\, = A\ for some A > 1,
one has for all p > c, and any z € R,

P Roo(2) > p+ 121} < 1 exp{—c2p]}, (13)
P{ro.(2) = 0|ro(2) > p} < c1exp{—c2p’}. (14)
One may take

2 = ¢(A) (eVd) 2,
e = ((loger)/ea)?.

Proof. Recall the following integral estimate:
Z h(n) < h(1) + / h(z)dx
n=1 1

for any non-increasing positive function h(z). We have

T emtOA) < emoNAG) 4 / o=t A g
n=1 1

— o= 9(VAG) L/ (14 y~1)e—vA(R) gy
log A Js(n)

after the variable change y = ¢(A\%). Next, since 1 +y~! < 1+ ¢(\)~! on the integration
domain, the whole expression can be bounded by

B 1+ oMt _ 14+ o(N)71y _
sap) L LN sona) o (14 LFONT smnae)
¢ T A og € <(1+ d-1log \ )e ’

so that (6-7) become (13-14), respectively. It can be immediately verified that these estimates
become nontrivial if p > ¢, and that ¢, > ¢Vd.
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Aggregate and Fractal Tessellations 15

Corollary 2 For PVAT with polynomially growing intensities A, = (1 + an)? for some
a >0, 8>d, one has

S~ o—00AR <« _AP) [ —somac , T8, 0(0)(Al) - 5)
2 5A<p>—ﬁ'( T aBAG) - B )

n=1

where 3 = 7! and T'(n,z) = fzoo 2" Ye~2dz is the incomplete Gamma-function.

Proof. is the same as in Corollary 1 with the variable change z = (A(p) — 37 1)é((1 + az)?)
in the corresponding integral.

Corollary 3 Under conditions of Theorem 2, with probability one, each family of cells
{C3(29) }nen is uniformly bounded in R?.

Proof. Let 1, be the stationary shift defined on the probability space 2 such that
Hn(Tzw)(B) = Hn(w)(B - .’IJ)

for any Borel set B C R? and any n. In this notation, 7,0 R (0) for x? € Il is the maximal

distance from z? to the boundary of CJ(z?) that corresponds to the above definition of
R, (0) with C#(0) replaced with C§(x?) = 7,0C¢(0). The probability that there exists an
unbounded family of cells with the nucleus in a ball (0, N') equals

P |J {70Rw(0)=00}

z; EMMpNb(0,N)

<E Z ]I{TZ?ROO(O) =00}

Zienoﬂb(O,N)
=bgN?E° T{R.(0) = o0} = 0,

where we have used the Campbell theorem and (6). Letting N grow to infinity proves the
assertion.

The following fact will be used later to show that the boundaries of the limit tessellation
have zero Lebesgue measure.

Corollary 4 Under conditions of Theorem 2, for any y € R? with positive probability, there
exists ¥ € Iy such that
y € int (N, CF(2?)).

The lower bound for such probability is given in (17).
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16 K.Tchoumatchenko and S.Zuyev

Proof. Indeed, it is sufficient that the distance from y to the boundary of the IIy-cell con-
taining y is sufficiently large so that the boundaries of the progressing n-cells never reach y.
The probability of the latter event is positive by (7).

Due to stationarity, we may put y = 0. Consider the following representation:

P{3z? : 0Ocint (N, C3(a?))} =E Y H(Oeint(ﬂn Cg;(a:?))).

29 €llp

By the Campbell theorem and by the isotropy, the right-hand side equals

/ P{-zeint(Nn,C§0))}dz=
Rd
/ POz € int (N, C3(0)) | b(z, p) € C°(0)}
R4
x P{b(z,p) C C°(0)} dz (15)

for arbitrary p > 0. By Theorem 2, the first factor under the integral in (15) is greater

than 1 — a1 3 o7, (¢(An) /)\n)A(p) provided that p > ¢v/d. The second factor equals the
probability that no points of Il lie in the figure U ,_ ./ =,b(2', ||2’||). This figure is obtained
by rotation of a cardioid around its symmetry axis; by construction, it is contained in the
ball b(z, ||z]| + 2p). Therefore,

PO {b(z,p) € CO(0)} > exp{—ba(llz +2p)°} -
Using this estimate we get
/Rd P%{b(z,p) C C°(0)} dz > /}Rd exp{—ba(||2|| + 2p)*} dz
> /Op T dbg exp{—ba(3p)?} dr = byp® exp{—ba(3p)*}. (16)
Hence
P{3z) : y €int (N, C§(a?))}

> pilisﬁ [bdpd exp{—bd(3p)d} (1 —a g (¢()\):Ln))A(p)>] >0. (17)

The following corollary gives bounds for the probability of a cell’s extinction.

