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Abstract

Bubble growth was triggered in a capillary tube closed at one end and vented to the atmo-
sphere at the other and initially filled with uniformly superheated water. Measurements of
the rate of axial growth and the varying pressure at the closed end were used to test under
these simplified conditions assumptions employed in one-dimensional models for bubble
growth applicable to the more complex conditions of confined-bubble flow boiling in micro-
channels. Issues included the thickness of the liquid films round confined bubbles and
changes in saturation temperature due to the changes in pressure generated by bubble mo-
tion. Modelling features requiring further attention were identified, such as the possibility
of “roll-up” of the liquid film due to a large dynamic contact angle.
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1 Introduction

Miniaturization of engineering systems such as micro-electronic circuits, chemical micro-reactors

and fuel cells leads to ever-increasing requirements for the removal of heat fluxes exceeding 1

MW/m2 from areas of a few square centimeters. One way of meeting these requirements is

to employ flow boiling heat transfer in microchannels fabricated into the system carrier, e.g. a

silicon chip [1]. For reasons of manufacture, the channels are likely to be of non-circular cross-

section and thermo-fluid considerations define the potential range of dimensions as 50–1000

µm. At this scale, surface tension forces influence the lateral and axial distribution of liquid

and vapour so that the physics of boiling are considerably modified compared to boiling in

channels with much larger cross-sections. Empirical correlations and regime-based models for

heat transfer and pressure drop developed for large channels are not reliable guides for micro-

and mini- channels and heat transfer performance is limited by transient downstream dryout,

e.g. [2]. It is essential to develop predictive methods with a sound physical basis. This reduc-

tion in scale presents both a challenge and an opportunity, because flow and heat transfer are

influenced by the dynamics of a small group of bubbles, rather than the averaged behaviour of

a large population of bubbles, improving the prospects of developing mechanistic models. Such

development is facilitated by localized experimental observations of bubbles with synchronized

measurements of the resulting fluctuations in local conditions such as temperature, pressure

and wall heat flux.

Yan and Kenning [3, 4] observed flow patterns synchronised with measurements of local

fluctuations in pressure and wall temperature at five positions along a single, thin-walled

mini-channel of rectangular cross-section 2 mm × 1 mm for water in the confined-bubble flow

regime at atmospheric exit pressure. They traced the axial propagation of pressure pulses

accompanying the acceleration of liquid slugs by the growth of confined bubbles, confirming

the mechanism proposed and modelled by Kew and Cornwell [5]. The associated changes in

local saturation temperature were of similar magnitude to the time-averaged wall superheat,

indicating a significant effect on heat transfer that was noted but not modelled in [5]. At a given

position, there was a cycle in time through three heat transfer regimes: single-phase convection

to the liquid slug, evaporation of a smooth film round the confined bubble and nucleate boiling

in the film. The heat transfer coefficients for the three regimes only varied by ± 20% in this
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particular case and, perhaps for this reason, the large effect of high or low compressibility

of the upstream supply on temporary flow reversals and the power distribution functions of

the pressure and temperature fluctuations had little effect on the time-averaged heat transfer

coefficient. This may not always be true, and observations are required over a much wider

range of conditions. Brutin and Tadrist [6, 7] observed similar behaviour for n-pentane boiling

in a single 4 mm × 1 mm channel, in which controlled upstream compressibility influenced

heat transfer. Flow reversals reduce the critical heat flux [8] and upstream compressibility is

present in assemblies of parallel microchannels, whatever the nature of the pump supplying

liquid, unless corrective measures are applied to each channel [9]. Wen et al. [10] extended the

analysis of the data in [3, 4] to a lower mass flux of 57 kg/m2 s and found indirect evidence of

transient dryout initiating upstream and propagating downstream with bubbles, even at very

low heat fluxes, which did not occur at higher mass fluxes. This sort of dryout is likely to be

sensitive to the wetting characteristics of the fluid/wall combination and lateral retraction of

the liquid film towards the corners by the combination of surface tension forces and evaporation.

Zhang et al., in studies summarized in [11, 12], measured pressure and temperature fluctu-

ations of greatly increased magnitude for water boiling in channels of much smaller rectangular

cross-section with dimensions in the range 50–170 µm. The amplitude of the pressure fluctua-

tions could reach 140 kPa, sufficient for a risk of mechanical damage, as well as causing large

transient changes exceeding 6 K in the saturation temperature. They found that reduction in

size below 80 µm led to a change in flow regime from confined-bubble flow to a fluctuating,

sudden transition from liquid-only flow to mist flow with reduced heat transfer coefficients,

unless artificial nucleation sites were provided. In order to obtain high heat transfer coeffi-

cients, they recommended operation in what they termed annular flow at low exit qualities in

the range 0.1–0.3. Under these conditions, it is likely that the annular films are formed round

long confined bubbles separated by liquid slugs. Modelling of heat transfer in the confined-

bubble flow regime at a level that includes the effect of pressure fluctuations is therefore of

high priority.

Models for confined-bubble flow boiling may be implemented at different levels of realism,

but always involve some approximations to the physics, such as the assumption that trans-

port processes in the vapour are sufficiently rapid to maintain the equilibrium relationship

between vapour pressure and saturation temperature at the bubble interfaces. In principle
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two-dimensional and three-dimensional computational fluid dynamics (CFD) numerical sim-

ulations minimise the approximations about the behaviour of the liquid phrase, but they

involve practical difficulties in accurately representing the moving, deformable interfaces and

the transport of heat and mass across them, particularly at moving contact lines. Nevertheless

they provide valuable insights into situations with complex geometry, such as that studied by

Mukherjee and Kandlikar [13, 14] who investigated asymmetrical growth of a vapour bubble

near the entrance to a channel of rectangular cross-section from nucleation on one wall through

to the early stages of confined growth and the development of dryout on the walls. Although

not done in these particular examples, the simulations are capable of modelling the variations

in interfacial temperature caused by the pressure variations in the liquid and vapour. The

penalties for simulation at this level of detail are an increased ratio of computing to real time

and/or limitations on the size of the computational domain. Some studies may require sim-

ulations of the entire length of the channel over long run times, e.g. for the investigation of

heat transfer stability during changes in heat load, stochastic modulation of the nucleation fre-

quency or disturbances from neighbouring channels. Then it may be more practicable to use

one-dimensional flow models incorporating correlations or analytical sub-models for features

such as film thickness, heat transfer coefficients and wall shear stress.

A state-of-the-art example of a one-dimensional model by Thome et al. [15, 16] considers

cyclic variations due to the passage of groups of three heat transfer regions that change in length

as they progress downstream, namely a liquid slug and a confined bubble with a liquid film

that evaporates to a dry patch at the rear of the bubble. Steady-state correlations for axially

developing single-phase heat transfer coefficients are used for the liquid-only and vapour-only

regions. Evaporation of the liquid film from an initial thickness δ0 to a defined minimum thick-

ness δmin is driven by the uniform wall heat flux, transferred across the film by conduction,

implying a fully-developed linear temperature profile across the film at all positions. (Nucleate

boiling in the thin film is not considered.) The initial film thickness is obtained from a mod-

ification of a correlation developed by Moriyama and Inoue [17] from experiments on radial

growth of cylindrical bubbles triggered in uniformly superheated R113 between parallel plates

(discussed in more detail in Section 6) including a correction factor Cδ0 . The group formation

frequency f depends on a model for bubble nucleation and growth to confinement, involving a

further correction factor. The values of the three disposable quantities, δmin, Cδ0 and f , were
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determined by achieving the best fit of the time-averaged heat transfer coefficients to nine sets

of data for refrigerants and one for carbon-dioxide. Their values varied quite widely between

sets [16]. This model does not calculate the pressure fluctuations caused by the dynamics of

the liquid slugs and the consequent fluctuations in the saturation temperature, which is the

reference temperature for the fluctuating heat transfer coefficient. Some other models of this

sort, e.g. for pulsating heat pipes [18, 19], do include schemes for calculating the pressure vari-

ations in trains of liquid slugs and expanding confined bubbles, but do not model the thin films

and assume a constant heat transfer coefficient in the thin-film region. Models for pressure

fluctuations should be added to one-dimensional models such as [15] for confined-bubble flow

boiling. Further development of the correlations in the models should reduce the requirement

for empirical determination of the values of coefficients for particular fluids.