Corollary 5 Under conditions of Theorem 2, for any1 < N < 0o one has 0 < PO{CéV(O) =

(0} < 1. The corresponding bounds for the exponential case A\, = A" are given by (19)
and (20) below.
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Aggregate and Fractal Tessellations 17

Proof. Obviously the cell centered in the origin dies on level n if no points of II,, fall into
b(0, R,,—1(0)). Therefore,

P{Cy(0)=0} > sup P°{C{(0) =0}
1<n<N

> sup P{TL, (b(0, R,-1(0))) = 0}
1<n<N

= sup Eoexp{—bdAnRifl(O)}
1<n<N

= sup [1— / dbd)\nrd_lexp{—bd)\nrd}PO{Rn_l(O)>r}dr].
1<n<N 0

By Theorem 2, for r > ¢V/d,

d(An) ) A(r) ‘

P{R,_1(0) >7} <P{R(0)>r} <y i ( N

n=1

Choose 7, > ¢v/d such that the last expression is less than 1 for all r > r,. Then we obtain
the following estimate

PCr(0)=0} >1— / " dbgr®Lam exp{—baA\"r*} dr
0

_ /Oo ddedil A"ay i <¢(}\)\n) )A(r) dr,

n=1

which can be worked out in each particular case. For instance, in the exponential case
considered in Corollary 1, with r, = ¢, and (13) we have

P{Cy(0)=0}>1- / dbgr*™' A" exp{ —bg\"1"} dr
0
— / dbgr® 1 \"c; exp{—(bd)\” + CQ)'T'd} dr. (18)
Calculating the integrals in (18) and summing up the results, we obtain the estimate

PYCY(0) =0} < sup (2X)Par"/e2

[1 _2dp3A!
1<n<N C2

(Ba\™ + ) (19)

In order to prove an upper bound, write

P°{3n : CJ(0) =0} < P°{r,(0) =0}
< P{ro(0) =0|r0(0) > r} + P{ro(0) <r},
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18 K.Tchoumatchenko and S.Zuyev

for arbitrary r > 0. The event {ro(0) > r} means that the ball b(0,2r) contains no points
of Iy, therefore its probability equals exp{—b42%r?}. Using the estimate (7) of Theorem 2,

for r > ¢v/d, we finally get

K

PO{CéV(O) = @} <1- Tilisg [exp{—bdZdrd} (1 _ay f: <¢(}\);n))A(p)>

n=1

and in the exponential case, with r, = ¢,

PY{Cy(0)=0} <1-sup [exp{—bdZdrd}(l —¢ exp{—czr‘i})] . (20)
T>Cy

4 Limit tessellation

Heuristic arguments suggest that the difference between two successive aggregate cells be-
comes smaller and smaller if the intensities of the point processes grow sufficiently fast. One
might expect, and Corollary 4 proves this, that with positive probability the family of cells
{CF(2?9)} centered in the same nucleus z{ possesses a non-empty “core” int ( N, C§(0)).
However, a priori it is unclear if the boundaries of the cells stabilize as n — oo. Therefore,
it is important to know, whether there exists and in what sense a limit object for the process
of tessellations, and if the answer is positive, whether this limit object is itself a tessellation.
In this section we will address these questions.
Define the limit cell C§°(z?) as

C52(2?) = (U Nnsm CFH(2?)) - (21)

Thus C§°(2?) is the closure of those z that belong to CZ'(2?) for all n starting from some m.
Our main purpose is to show that such defined objects under a suitable condition constitute
a tessellation in R?.

Theorem 3 Assume that a sequence of stationary aggregate tessellations satisfies
P{32? €Iy : 0 €int(N22,Ca(2?))} > 0. (22)
Then the sets {C5°(x9)} a.s. constitute a tessellation of R?.

To prove this theorem we need the following lemma.
Lemma 1 Assume that a sequence of stationary aggregate tessellations satisfies condi-

tion (22). Then for any y € R? there erists an almost surely unique limit cell C$°(x?)
such that y € int (C§°(29)).
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Aggregate and Fractal Tessellations 19

Proof. Because of the stationarity, it is sufficient to prove the Lemma for y = 0. Let C7, (z7™)
be the cells of the aggregate tessellation O, defined as

0" = 0™ 00" 0. . 00".
Denote by 2™(0) the point of II,, such that 0 € C™(2™(0)) and consider the following r.v.’s:

Ty = min{n >0 : 0¢intNp_oCy (2°(0))},
T =min{n > T : 0 ¢ int Nj_p, CF (z71(0))},

T, =min{n >T,_; : 0&intN}_, _ Ck _(z™-1(0))},

Thus T, are the levels at which the aggregate cell containing the origin changes. Clearly, if
some T; = oo then T; = oo for all j > i. By assumption (22), we have P{T} < co} =p > 0.
Therefore, for all n > 1,

P{T, < oo} <P{Ty < o0} =p.

Moreover, T,, are stopping times and the distribution of T}, 41 given {T,, = k} depends only
on Ilx41,k42,. ... Therefore,

P{T\ < c0,..., T, <0} <p".
Thus P{Vk, T} < oo} = 0 so that a.s. there exists n > 0 such that T}, < oo, but 7,11 = oo.
The lemma statement now holds for a.s. unique z¥ such that z™(0) € Cg(z?).
Proof of Theorem 8. Recall the definition of a tessellation from Section 1. We start from
verifying condition (b). By Lemma 1, with probability 1, for every i # j,
int (C5°(2?)) Nint (C°(22)) = 0.
Otherwise, with positive probability for some i # j,

‘int (C°(?)) Nint (cgo(xg))| >0,

and hence with positive probability a point y € R? is covered by the intersection of the
interiors of the two cells. This contradicts the uniqueness in Lemma 1. Consequently, for
the boundary I'§° of the limit tessellation one has

IT5°| = |R? \ Uint (C°(29))| =0 aus. (23)
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20 K.Tchoumatchenko and S.Zuyev

Let us verify (c). For a Borel set B C R? introduce a random variable

N(B) = lim sup Z T{Cy(2?) N B # 0}

n— oo
0
z; €Il

Obviously, N(B) = oo if an infinite number of cells C§°(z?) intersects B. If o, denotes
the sigma-algebra generated by the sequence of processes Iy, k =n,...,00 then the event
{N(B) = oo} belongs to the tail sigma-algebra oo, = N,04,. Since II; are independent,
the zero-one law applies so that P{N(B) = oo} = 0 or 1. From (22) it follows that for
some € >0

P{3z) € T, : b(0,¢) € int(NZ,Cq(22))} >0,

and hence, P{N(b(0,¢)) = oo} = 0. Every bounded set B C R? can be covered by a finite
family {b(tx,e)}r<x of copies of b(0,¢) shifted by t,. Because of stationarity, N(b(0,¢)) and
N (b(t, <)) have the same distribution for each t, € R?, therefore

K
P{N(B) = 0o} < 3 P{N(b(ts, ¢)) = o0} = 0.
k=1

In order to prove (a), we need to show that the set
& = R\ U,C(a?)

is a.s. empty. Observe that ® C I'§°, and therefore ® contains only boundary points if
non-empty. For such a point y € ®, there exists a sequence

{yr} C UCE (a7)

converging to y. Being itself a bounded set, this sequence visits only a finite number of limit
cells Cg°(x?). At least one of these cells contains an infinite subsequence {yx, }, and hence it
contains y because cells are closed sets. We come to a contradiction with the non-emptiness
of &.

Corollary 6 Assume that the intensities {\,} for PVAT satisfy condition (5). Then the
family {Cg°(29)} constitutes a tessellation of RY.

Proof. In view of Corollary 4, the condition (22) is satisfied and thus Theorem 3 applies.
Remark 2 Examining the proof of Lemma 1 one may see that a stronger result is proved

there: for all y € R?