The present work was undertaken to obtain experimental data for confined bubble growth

under simpler conditions than occur in flow boiling that can be used to test modelling as-

sumptions concerning the thickness of the liquid film round a long bubble and the transfer of

heat across it, and the pressure difference across the liquid column ahead of the bubble due

to viscous resistance and inertial loading under highly transient conditions with large accel-

erations. The experiments were designed to eliminate any influence of entry flow conditions

and disturbances from preceding bubbles by triggering growth of a single bubble in a trans-

parent capillary tube, closed at one end and initially containing uniformly superheated water.

Even with this simplification, it proved more difficult than was expected to achieve boundary

and initial conditions that could be specified precisely in a one-dimensional model, as will be

discussed later.

The experiment is a variant on that of Moriyama and Inoue [17] on radial growth of cylindri-

cal bubbles between parallel plates, in which the pressure rise in the bubbles was not considered

and may have been small. The capillary tube geometry accentuates the pressure difference re-

quired to overcome the viscous and inertial resistance of the liquid expelled by the bubble. It is

difficult to install inside a capillary tube the sensors required for local, transient measurement

of the film thickness and wall shear stress. Film thickness is often inferred from transient heat

transfer measurement and a heat transfer model, rather than direct measurement. Moriyama

and Inoue calculated wall heat fluxes from measurements of transient temperatures on their

flat walls at several radial distances from the point at which the bubble growth was triggered.
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They assumed that the sudden cessation in cooling corresponded to dryout of the film by evap-

oration and calculated the original thickness from a heat balance. In [3, 4] film thicknesses

were estimated from instantaneous heat transfer coefficients by assuming steady conduction

throughout the film. Transient temperature measurements were not attempted in the present

study. Only the initial uniform temperature, the varying pressure at the closed end of the tube,

and the varying length of the bubble were measured. As in the model of Thome et al. [15]

for the more complicated situation of flow boiling, the model linking the observed quantities

depends on the interaction of several parameters, for which values must be deduced by fitting

the model to the experimental observations. It will be shown that the measurement of pressure

makes it possible to examine some aspects of the model for the motion of the liquid column

separately from the combined thermal and fluid-dynamical model for the bubble growth. So

far, the technique has been demonstrated only for a limited range of conditions for water in a

glass capillary tube of circular cross-section. In principle the technique is applicable to a wider

range of conditions, including mixtures in channels of non-circular cross-section.

2 Experiment

Growth of a single bubble in initially stationary, uniformly superheated water in a vertical,

borosilicate glass capillary tube was triggered by transient electrical heating of a small resis-

tance wire near the lower, closed end of the tube. The upper end of the tube was vented to

the atmosphere. The varying gauge pressure at the closed end was measured by a miniature

pressure transducer and the length of the bubble was recorded by a high-speed video camera.

The apparatus is shown schematically in Fig.(1). Experiments were performed with borosil-

icate glass tubes of internal diameters 0.8 ± 0.04 mm and 0.48 ± 0.024 mm, with the same

external diameter of 1.8 mm and length 150 mm. A 0.1 mm hole was bored 15 mm from the

lower end of each tube to accommodate a 50 µm diameter nichrome triggering wire, U-shaped

to accommodate thermal expansion and sealed in place with epoxy cement. Connections to

the computer-controlled, pulsed power supply were soldered to the wire outside the tube and

held by more epoxy cement. This end of the tube was cemented into the plastic housing of

a miniature pressure transducer, into which a second hole was bored for connection through

micro-valve 1 to a filling syringe. The other end of the tube was cemented to a “Tee” con-

nector to a solenoid exhaust valve and, through micro-valve 2 on the side-arm, a nitrogen gas
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supply at a pressure controlled by a precision regulator. The fragile capillary tube was held

by thermally-conducting cement in a groove machined in a copper support plate equipped

with three calibrated thermocouples and a serpentine electrical heating element connected to

a variable transformer. The assembly was mounted in a transparent, thermally-insulating box.

In order to avoid uncontrolled bubble nucleation, the tube was cleaned by soaking with

dilute detergent solution overnight, followed by prolonged flushing with water that had been

degassed by boiling in a separate vessel. The tube was then emptied and heated to its operating

temperature for calibration of the pressure transducer by nitrogen supplied through valve 2 at a

gauge pressure measured by a precision transducer with an accuracy of ± 0.1 kPa. Atmospheric

pressure PA was taken as the daily average value recorded by the local meteorological station,

without allowance for diurnal variations. The tube was then filled with subcooled degassed

water through valve 1, with valve 2 closed and the exhaust valve open, until the water level

was just visible below the upper connector. Valve 1 was then closed and the system was

slowly reheated to the desired superheat relative to atmospheric pressure. Bubble growth

was triggered when the three thermocouples on the copper plate recorded the same initial

temperature T0 to within 0.2 K. The maximum uncertainty in the initial superheat due to

the uncertainties in initial temperature and atmospheric pressure was estimated to be 0.4

K. At superheats below 3 K, the superheating could be performed with the exhaust valve

open without nucleation occurring prior to the triggering pulse. At higher superheats, it was

necessary to deactivate stray nucleation sites by prepressurization of the liquid [20], i.e. by

applying a high gas pressure through valve 2 with the exhaust valve closed. The strength

of the seal round the trigger wire limited this pressure to 53 kPa gauge pressure, although a

higher pressure would have been desirable. Valve 2 was then closed, ready for superheating

by opening the exhaust valve. Pressure traces for the two procedures are shown in Fig.(2).

In each case, growth was triggered when the recorded pressure was atmospheric pressure plus

the hydrostatic pressure of the liquid column. There was a delay of 10–15 ms before there

was a detectable increase in pressure, corresponding approximately to the time required for

a spherical bubble to grow from microscopic size to fill the cross-section of the tube. Bubble

growth was recorded by a video camera at 200 or 500 Hz, synchronized with the pressure

signal by a pulse to a LED at a set interval before the triggering pulse. The cement sealing

the trigger wire obscured the bubble until it had grown to a length of approximately 5 mm,
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so the earliest stages of growth to a confined state could not be observed. The requirement

to track the front of the bubble over a distance of up to 120 mm placed a constraint on the

camera spatial resolution of 0.2 mm per output pixel so the uncertainty in the position of the

front of the bubble, obtained by reference to a scale with 1 mm graduations mounted alongside

the tube, was conservatively estimated to be ±0.5 mm at velocities up to 4 m/s. The bubble

front was less distinct at higher velocities attained at the highest superheat. In most of the

tests, the field of view of the camera was restricted to the first 80 mm of the tube in order to

improve the resolution. The precautions against uncontrolled nucleation did not always work

but multiple bubbles were detected from the video recording and the data discarded.