P{3z) €Iy : y € Up int Np>,Cf(2?)} = 1.
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One always has
Up int N>, O (2?) C int Uy, N>y CF(29) C int C§°(2?) .
Replacing int (C§°(2?)) with Uy, int N>, CF (2Y) in the proof of part (b) of Theorem 3 yields
B\ Us(Uns int NG5 (00)) | = 0
instead of (23). So, in fact, one has almost surely
Unn i0t Npy>n Cgr(29) = int Up, N> Cgr(2?) = int C°(2?) . (24)

It is possible to define the limit tessellations in various other ways. Let us show that the
most natural ones are essentially equivalent in that they define the same tessellation.

Let {A,} be a sequence of closed subsets of R?. Recall the definitions of the lower and
upper set limits:

liminf 4, = {z : 3{x,} such that z,, € A, and z =limz,},

limsup A, = {x : I{x,,} such that z,, € A,, and z = li;n Ty } -

In words, a point belongs to liminf A,, if and only if any its neighborhood intersects with
all sets A, starting from some m; a point belongs to limsup A, if and only if any its
neighborhood intersects infinitely many sets A,. Both limits are closed sets (see, e. g., [8,
Prop. 1.2.3]). Define the sets

D (2?) = (N Upsm CF(2?)) (25)
E(2?) = hmnmf CiHx?), (26)
E(2?) = limsup CF (7). (27)

Corollary 7 Assume that a sequence of stationary aggregate tessellations satisfies condi-
tion (22). Then the sets C§°(x;), DS (xY), E(2?), and E(2?) defined by (21), (25-27) have

almost surely the same interior, may differ only on the set of a null measure and thus define
the same tessellation.

Proof. Obviously, Cg°(z?) C Dg°(2)) C E(2?) and Cg°(2?) C E(«?) C E(x?) Moreover,
E(2?) nint(Cg° (m?)) = () for any j # i. Therefore,

Dge(a) \ C5°() € B(a) \ C5°(x7) C E(a?) \ int C°(a7)
=E(2?) \ U;int Cg° (2?) € R* \ U; int C§° (2?) = T'§°.
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Replacing Dg°(z?) by E(z?), we obtain that the same relation is also true for E(z?). the
assertion now follows from (23).

The following complementary result asserts the convergence of the boundaries
Iy =R*\ U;int (CF(2?)).

of the aggregate tessellations ©f to the the boundary I'§° of the limit one. This limit
boundary can be a fractal as it is shown in Section 6 for the case of PVAT .

Corollary 8 Assume that a sequence of stationary aggregate tessellations satisfies condi-
tion (22). Then

liminf Iy =limsupI'y =T§° a.s. (28)
Also, the distances
d(z,I'g) = inf{||lz —yl|, y € T7} (29)
converge a.s. to d(x,T) for every x € RZ.
Proof. According to [8, Prop. 1.2.5]), the two definitions (28) and (29) of convergence are
equivalent in R?. We will first show that T C liminfI'y. If 2 € T'§°, then by (23),
x € Cg°(x9) N C5°(x)) for some i # j. Therefore, a neighborhood of z hits Np>mCg(27)
and ﬂnsz’gL(x?) starting from some m. Then it must also hit I'} for all n > m.
Let us verify that limsupT'y C I'§°. Suppose that z,, € I'f* and z = limg x,,. If
z ¢ T, then z € int (C§°(2?)) for some i. By (24), 2 € int Ny>,CF(2?) for some m, and

the sequence of z,, € I'(* cannot converge to z. From this contradiction it follows that
z e I'f.

Corollary 9 Under condition (22), for each y € R,
lim P%{y € C7'(0)} = P*{y € C§°(0)}.

Proof. By Corollary 7,
PO{y € C°(0)} = P°{y € D (0)}.
Using the continuity property of the probability measures, we obtain
P’{y e CP(0)} = liran Py € UpsmCHH(0)} > 1i7rln P’{y € C}(0)},
P{y € C5°(0)} = im P*{y € N> C3(0)} <lim P°{y € CF(0)}.
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Remark 3 Replacing in the last proof P°{y € -} by | - |, we get

lim |C3(0)] = [C°(0)]  as.

Also,
E’|C5e(0) =1

due to the stationarity of the tessellation.

5 Spherical contact distribution function of the boundary

From now on we confine ourselves to PVAT with exponentially growing intensities. As we
have shown in the previous section, if (5) holds, the limit Poisson-Voronoi tessellations exist
and the boundary of the limit cells I'§° is a random closed set defined by (23). One of its
important characteristics is the spherical contact distribution function H(r), defined as

H(r)=P{Tgnb0,r) #0|0¢ T}, r>0.