3 Experimental Data

Only five complete sets of data were obtained in the series of tests reported here because of

the difficulties of constructing the apparatus and performing the experiments, so it was not

possible to investigate reproducibility. All the tests were for water with bubble growth initiated

and terminating at atmospheric pressure and with an initial liquid column length of nominally

120 mm. Four tests were performed without initial prepressurization, at superheats of 1.6 K,

2.2 K in 0.48 mm diameter tubes and 1.5 K, 2.2 K in 0.80 mm diameter tubes. The one test

that required prepressurization to suppress unwanted nucleation was at a superheat of 3.7 K in

a 0.48 mm tube. Test runs are here designated by the tube diameter/superheat, e.g. 0.48/3.7.

The basic data for upstream gauge pressure P (t) − PA and bubble length Z(t) are shown

in Fig.(3), together with plots of the bubble nose velocity UB(t), derived by differentiation of

the raw data for Z(t). Time t = 0 corresponds to the triggering pulse. There was no record

of a pressure disturbance at the instant of triggering. After an initial delay, the bubble length

increased rapidly. The pressure increased to a maximum and then declined. The very small

residual pressures at the end of some runs may have been due to retention of liquid in the

exhaust valve. The time of the maximum pressure is indicated by a dotted line linking each

set of graphs. The plots of bubble velocity UB have small plateaux at, or slightly after, the

maximum pressure and there are some indications of oscillatory behaviour that may be genuine

or may be due to the effect of experimental errors on the differential of Z(t). Run 0.48/3.7 had

the highest growth rate, with the strongest indications of fluctuations in the velocity near the

peak pressure. The liquid velocity UL is slightly smaller than UB, because of the liquid film
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deposited on the wall, but a bubble Reynolds number of 1000 (with radius as characteristic

length), marked on the graphs, is an approximate indicator of the conventional engineering

criterion for transition from laminar to turbulent flow at a liquid Reynolds number (based on

diameter) of 2000. This does not bear any particular relationship to the occurrence of the

maximum pressure, nor is there clear evidence of a change in the character of UB(t) at this

Reynolds number.

The maximum pressures are proportional to the initial superheat relative to atmospheric

pressure and inversely proportional to the tube diameter, Fig.(4). This simple relationship may

be fortuitous. Nondimensional plots in Fig.(5) of pressure difference against bubble length,

normalised respectively with the pressure difference corresponding to the vapour pressure at

the initial temperature PS(T0) − PA and the length of the tube L, reveal that the pressure

variations during the runs were less similar than they appear in Fig.(3). In the 0.48 mm tube,

the maximum pressure was, within experimental uncertainty, close to the limit on vapour

pressure set by the initial superheat; in the 0.80 mm tube it was significantly lower. The bubble

length at which the maximum pressure was reached increased with increasing superheat. The

length of the bubble as it approached the end of the tube was not recorded in four of the runs

because of limitations on the field of view of the camera. The plot in Fig.(5) for run 0.48/3.7

at the highest superheat (and the only run with prepressurization) cut across the other runs

and had a pronounced concave shape in its later stages.

4 Basic Models for Bubble Growth

4.1 Growth from Nucleation to Confinement

The initial conditions for the confined-growth model depend on the preceding growth from

triggered nucleation on a heated wire to a radius approximately equal to the tube radius R

in time t0, Fig.(6a). This growth is estimated by the well-established model for spherical,

unconfined bubble growth at constant superheat and pressure, e.g. [21]:

t0 =
R2

αLJa2CB
2
, (1)

where Ja is the Jakob number

Ja =
ρLcL(T0 − TS0)

ρV hLV
, (2)
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and the unconfined bubble growth factor CB is a constant that is expected to have a value in

the range
√

4/π–
√

12/π. The heat flux to the bubble interface is then

qH =
CBkL(T0 − TS0)

2
√

αLt0
. (3)

This model does not take into account the gradual transition from unconfined to confined

growth simulated for more complicated conditions in [13, 14] and described by an approximate

model by Yuan et al. [22]. The assumption of constant pressure during growth immediately

following nucleation is consistent with the experimental measurements of P (t).

4.2 Confined Growth

The confined bubble is modelled as having hemispherical ends joined by a cylinder of length

Z(t) surrounded by a liquid film of initial thickness δ(Z), Fig.(6b). The interface of the bubble

and the mass of vapour M(t) within it are assumed to be at a temperature that adjusts instantly

to the saturation temperature TS(P ) corresponding to the uniform vapour pressure P (t) within

the bubble. For the particular conditions of these experiments with no incoming flow of liquid,

the rear of the bubble near the pressure transducer is assumed to remain stationary. Vapour

evaporated from the liquid film reaches a maximum mean velocity equal to that of the bubble

nose, UB, and the estimated pressure differences along the length of the bubble are negligible

compared to the pressure difference required to propel the liquid column. The changes in P

with time are small enough for TS(P ) relative to reference conditions at atmospheric pressure

to be calculated from the linearized Clausius-Clapeyron equation

TS − TSA =
TSA

ρVAhLV
(P − PA), (4)

with the corresponding saturated vapour density given by

ρV − ρVA =
ρVA

PA

[

1 −
TSAPA

ρVAhLV

]

(P − PA). (5)

The model requires simultaneous numerical solution of the equation of state of the vapour,

the energy balance at the interface, the continuity equation relating the bubble and liquid

velocities and the momentum equation for the liquid, together with prescriptions for the film

thickness δ, the heat fluxes through the cylindrical and hemispherical surfaces and the shear

stress τ acting on the liquid column. Simple approximate prescriptions are first used for the

solutions described in Section 5. Improved prescriptions are discussed in Sections 6 and 7. The

equations are nonlinear and are solved by standard numerical methods.
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4.3 Simple Approximations

4.3.1 Film Thickness and Heat Transfer

For initial calculations, it is assumed that the film is created with a specified thickness δ that

is the same at all positions along the tube, irrespective of the local velocity and acceleration

of the bubble. The development length of a few tube radii required for the film to come to

rest relative to the wall behind the nose of the bubble is neglected. The value of δ is chosen

to give the best match of the solutions of the equations to the experimental data. It is further

assumed that changes in δ due to evaporation are negligible, so that the film does not dry out.

New surface is continuously created at the front of the bubble and the heat transfer to this

surface is assumed to occur by transient conduction, thus resembling models for unconfined

bubble growth, except that the surface temperature changes as the pressure changes with time

and the diffusion of heat eventually penetrates into the adjacent solid wall. The heat flux to

an element of the film is initially infinite and decreases with the age of the element.

It will be noted that this model for heat transfer differs considerably from that used in the

Thome et al. [15] model summarized in Section 1, which assumes that the film and the wall are

sufficiently thin for a constant heat flux through the film to be established immediately, and

that the combination of initial film thickness, liquid properties (particularly the latent heat of

evaporation) and film lifetime result in large changes in film thickness by evaporation. Which

model is more appropriate can only be determined after the film thickness is known. For the

particular conditions of the experiments with water in glass tubes described in this paper, film

thicknesses are later deduced that are consistent with the use of the transient conduction model

and the neglect of change of thickness due to evaporation. Every bubble grows to a volume

πR2L, requiring for conservation of mass the evaporation of a volume of liquid πR2LρV /ρL,

equivalent to a change in thickness ∆ of an annular film averaged over the length of the tube

given by

∆ =
RρV

2ρL
. (6)

For water at atmospheric pressure in tubes of radius 0.24 mm and 0.40 mm, the respective

values of ∆ are 0.07 × 10−6 m and 0.12 × 10−6 m, compared to estimated film thicknesses in

excess of 10−5 m.

For these conditions, three further approximations can be made that make it possible to
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specify the heat flux to the bubble by an analytical expression, namely

(i) planar geometry is used, instead of cylindrical;

(ii) the liquid film and the tube wall are assumed to have the same thermal properties;

(iii) the tube wall is assumed to be of semi-infinite thickness.

For a step change in temperature with the properties and geometry of the experiments, ap-

proximation (i) leads to an under-estimate of the heat flux by about 10%, but approximation

(ii) leads to a small over-estimate because the ratio of the values of (ρck)1/2 for water and

borosilicate glass is 1.1. Approximation (ii) will be removed later, in Section 7. Approxima-

tion (iii) is satisfactory because bubble growth times are such that (αt)1/2 is of order 0.2 mm,

compared to the wall thickness of 0.5 mm or 0.7 mm. The assumption of constant thickness

and the approximations can be removed by direct numerical simulation of the temperature

fields in elements of the film of increasing age, but only at the cost of significantly increased

computational time. This may be necessary for fluids with much larger density ratios ρV /ρL.

Using the approximations, the heat flux qC(z, t) to the interface at position z, first formed at

time tZ , is calculated by

qC(z, t) =
kL√
παL

[

T0 − TS(tZ)√
t − tZ

−
∫ t

tZ

dTS/dζ√
t − ζ

dζ

]

. (7)

The heat fluxes to the hemispherical ends are assumed to be equal, qH1 = qH2, and to remain

constant at the value qH given by Eq.(3) at the instant of confinement. This may be a

reasonable approximation at small t, when the changes in P (t) are small and the heat input

to the ends determines the initial velocity. It will become inaccurate at larger t as local flow

patterns develop at the nose of the bubble, but by then the main heat supply should be to the

cylindrical mid-section.

4.3.2 Wall Shear Stress

For the initial calculations, the shear stress τ acting on the liquid column ahead of the bubble

is calculated by the expression for fully-developed laminar flow:

τ =
4µLUL

R
. (8)
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4.4 Equations for Constant Film Thickness

For constant film thickness δ the conservation equations are as follows.

Vapour Mass:

M = πρV (P )(R − δ)2
[

4

3
(R − δ) + Z

]

. (9)

Energy:

hLV
dM

dt
= 2π(R − δ)

[

(R − δ)(qH1 + qH2) +

∫ Z

0

qC(z) dz

]

. (10)

Liquid Continuity:
UL

UB
=

dUL/dt

dUB/dt
=

(

1 −
δ

R

)2

, (11)

where

UB =
dZ

dt
,

dUB

dt
=

d2Z

dt2
. (12)

Liquid Momentum:

P − PA −
[

1 + (1 − δ/R)2

1 − δ/R

]

σ

R
= (L − Z)

[

ρL

{

g + (1 − δ/R)2
d2Z

dt2

}

+
2τ

R

]

. (13)

The above set of equations is equivalent to a third-order differential equation for any variable

such as Z(t), requiring three initial conditions. The length of the cylindrical section is taken

to be zero at t = 0:

Z = 0 at t = 0. (14)

The initial bubble velocity is calculated from the heat input through the hemispherical ends,

assuming that the pressure, and therefore the vapour density, is nearly constant:

UB =
4qH

ρV hLV
at t = 0. (15)

The third initial condition is chosen to be

dUB

dt
= 0 at t = 0. (16)

This is consistent with the experimental observation that the pressure is nearly constant ini-

tially, but it is not derived rigorously from a model for transition from unconfined to confined

growth. Further consideration of the physical justification for this condition is required.
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5 Simulations with Simple Assumptions

5.1 Solution of Equations

Equations (3)–(5), (7)–(16) were solved for Z(t) and P (t) by a first-order finite difference

scheme with a time step of 5×10−5 s for specified values of the unconfined bubble growth factor

CB and the uniform film thickness δ. The numerical solution was validated at very small times

by comparison with an analytical solution of the equations obtained as a power series in t1/2.

Representative parametric studies of the influence of CB and δ, and also of the experimental

uncertainty in the initial superheat, are shown in Fig.(7) for the experiment at a nominal

superheat of 2.2 K in the 0.80 mm diameter tube. The simulations are for confined growth

only, so their origin is taken to be 10 ms after the timing of bubble initiation in the experiments,

to allow for the initial period of unconfined growth. By choosing appropriate combinations of

values for the parameters, it is possible to match the experimental measurements of Z(t) and

P (t) reasonably well during confined growth until the pressure approaches its maximum value.

The data at later times, particularly the shape of the pressure pulse P (t) at and beyond its

maximum value, are always predicted poorly.

5.2 Influence of the Unconfined Bubble Growth Factor CB

For values of the unconfined bubble growth factor CB of order unity that are derived from the

unconfined growth model, Eq.(1)–(3), the simulations predict two maxima in P (t) of similar

magnitude, Fig.(7b). The rise to the first maximum occurs very rapidly in about 5 ms. The

pressure then falls, followed by a much slower rise to the second maximum, which occurs when

the bubble is close to the open end of the tube. The final fall to atmospheric pressure then

occurs very rapidly. The first maximum in P was not observed in the experiments, although

the pressure measurement was fast enough to detect it, and the second maximum occurred

much earlier in the progress of the bubble along the tube, so that the fall to atmospheric

pressure was more gradual than in the simulations. As CB is reduced, the magnitude of the

first simulated maximum decreases, falling below 0.1 kPa (the lowest value detectable by the

pressure transducer) for values of CB less than 0.15. The reduction in CB has negligible effect

on the magnitude and shape of the second maximum in P , but shifts the entire Z(t) and P (t)

plots to the right, Fig.(7a,b). For a change in CB from 1.0 to 0.1, the time shift is nearly 50

ms, corresponding to a 50% increase in the time taken for the bubble to reach the end of the
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tube.

CB influences the simulation via the heat flux to the small area of the hemispherical ends of

the bubble, Eq.(3), and the initial velocity, Eq.(15). Its significant influence on the simulated

transit time is contrary to the intuitive expectation, expressed by Moriyama and Inoue [17] for

their study of confined growth between parallel plates, that the method of initiating growth

should not affect the later stages of growth driven by evaporation from the much larger area of

the thin film. However, the following simple analytical model for growth at constant superheat

T (i.e. negligible change in pressure) in a tube or (with minor modifications) between parallel

plates provides an example in which the heat input to the small part of the interface bridging

the gap between the walls strongly influences the entire period of growth. Suppose that the

cylindrical length Z of the bubble is surrounded by a thin liquid film of uniform thickness with

a linear temperature profile, equivalent to a constant heat transfer coefficient h, and that there

is a decreasing heat transfer coefficient h0e
−λt on the hemispherical ends. Then

πR2ρV hLV
dZ

dt
= 2πRThZ + 4πR2Th0e

−λt, (17)

and hence

Z =
4Th0

ρV hLV

(eKt − e−λt)

(K + λ)
, where K =

2hT

RρV hLV
. (18)

In this simple case, the rate of growth at all times is proportional to the initial heat flux Th0

on the hemispherical ends. Therefore confined bubble growth under more general conditions

may also be sensitive to the precise conditions during the approach to confinement, which

would have implications for reproducibility in the present experiments, in which nucleation

might have occurred at different positions on the triggering wire, and for the regularity of

bubble production in confined-bubble flow boiling in micro-channels. The process of bubble

growth from nucleation to confinement requires more detailed study, e.g. by two-dimensional

or three-dimensional CFD simulation, as in [13, 14], to explain the apparent requirement for

an initial heat input at the start of confined growth that is an order of magnitude smaller than

expected from Eq.(3). Meanwhile, the one-dimensional simulations in the remainder of this

paper are performed with CB = 0.15, in order to reduce the unphysical first maximum in P (t)

to negligible magnitude.
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5.3 Influence of Film Thickness δ

Increasing the film thickness δ increases the rate of growth, without a time shift near the origin,

and has negligible effect on the amplitude of the maximum pressure, Fig.(7c,d). The thickness

has no effect on the heat flux to the bubble interface, because of the assumption that the film

and the wall together form a semi-infinite slab with uniform properties. A large difference in

properties should enhance the experimental sensitivity to film thickness, as will be shown in

Section 7, but the choice of wall material was restricted by the requirement for transparency,

in order to observe bubble growth. Film thickness that is not negligible compared to the

tube radius has interacting influences in the simulation by changing the surface area for heat

transfer, the volume of the bubble, and the ratio of the velocities of the bubble and the liquid

column.