Here, as Lemma 1 shows, the probability of the condition is one, thus H(0) = 0. Some
information on the degree of variability of the cell boundary can be derived from the rate
at which H(r) decreases as r tends to zero. The aim of this section is to prove the following
result.

Theorem 4 For PVAT with exponentially growing intensities: A\, = A" for some A > 1,
there exist constants K > 0 and q € (0,1) such that for all r >0,

H(r) =P{b(0,r) NT # 0} < Kr?.

The values of ¢ and K are given in (37).

Proof. Consider the cells of the limit tessellation {C°(z?)} defined in the same way as
n (21). Let X (n,r) be the nuclei of those cells whose boundary crosses the ball b(0, ), that
is

X(n,r) ={z} € I, : 8C°(27)Nb(0,r) # D}.
We will first prove the estimate: for each n > 1 and for each s > 0,
P{b(0,r)NTF #0} < f(r,n,s)", (30)
where

f(r,n,s) =1—P{X(n,r) Cb0,s)}P{b(0,s) C C™(z"~"(0))}.
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Recall that 2"~ 1(0) denotes the closest to 0 point of II,,_;. Consider the events
E(m,r) ={b(0,7) N T}, # 0},

where I'?? is the boundary of the tessellation {C2°(z7*)}. Note that E(0,r) is the event in
the left-hand side of (30). Since I'y? C I'59, 1, we have E(m,r) C E(m + 1,r) and therefore,

P{E(0,r)} =P{E(1,7)}P{E(0,7) | E(1,7)}

=P{E(n,r)} H P{E(m —1,r)| E(m,r)}

n

< [[ P{E(m —1,7) | E(m,r)}. (31)

m=1
For every m and s,, > 0,
P{E(m—1,r) |E(m,r)} < f(r,m,sm), (32)
Indeed, if b(0,7) N T # P and
X (m,7) C b(0,5,,) C C™ 1 (z™7(0))

then the cells C°(2™) for which 2™ € X(m,r) join in C2_(z™ 1(0)) so that b(0,7) N
1_‘()0 J—

m—1 —

Since the intensity of each II,, equals A", the distributions of
(I, Mpy1,...) and  (AYOIL, 44, AV 90, 40,...)

coincide. Consequently, the sets X (m + 1,7) and A~ 1/¢X (m, \1/4r) have the same distribu-
tion, and

P{X(m+1,7) Cb(0,5,)} = P{A2X (m, A\ %) C b(0, 5.,)}
= P{X (m,\"%) C b(0,\"%s,,)}
< P{X(m,r) C b0, \/s,,)},
as X (m,r) C X (m, A\/%). Also
P{b(0,s,,) C C™(z™(0)} = P{b(0,\'/%s,,,) c C™ 1(z™1(0))}
sothat f(r,m—1,A"%s,,) < f(r,m, sm). Alternatively, f(r,m, sn,) < f(r,m+1,A"%s,,) <

f(r,n, \=(»=™)/ds ) by induction. Thus, taking s, = A»~™)/4s in (32), by (31) we ob-
tain (30).
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Next, we find a bound for f(r,n,s). We have

1—P{X(n,7) Cb(0,5)} =1 —P{X(0,r) C b0, \"/%s)}
<P{32? : 22 ¢ b(0,\"/%s) and C§°(2?) Nb(0, A7) # 0}
<P{32) : 2¥ ¢ b(0,\"%5) and Roo(2?) > [|29]] — A™/%r}

<E Y (> X5 Rea) > fall = A7),
z €llp

By the Campbell theorem, the last expectation equals

/ PO{Rou (0) > [|2]| — A"/} d
llzl|>xn/2s
- )\"/ PR (0) > N4zl =)} dz (33)
llzl1>s
Assume that s and n satisfy the inequality

A5 —1) > ¢, (34)

with ¢, as in Corollary 1. Then by (13), the right-hand side of (33) is smaller than

cl)\n/ e*CZAn(”Z”fT‘)d ds = Cl)\n/ dbdpdflefcz)\"(pfy-)d dp < (61/02)67@)\"(5—7-)d
[IzlI>s s

and therefore,
P{X(n,r) Cb(0,5)} > 1 — (c1/ca)e X" (=" (35)
Also, since there is only one Voronoi cell that may contain a ball, we may write