5.4 Influence of Experimental Uncertainty in Initial Superheat

The sensitivity to the experimental uncertainty in the initial superheat, as seen in Fig.(7e,f),

is unsurprising. Increasing superheat increases the rate of growth and the amplitude of the

pressure changes.

5.5 Estimated Values of Film Thickness

Based on the above sensitivity studies, the values of the film thickness δ in Table 1 were chosen

for each of the five experimental runs to obtain reasonable simulations of Z(t) and P (t) during

confined bubble growth up to the occurrence of maximum pressure, Fig.(8). In four cases, it

was necessary to increase the superheat to a value at or near the upper limit of experimental

uncertainty. More accurate control and measurement of temperature relative to the saturation

temperature at atmospheric pressure will be required in future experiments at low superheats.

The choice of film thickness ranged between 0.030 mm and 0.080 mm, increasing with superheat

and tube diameter. There was no value that could be chosen to produce even an approximate

prediction of the position along the channel at which the maximum pressure occurred and

the subsequent rate of decrease in pressure. Features of the model that may affect the poor

simulation of the later stages of expulsion of liquid from the tube are considered in Sections 6

and 7.
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6 Improvements to Flow Modelling

6.1 Investigation of Shear Stress Modelling Assumption using the Full Set

of Equations

The equations employed in Section 5 involve assumptions that are unlikely to be good approx-

imations to the physical system. For example, the wall shear stress is modelled with Eq.(8) for

fully-developed steady laminar flow even though, in every run, the liquid column was acceler-

ated to Reynolds numbers ReL = 2ρLULR/µL well above the conventional value of 2000 for

transition to turbulent flow. Whether transition actually occurred in the experiments or was

delayed by the high acceleration is not known. The notional transition point does not appear

to correspond to any particular feature in the experimental growth curves in Fig.(3). A liquid

Reynolds number of ReL = 2000 corresponds to a bubble velocity UB somewhat higher than

1.2 m/s in the 0.48 mm tube or 0.7 m/s in the 0.80 mm tube, the uncertainty depending on the

value assumed for δ in Eq.(11). (The bubble Reynolds number is defined as ReB = ρLUBR/µL,

using the tube radius as characteristic length for consistency with the published correlations

for δ discussed later in this Section.) The simulation was also run with a standard correlation

for the shear stress in steady turbulent flow

τ = 0.020

(

µLρ4

L

R

)1/5[(

1 −
δ

R

)2

UB

]9/5

, (19)

applied either with a step change at ReL = 2000 or with a smooth change at ReL = 1500.

Apart from a small, rapidly-damped oscillation at the step change, the two procedures produce

the same prediction of the pressure pulse P (t), Fig.(9). The turbulent shear stress causes only

small increases in the maximum pressure and in the time taken for the bubble to reach the

end of the tube, suggesting that that the modelling of wall shear stress is not a critical issue.

The disadvantage of this approach is that a particular aspect of a nonlinear model is being

examined by solving a large set of equations that may contain other dubious features affecting

both the thermal and dynamical modelling, such as the assumption of constant film thickness.

6.2 Investigation of Shear Stress Modelling Assumption using the Momen-

tum and Continuity Equations

6.2.1 Method

An alternative method of testing the flow modelling assumptions is to use the experimental data

for the bubble length Z(t) and the pressure P (t) as known inputs (except for experimental
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error) to the continuity and momentum equations Eqs.(11)–(13). The momentum equation

(13) then has film thickness δ(t) and wall shear stress τ(t) as the only unknowns, but an

assumption must be made about one in order to calculate the other. Both quantities have

been studied extensively in adiabatic systems, but rarely for the property range and conditions

of high acceleration relevant to flow boiling in microchannels.

6.2.2 Correlations for Film Thickness

For fully-developed, steady, adiabatic flow of long bubbles in tubes that are small enough for

gravity to have a negligible effect, the non-dimensional film thickness δ/R after the film comes

to rest relative to the wall is a function of the capillary number Ca = µLUB/σ and the non-

dimensional tube radius F = ρLσR/µL
2. (Note that the bubble Reynolds number is related to

Ca and F by ReB = CaF .) For flows with negligible inertia, there are well-known analytical

expressions and experimental correlations, e.g. by Taylor [23] for Ca ¿ 1

δ

R
= 1.34 Ca2/3, (20)

extended by Aussillous and Quéré [24] to Ca < 2.5, but still with CaF ¿ 1, to

δ

R
=

1.34 Ca2/3

1 + 3.35 Ca2/3
. (21)

There is little information for the conditions of the present study, with Ca < 10−2 and F

of order 3 × 105 so that the Reynolds numbers span the laminar-turbulent transition. Some

limited experimental data in [24] for ReB < 103 and an extended asymptotic analysis by de

Ryck [25] for laminar flows with weak inertia show that the inertial effects in steady flow cause

a significant increase in film thickness beyond a critical value of Ca∗ given by

Ca∗ = 28F−3/4 (22)

derived from Eq.(10) and Fig.(5) of [24]. There is even less information about film thickness in

flows that are developing either in space or time. Aussillous and Quéré [24] found that the film

deposited from a very short liquid slug of length S in steady flow was limited to the thickness

of the axially developing boundary layer, given by

δ = O

(

µLS

ρLUB

)1/2

, (23)
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similar in form to the Cooper and Lloyd [26] estimate for the thickness of the microlayer under

an unconfined bubble after growth time tg:

δ = CM

(

µLtg
ρL

)1/2

, (24)

with constant of proportionality CM in the range 0.4–0.8. There have been only a few published

numerical studies of the accelerating motion of bubbles confined in tubes, all for viscous liquids

at large Ca irrelevant to boiling.

Moriyama and Inoue [17] identified two regimes for film formation in their experimental

study of the unsteady growth of cylindrical bubbles in the low-viscosity fluid R113 between

parallel plates with gaps of 0.1–0.4 mm, corresponding to values of F in the high range 4.7×103

– 1.9 × 104. The bubbles reached radial velocities UB of up to 4 m/s, corresponding to a

maximum instantaneous capillary numbers of 0.13, and accelerations U̇B of up to 2000 m/s2,

corresponding to a maximum Bond number of 0.5, where the Bond number Bo is defined by

Bo =
ρLR2U̇B

σ
. (25)

The definitions and correlations in [17] have been rewritten here with the gap half-width R

as the characteristic length for consistency with the convention used in [24, 25]. Noting that

the bubble radius Z ∝ t2 approximately, Moriyama and Inoue calculated the approximately

constant acceleration U̇B from UB/tg and redefined the Bond number as

BoMI =
ρLR2UB

σtg
. (26)

More accurately, their data followed Z ∝ tn, with n varying between 1.3 and 2.1 in different

runs, so the substitution should have been (n − 1)UB/tg and the two definitions of the Bond

number could differ in some runs by a factor of 3. Their correlations for the two regimes are

δ

R
=











0.14Ca0.41 for BoMI ≤ 0.5,

0.11

[

1

R

(

µLtg
ρL

)1/2
]0.84

for BoMI > 0.5.
(27)

For small BoMI , the dependence of δ/R only on Ca suggests that the steady-flow correlation

with negligible inertia should apply but, as noted by Moriyama and Inoue [17], their correlation

gives values about three times smaller than the accepted correlation in Eq.(20) for the range

of conditions in their study. They suggested that this might be because this range lay outside
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the range of validity of Eq.(20), but the later steady-flow studies in [24, 25] lead to estimates of

δ/R for these conditions that are increased, rather than decreased, compared to Eq.(20). The

steady-flow correlations presuppose a fully-developed parabolic velocity profile in the liquid

displaced by the bubble. For large BoMI , the correlation in Eq.(26) is rather similar to the

expressions in Eqs.(23, 24) for liquid flow with a velocity boundary layer ahead of the bubble

with thickness developing with distance or time, but again predicts values that are about three

times smaller. Although the conditions of the studies are not the same, the discrepancy raises

a concern that the correlation of Moriyama and Inoue [17] may significantly underpredict film

thickness. One possibility that is difficult to test retrospectively is that the measured times for

progressive dryout of the film, from which its thickness was inferred by a model for evaporation,

might have been reduced by movement of the triple contact line under the influence of capillary

forces generated by a finite contact angle. Retraction of the film at a velocity of 5–10% of the

bubble velocity could account for the measured times to dryout.

Taha [27] used the commercial CFD code FLUENT to perform a two-dimensional simula-

tion of the adiabatic expulsion of liquid from a capillary tube by application of a gas pressure,

so that thermal modelling was not involved. A constant pressure difference of 4 kPa was ap-

plied to water at 100◦C in a 8 mm long tube with 0.4 mm radius, for which F = 2.8×105. The

conditions are somewhat similar to those for the growing vapour bubbles in the experiments

described in Section 2, except that the liquid column is much shorter and the bubble therefore

accelerates more rapidly, giving larger values of Bo and BoMI . The flow in the liquid column

was assumed to remain laminar. The starting condition for the simulation was a plane interface

pinned at the sharp entrance to the tube. As the interface became curved, the triple contact

line began to move along the tube at a velocity dependent on the constant dynamic contact

angle of 10◦ or 60◦ specified at the wall, developing the familiar moving capillary hump. The

code provides only a crude approximation to the complicated physics in the microscopic con-

tact zone. The developing shape of the confined bubble is shown in Fig.(10), with the radial

scale expanded in the upper diagram to show details of the liquid film. At a contact angle of

10◦, there was only a slow movement of the contact line. The nose of the bubble left behind

a thin liquid film that became nearly stationary after a distance of 3 or 4 tube radii. This

distance and the deposited thickness of the film increased as the bubble grew. At a contact

angle of 60◦, the contact line moved much more rapidly at a velocity that was comparable with
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that of the bubble nose. The film was much shorter, so that the disturbances at the nose and

the contact line interacted. The film was thicker and did not become stationary, so that the

modelling assumptions in Section 4 would not be appropriate.

The values of stationary film thickness in the simulation for a contact angle of 10◦ at

distances of 3R and 4R behind the bubble nose are compared with the correlations in Eqs.(21,

24) in Table 2. The rapid variation in flow conditions leads to the uncertainty about exactly

what film thickness to associate with a particular nose velocity so stagnant film models are not

applicable to bubbles with lengths less than 4R. The steady-flow correlation of Aussillous and

Quéré, Eq.(21), and the transient correlation Eq.(24) with CM = 0.8 are both in approximate

agreement with the simulation. There is too much uncertainty in the very limited evidence to

test the proposal of Aussillous and Quéré that the correlation giving the lower value of film

thickness should be used. The capillary numbers in the simulation are higher than the threshold

value Ca∗, given by Eq.(22), for an increase in the thickness due to steady-flow inertial effects,

but there is at present no guide to the magnitude of the increase for this combination of low Ca

and large F . The correlations of Moriyama and Inoue, Eq.(27), predict much lower values for

film thickness that are in poor agreement with this particular simulation of transient growth,

Table 2, just as they are with Eqs.(21, 24) for the particular experimental conditions of [17].

Thome et al. [15, 16] modified the Moriyama and Inoue correlations by introducing a factor

3 in the expression for the diffusion layer thickness and a further correction factor Cδ0 that

was assigned values between 0.34 and 1.23 to match heat transfer experiments with various

refrigerants and a value of 0.29 for general use. They redefined the bubble growth time used

to calculate the acceleration in the Bond number by tg = 2R/UB and used an interpolating

procedure to give a smooth transition between the Moriyama and Inoue correlations for low

and high Bo. Their correlation, converted to tube radius R as the characteristic length, is

δ

2R
= Cδ0

[

3

(

µL

2ρLRUB

)1/2
]0.84













0.07

(

2ρLRU2

B

σ

)0.41






−8

+ 0.1−8







−1/8

. (28)

By assuming Cδ0 = 1 and making small approximations as in [17], e.g. neglecting the difference

between exponents of 0.41 and 0.42, this may be recast in a convenient form for comparison

with the other correlations:

δ

R
=

{

0.35 Ca0.42 for Ca < F−1/2 approximately,

0.38 Re−0.42 = 0.38(CaF )−0.42 for Ca > F−1/2 approximately,
(29)
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The modifications have eliminated the influence of bubble growth time, as used in [17], and of

boundary conditions ahead of the bubble, as discussed in [24]. The correlations should therefore

apply to the same steady flow conditions as Eqs.(20, 21). With Cδ0 = 1, the predictions of

film thickness are not greatly different for the range 10−3 < Ca < 10−2 but Eq.(29) predicts

an entirely different behaviour for the condition of increasing bubble velocity in a tube of

fixed radius, i.e. that the film thickness reaches a maximum value and then decreases, which

appears to be inconsistent with the available experimental evidence for steady flow. It is also

inconsistent with the trend and values in the transient simulation in Fig.(10), Table 2.

It appears that there is at present no better guide to film thickness under transient con-

ditions than the correlation for steady, laminar flow, Eq.(21), with the proviso that it may

underpredict the thickness at large values of F and overpredict for those transient conditions

for which Eq.(21) predicts a lower value. However, the values of film thickness chosen in Section

5 to optimize the fit of the model to the experimental data up to the time of maximum pressure

are 3 to 5 times larger than the values calculated from Eq.(21) for the measured velocities at

the maximum pressure, Table 1, and the other correlations considered in this Section predict

even smaller values for the film thickness. The large discrepancy shows that further studies

are required of transient film formation over the range of conditions relevant to flow boiling in

microchannels. It should be possible to obtain valuable information from experiments and nu-

merical simulations under adiabatic conditions, which are less difficult to perform than studies

involving phase change.

6.2.3 Deduction of Wall Shear Stress

In the absence of a reliable correlation for δ/R for the conditions of these experiments, shear

stresses were calculated from the momentum equation Eq.(13) for two fixed values of δ in

the range estimated in Section 5 and for δ(t) calculated with the steady flow correlations

Eqs.(20, 21). The film thickness affects the ratio of the liquid and bubble velocities and

accelerations through Eq.(11). Values of the bubble velocity UB = dZ/dt and acceleration

dUB/dt = d2Z/dt2 were obtained by differentiating a cubic polynomial fitted to each growth

curve in Fig.(3). This procedure is open to the same criticisms made of [17] in Section 6.2.2.

It smoothed out some of what might have been experimental noise or genuine fluctuations and

differentiation might then cause errors in the large inertial term that was subtracted from the
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total pressure drop to give the frictional resistance.