P{b(0,s) c C™ (2" 1(0))} = P{b(0, A" V/ds) c C°(2°(0))}
=E ) I{p0,A" M%) c CO(a?)}

I?EHO

= /Po{b(z,W*l)/ds) C C°0)} dz.
Using (16), we obtain

P{b(0,s) C C" " (z"71(0))} > bgA» sl bar" T (39)7, (36)
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Combining (35) and (36), for such s and n that (34) holds, we get

PONNTE #0) < [1- (1- Lesp{-an(s-1)})

X bg A" Lgd exp{—bd)\"_1 (3s)d}

One of the possible choices of the constants s and n is
s=2r and n = dlog, (¢« /7).
Then
P{b(0,r)NT # 0} < Kr',

where

q = —log, [1 - (1 - c—le_cch) M)\c*)‘ie_bd(ﬁc*)d”]
C2

K =c;%.

Since A > 1, we have 0 < ¢ < 1. The theorem is proved.

6 Fractal boundary of the limit cells

In the case of exponentially growing intensities, the distributions of I'§® and I'3° scaled by
A"/4 coincide, i.e., the boundary of the limit tessellation is statistically self-similar. This
property is rather different from geometrical self-similarity in the sense of I'§® being a union
of scaled copies of self. However, by construction, I'S° ; consists of parts of I'>°, and therefore,
I'g° has a similar structure at any scale of observation, which allows us to call it a fractal.

The primary characteristic of a fractal is its dimension, which can be defined in several
ways. We will be interested in the Hausdorff dimension of T'Q° (see, e. g., [5, p. 20-23] for
definitions of different dimensions that we use here).

Theorem 5 Let q be the constant defined in (37). Then for PVAT with exponentially
growing intensities: A, = A" for some X\ > 1, one has

dimy I'g° = Edimy I'g° 0.8.;
dimy I’ < d(1—q) a.s.
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Proof. Consider the collection of mesh cubes of size M in R? and let {6,} be the family of
shifts translating the cube at the origin [0, M )¢ by the vector Ma, where a = (o, - .. ,aq) €
7. Introduce also

Ay ={a: || <N, i=1,...,d}
L5°(M) =T§ N[0, M)
0.T5° (M) =T5° N 6,[0, M)~
Since ,I'5°(M) C T'g°, with probability 1 for all o, we have
dimy I'g° > dimpg 6,5 (M),
and hence

dimy I'g° > sup dimpy 6,T5°(M).
aEAN

Now by the ergodic theorem,

dimg I'° > lim sup dimpg 0,157 (M)

—X0 acAn

: 1 : o0
2 ¥ N & A IO

= Edimy T (M).

Letting M — oo in this inequality and using the property of monotonicity of the Hausdorff
dimension, we get

dlergo Z EdlmH 1-\80’

which implies the first equality of the theorem.

To prove the second inequality, we make use of the estimate of the Hausdorff dimension
of a set by its upper box dimension (see, e. g., [5, p. 24]). Let N.(B) be the smallest number
of closed balls of radius ¢ that cover B. Then

dimy I'§°(M) < lim sup log N. (I (M)) .

0 —loge

Take expectations at both sides of this inequality. It can be easily verified that [0, M )¢, and

hence T'3°(M), can be covered by a family {b;} of less than (M+/d/ 25)d balls of radius e.
Thus the function in the right-hand side under the limit is bounded by a constant not
depending on ¢, and therefore we can exchange the limit and the expectation. Moreover,
the function log(-) is concave, hence

Elog(") < log E(").
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Therefore,

log E N, (Tg° (M
E dimy T2 (M) < lim sup ‘28 ENTE (M)
0 —loge

Recalling the definition of the contact distribution H(r) from the previous section, we get

E N.(I'e°(M)) < EZ W(b; NIG° (M) #0) < <M2—\E/E> H(e).

From Theorem 4 it follows that
log(M 2) —dl log K 1
EdimHl“go(M)glimsudeg( Vd/2) — dloge +log K + dqloge
£—0 —loge
and it remains to let M — oo to obtain the second statement of the theorem.

:d(l_q)7
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