The calculated shear stresses are plotted against the liquid velocity UL in Fig.(11) for one

run in each size of tube. The shear stresses for steady laminar and turbulent flow, which

are expected to be lower bounds for the shear stresses in transient flows with monotonically

increasing velocity, are also shown for reference. All the graphs have the same general shape,

displaced towards higher values of UL for correlations that predict lower values of δ. At

small UL, small values of δ lead to values of τ lying below the line for steady laminar flow

and even going negative: this may be due to errors in measuring the small initial values of

UB or underestimation of the film thickness during the transition to confined growth. The

broad plateau in τ is unexpected. In both of the runs in Fig.(11), it commences close to the

nominal laminar-turbulent transition and also the peak of the pressure pulse, where the raw

data indicate irregularities in the acceleration that have been smoothed out in this analysis.

Beyond the plateau, the calculated shear stresses all lie below the line for steady turbulent

flow. In some cases they are below the extrapolated line for laminar flow, which should be a

lower bound, so the estimated film thickness must be too small, even if turbulence has been

completely suppressed in the accelerating flow.

The unexplained features of Fig.(11) confirm that further investigation is required of both

film thickness and wall shear stress in bubble-driven flows accelerating through the laminar-

turbulent transition.

7 Improvements to Thermal Modelling

7.1 Effect of Wall Thermal Properties

Retaining the assumption of constant film thickness, the effect of differences between the

thermal properties of the fluid and of the wall was assessed by replacing Eq.(7) by the expression

for transient conduction in a layer of finite thickness δ on a semi-infinite substrate, based on

Carslaw and Jaeger [28],

qC(z, t) =
kL [T0 − TS(tZ)]
√

παL(t − tZ)

[

1 + 2
∞
∑

n=1

βn exp

(

−
n2δ2

αL(t − tZ)

)]

−
∫ t

tZ

kLdTS/dζ
√

παL(t − ζ)

[

1 + 2
∞
∑

n=1

βn exp

(

−
n2δ2

αL(t − ζ)

)]

dζ, (30)
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where

β =
φ − 1

φ + 1
, φ =

(

kW ρW cW

kLρLcL

)1/2

. (31)

Simulations for water in tubes of borosilicate glass, stainless steel, silicon or copper are pre-

sented in Fig.(12) for one experimental run in each tube of radius 0.24 mm and 0.40 mm. For

all these materials, simulations with the optimized values of film thickness of 0.030 mm and

0.080 mm respectively are indistinguishable from the original single layer model using the prop-

erties of water (thick black line). This suggests that most of the heat driving bubble growth is

conducted from within the thick liquid film, before the thermal diffusion layer has penetrated

to the wall. There is no effect on the poor performance of the simulation of the pressure pulse

beyond the occurrence of maximum pressure. Simulations with the film thickness reduced by

an order of magnitude to 0.003 mm and 0.008 mm respectively fit the experimental data less

well up to the time of maximum pressure. The thinner films cause sensitivity to the wall prop-

erties. The single semi-infinite layer model is still a good approximation for water-glass. The

simulations for water on walls with thermal conductivities in the range 17 W/mK (stainless

steel) to 400 W/mK (copper) form a fairly close group with predicted bubble growth rate

about twice that on glass.

7.2 Effect of Liquid Film Roll-Up

The changes to the basic model that have been discussed so far have failed to improve its poor

simulation of the later stages of the pressure pulse. The insensitivity in this respect to the sub-

model for wall shear stress, demonstrated in Fig.(9), suggests that some fundamental change

is required in the thermal model that will produce a large reduction in the rate of evaporation

after the experimentally measured maximum pressure. It is not known how transition from

laminar to turbulent flow in the liquid column would affect film thickness, but it might be

expected to increase heat transfer in the vicinity of the bubble nose.

A key feature of the model is that the liquid film becomes static a short distance behind the

nose of the bubble and remains in place over its entire length. Reduction in the film length by

evaporation to dryness would reduce subsequent evaporation, as in the flow boiling model in

[15], but is estimated from Eq.(6) to be insignificant for the conditions of these experiments. An

entirely separate mechanism for reduction of the area for evaporation is “roll-up” of the liquid

film under the influence of the capillary pressure gradient caused by a large contact angle,
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suggested in Section 6.2.2 as a possible influence on the experiments in [17] and illustrated

by the adiabatic CFD simulation in Fig.(10), which would reduce the area of film driving

bubble growth by evaporation. This effect of film roll-up was reproduced approximately in

the one-dimensional simulation of vapour bubble growth by computing the heat input only

over a fixed length behind the nose of the bubble, implemented by adjusting the lower limit of

integration in Eq.(10). (No allowance was made for intensive evaporation at the triple contact

line). Progressive reductions in this length caused the maximum pressure to occur earlier,

Fig.(13). The change in gradient immediately after the maximum was sharper in the tube of

larger radius, but the very last stage of the decrease to atmospheric pressure was still faster

than occurred in the experiments. Similar effects occurred in simulations with the two-layer

model using a sub-optimum film thickness, Fig.(14).

There is no direct evidence from the experiments that film roll-up actually occurred: a

video camera field large enough to track the nose of the bubble over a long distance led to

low resolution of flow details behind the nose. The prerequisites for this mechanism are the

formation of a triple contact line with a relatively large contact angle, much greater than 10◦.

The cleaning procedure adopted in the experiments was intended to produce a well-wetted

wall but in situ contact angle measurements were not made: they should be included in future

experiments. A contact angle can only form after the liquid film has dried out somewhere along

its length, perhaps by evaporation at a locally thin region, and motion of the contact line must

be initiated within the measured time for the pressure to reach its maximum value, taken from

Fig.(3), if roll-up of the film is to influence the subsequent growth. The time tE for a liquid film

of thickness δ0 to evaporate to dryness is sensitive to the wall thermal conditions. The heat

transferred to the liquid-vapour interface in the time interval 0 < t < tE is estimated from the

single-layer transient conduction equation appropriate to the conditions of the experiments,

with the time-varying temperature difference approximated by an average value T̄ which is less

than the initial superheat T0. Equating this heat to the enthalpy of evaporation of the film,

2T̄

(

ρcktE
π

)1/2

≃ ρhLV δ0. (32)

Substituting the measured times to maximum pressure for the five runs and mean temperature

differences of half the initial superheat leads to estimates of the maximum film thickness that

could evaporate to dryness in the time available of 0.2–0.4 µm, much smaller than the optimized

uniform film thickness values of 30–80 µm. The most favourable conditions for the formation
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of very thin films would be close to the origin, during the transition to confined growth, and it

has been noted in Section 5.2 that there are uncertainties in modelling this process. For thin

films on walls of relatively high thermal conductivity, a model assuming linear temperature

profiles in the liquid and an isothermal wall, for which

tE = O

(

δ0
2ρLhLV

2kLT

)

, (33)

which would lead to much higher estimates of the maximum film thickness for evaporation to

dryness.

Annular liquid films are also subject to a Rayleigh instability with fastest growing wave-

length 8.9R [29] and time constant tR given by

tR =
12µLR4

σδ3
. (34)

Setting tR equal to the time of the maximum pressure leads to estimates of the minimum film

thickness near the origin of the bubble that would become unstable of 14–18 µm for runs in the

0.24 mm radius tube and 25–28 µm in the 0.40 mm radius tube. These values are less than the

optimized values of 30 µm and 80 µm, respectively, so this appears to be a possible mechanism

for the creation of a dry spot if the optimized values are indeed approximately correct.

While it is uncertain whether roll-up of the liquid film was initiated in these experiments, the

postulated mechanism is consistent with the evidence of a region of deteriorated heat transfer

propagating with confined bubbles in flow boiling experiments in channels of rectangular cross-

section 2 mm × 1 mm [10]. In that geometry, the film would also have been subject to transverse

roll-up towards the corners due to capillary forces.

7.3 Other Issues

The initial heat flux to the newly-formed interface at the front of the bubble, at present assumed

to be infinite in Eqs.(7, 30), is actually finite and dependent on the convective conditions in

the region of formation of the liquid film at the nose of the bubble. This issue requires further

attention.

In confined-bubble flow boiling, heat transfer in the liquid film would inherit an initial

temperature profile dependent on heat transfer in the liquid plug ahead of the bubble, as

modelled approximately for the microlayer under an unconfined sliding bubble in [30].
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8 Conclusions

1. A method has been described for the experimental investigation of the triggered growth

of a single vapour bubble in uniformly superheated water in a capillary tube. The ob-

servations under simplified conditions were used to examine assumptions relevant to

one-dimensional models for flow boiling heat transfer in microchannels. The experi-

ment employed inexpensive instrumentation but was difficult to implement. Desirable

improvements in the technique were noted.

2. The growth of a bubble created a pressure pulse that reached a maximum value and

then gradually declined as the bubble approached the end of the tube. The decrease in

superheat available to drive bubble growth was a large fraction of the initial superheat.

The thermal consequences of pressure variations caused by bubble growth should be

incorporated in models for flow boiling in microchannels.

3. There is at present no reliable correlation to predict the thickness of the liquid film

round confined bubbles for the particular conditions of high Reynolds number, high

Bond number (high acceleration) and low capillary number with transition from laminar

to turbulent flow, all relevant to flow boiling in microchannels.

4. A one-dimensional model employing conventional flow correlations and assuming tran-

sient conduction in the liquid film and the tube wall was unable to simulate the timing

of the maximum pressure and its subsequent rate of decline. Values for film thickness

deduced by matching the model to the experimental measurements up to the time of

maximum pressure were several times larger than the predictions of the best available

correlation.

5. A hypothesis was presented that the bubble growth rate was reduced by roll-up of the

thin liquid film by movement of the contact line due to capillary forces, rather than

evaporation to dryness.

6. According to the model, the initial growth rate of the bubble exerts a lasting influence

on its subsequent growth. The transition from unconfined to confined growth requires

more study.
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Nomenclature

Bo = ρLR2U̇B/σ Bond number
BoMI = ρLR2UB/σtg Bond number used in [17]
Ca = µLUB/σ capillary number
CB unconfined bubble growth factor
CM constant of proportionality in Eq.(24)
Cδ0 correction factor used in [15]
c specific heat, J/kg K
F = ρLσR/µL

2 non-dimensional tube radius
f group formation frequency used in [15]
g gravitational acceleration, m/s2

h heat transfer coefficient, W/m2 K
hLV enthalpy of evaporation, J/kg
Ja = ρLcL(T0 − TS0)/ρV hLV Jakob number
K = 2hT/RρV hLV non-dimensional group appearing in Eq.(18)
k thermal conductivity, W/m K
L tube length, m
M mass of vapour
P pressure, Pa
q heat flux, W/m2

ReB = ρLUBR/µL bubble Reynolds number
ReL = 2ρLULR/µL liquid Reynolds number
R tube radius, gap half-width, m
S liquid slug length, m
T temperature, K
T̄ average value of T in Eq.(32), K
t time, s
tg bubble growth time, s
t0 confinement time, s
UB bubble velocity, m/s
UL liquid velocity, m/s

U̇B bubble acceleration, m/s2

Z bubble length, m
z axial coordinate
α thermal diffusivity, m2/s
∆ average change in film thickness, m
δ film thickness, m
λ exponent appearing in Eqs.(17, 18), 1/s
µ viscosity, Pa s
ρ density, kg/m3

σ surface tension, N/m
τ shear stress, Pa
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Subscripts

A atmospheric
B bubble
C cylindrical region
E evaporation
H hemispherical end
L liquid
R Rayleigh
S saturation
V vapour
W wall
0 initial
min minimum
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List of Figure and Table captions.

Figure 1. Experimental apparatus.

Figure 2. Conditions prior to initiation of growth (a) without and (b) with prepressurization.

Figure 3. Data for pressure P (t)−PA, bubble length Z(t) and bubble velocity UB(t): (a) 0.48

mm tube; (b) 0.80 mm tube.

Figure 4. Dependence of maximum pressure on initial superheat and tube diameter.

Figure 5. Non-dimensional plot of pressure change versus bubble length for all runs.

Figure 6. Model for bubble growth.

Figure 7. Sensitivity of simulations to modelling parameters for run 0.80/2.2: (a), (b) CB; (c),

(d) δ; (e), (f) ∆T = T0 − TS(PA).

Figure 8. Simulations with optimised parameters (Table 1).

Figure 9. Effect of laminar-turbulent transition on pressure pulse.

Figure 10. Effect of dynamic contact angle on expulsion of liquid from an 8 mm long tube of

diameter 0.8 mm by a constant gas pressure, Taha [27].

Figure 11. Shear stress deduced from measured P (t) and Z(t) for different δ(UL): (a) 0.48

mm tube; (b) 0.80 mm tube.

Figure 12. Simulations with various wall materials: (a) 0.48 mm tube with δ = 0.030 mm

(optimised value, thick black line for all materials) and δ = 0.003 mm; (b) 0.80 mm tube with

δ = 0.080 mm (optimised value, thick black line for all materials) and δ = 0.008 mm.
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Figure 13. Effect of simulated film roll-up with various film lengths: (a) 0.48 mm tube with op-

timised film thickness δ = 0.030 mm; (b) 0.80 mm tube with optimised film thickness δ = 0.080

mm.

Figure 14. Simulations with various wall materials and film roll-up with film length 25 mm:

(a) 0.48 mm tube with δ = 0.030 mm (optimised value, thick black line for all materials) and

δ = 0.003 mm; (b) 0.80 mm tube with δ = 0.080 mm (optimised value, thick black line for all

materials) and δ = 0.008 mm.

Table 1. Optimised modelling parameters and film thickness from the Aussillous and Quéré

[24] correlation, Eq.(21).

Table 2. Comparison of a numerical simulation of an accelerating bubble driven by constant

gas pressure with dynamic contact angle 10◦ as shown in Fig.(10) [27] with correlations for

liquid film thickness by Aussillous and Quéré Eq.(21), Cooper and Lloyd Eq.(24), Moriyama

and Inoue Eq.(27), and Thome et al. Eq.(29).
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Figure 6:
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Figure 10:
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Figure 14:
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Run
Parameter 0.48/1.6 0.48/2.2 0.48/3.7 0.80/1.5 0.80/2.2

∆T = T0 − TS(P0), K 2.0 2.6 4.1 1.9 2.5
CB 0.15 0.15 0.15 0.15 0.15

δ, mm optimised 0.030 0.030 0.050 0.050 0.080
δ, mm Eq.(21) 0.006 0.009 0.12 0.0008 0.016

Table 1:
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t UB U̇B Ca Bo BoMI δ/R δ/R δ/R δ/R δ/R
ms m/s m/s2 Eq.(25) Eq.(26) simulated Eq.(21) Eq.(24) Eq.(27) Eq.(29)

3R 4R CM = 0.8 Cδ0
= 1

3 1.20 500 5.8 × 10−3 1.3 1.0 0.035 n/a 0.039 0.059 0.013 0.017
4 1.82 830 8.6 × 10−3 2.2 1.2 0.053 0.039 0.050 0.069 0.014 0.014
5 2.95 2000 1.4 × 10−2 5.2 1.5 0.070 0.060 0.066 0.077 0.015 0.012

5.5 5.00 12000 2.4 × 10−2 31 2.4 0.092 0.077 0.087 0.080 0.116 0.009

Table 2:
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