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Particle Deposition in a Diffusion-Convection

Model

Cameron MacKay, Sean McKee and Anthony J. Mulholland ∗

Abstract

Particle dispersion from a high chimney is considered and an expres-
sion for the subsequent concentration of the particulate deposited on the
ground is derived. We consider the general case wherein the effects of
both diffusion and convection on the steady state ground concentration
of particulate are incorporated. Two key parameters emerge from this
analysis: α, the ratio of diffusion to convection, and λ, the nondimension-
alised surface mass transfer rate. We also solve the inverse problem of
recovering these two parameters given the boundary concentration pro-
file and provide an estimate of the concentration flux above the chimney
stack.

1 Introduction

For environmental and safety issues it is important to be able to predict the
long term ground concentration of airborne particulate emitted from industrial
plants. Previous models have assumed zero flux of particulate at the ground
surface, with perfect reflection of particle velocity at the ground often being
applied [9, 10, 11, 15]. In practice there may well be some absorption by the
ground surface; this surface could be water for example. We present a method
which will allow experimentalists to determine whether or not ground absorp-
tion is an important aspect of their particular study. Ground concentration
measurements [8] are commonly used to estimate the pollution in ambient air;
this paper, by deriving an exact analytical expression for the ground concen-
tration, permits the environmentalist to determine the mass transfer rate to
the ground and consequently a more accurate estimate of the pollution in the
atmosphere.

We consider particle dispersion from a high chimney and derive an expres-
sion for the subsequent concentration of the particulate deposited on the ground.

∗Department of Mathematics, University of Strathclyde, Glasgow, U.K.
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Previous analysis has considered the simplified case where diffusion dominates
convection (eg. [1]). Here we will consider the more general case wherein the
effects of both diffusion and convection on the steady state ground concentration
of particulate are incorporated. Two key parameters emerge from this analysis:
the Peclet number, the ratio of diffusion to convection, which we shall henceforth
denote by α, and λ the nondimensionalised surface mass transfer rate. It is true
that the concentration at any height could be calculated using a finite element
approach; however this can only be achieved with knowledge of α and λ. Our
approach offers a means of estimating these parameters as a precursor to a nu-
merical treatment of the full field equations [15, 18, 17]. In a practical situation
it may only be possible to measure concentration levels on the ground [16]. We
shall show that these two key parameters can be recovered given the boundary
concentration profile on the ground; synthetic data (i.e. data obtained from a
full finite element calculation) will be used to illustrate this. We also provide an
estimate of the concentration flux above the chimney stack.

In deriving the model certain assumptions have been made. Gravitational
effects are ignored due to the negligible mass of each particle, the particles are
absorbed by the ground at a rate proportional to their local concentration c, the
diffusion coefficient D remains constant, the wind is horizontally directed with
constant velocity U , and the chimney opening is viewed as a point source and
modelled using a Dirac delta function.

U

x0

h

z

Figure 1: Model for Smoke Dispersion From a Chimney Stack.

The symmetry of the problem allows us to consider the problem in the two
dimensional plane of the prevailing wind ([1]) (see Figure 1) and in a steady
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Parameter Dimension
z,x,h m

c moles.m−2

Q moles.m−1

D m2s−1

λ, U ms−1

δ (z − h) m−1

Table 1: Parameter Dimensions

state leads to the equation

U
∂c

∂x
= D

(

∂2c

∂x2
+

∂2c

∂z2

)

, (1)

with boundary conditions

D
∂c

∂z
(x, 0) = λc(x, 0), (2)

lim
z→∞

∂c

∂z
(x, z) = 0, (3)

c(0, z) = Q δ(z − h), (4)

and
lim

x→∞
c(x, z) = 0, (5)

where Q is the source strength at height h and λ is the rate of particle absorption
by the ground (see Table 1 for parameter dimensions).

Transforming to the dimensionless variables x′ = xD/(Uh2), z ′ = z/h, c ′ =
ch/Q gives

∂c ′

∂x ′
= α

∂ 2c ′

∂x ′ 2
+

∂ 2c ′

∂z ′ 2
(6)

with corresponding boundary conditions

∂c ′

∂z ′
(x ′, 0) = λ′c ′(x ′, 0), (7)

lim
z ′→∞

∂c ′

∂z ′
(x ′, z ′) = 0, (8)

c ′(0, z ′) = δ(z ′ − 1), (9)

and
lim

x ′→∞
c ′(x ′, z ′) = 0, (10)

where α =
(

D
Uh

)2
and λ ′ =

(

h
D

)

λ are dimensionless parameters. The primes
shall now be dropped for clarity and the system (6)-(10) solved to obtain the
particle concentration at the ground c(x, 0).
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2 Analytic expression for the particle concen-

tration deposited on the ground

For clarity we define the two Laplace Transforms which transform (x, z)-space
to (p, q)-space (see Figure 2).

PSfrag replacements

x, z

p, z

x, q

p, q
Lq

Lq

LpLp

Real Space

Partial L.T. Space

Partial L.T. Space

L.T. Space

Figure 2: Function Spaces.

Definition 1 (Definition of Laplace Transforms in x and z)

Lpc = L[c(x, z); p] =

∫ ∞

0

c(x, z)e−px dx = c(p, z) (11)

Lqc = L[c(x, z); q] =

∫ ∞

0

c(x, z)e−qz dz = c(x, q). (12)

LqLpc = L[L[c(x, z); p]; q]

=

∫ ∞

0

e−qz

∫ ∞

0

c(x, z)e−px dxdz

=

∫ ∞

0

e−px

∫ ∞

0

c(x, z)e−qz dzdx

= LpLqc

= c(p, q) (13)

Existence of all Laplace transforms employed in this report is assumed (see, for
example, [14]). Applying (11) to equation (6) and using boundary condition (9)
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results in

∂2c

∂z2
(p, z) + (αp2 − p)c(p, z) + (1 − αp)δ(z − 1) − α

∂c

∂x
(0, z) = 0. (14)

Applying (12) to (14) yields

(q2 + αp2 − p)c(p, q) + (1 − αp)e−q − α
∂c

∂x
(0, q) − ∂c

∂z
(p, 0) − qc(p, 0) = 0. (15)

Solving (15) for c(p, q) gives

c(p, q) =
(αp − 1)e−q + α ∂c

∂x
(0, q) + ∂c

∂z
(p, 0) + qc(p, 0)

q2 − p(1 − αp)
. (16)

The Laplace transform (11) may also be applied to boundary condition (7) to
obtain

∂c

∂z
(p, 0) = λc(p, 0). (17)

Applying the transformed boundary condition (17) results in

c(p, q) =
α ∂c

∂x
(0, q) + (q + λ)c(p, 0) − (1 − αp)e−q

q2 − p(1 − αp)
(18)

which may be inverted from (p, q)-space to (p, z)-space by use of the convolution
theorem to give

c(p, z) =

(

cosh sz +
λ

s
sinh sz

)

c(p, 0) +
αp − 1

s
H(z − 1) sinh s (z − 1)

+
α

2s

[

esz

∫ z

0

∂c

∂x
(0, u)e−su du − e−sz

∫ z

0

∂c

∂x
(0, u)esu du

]

(19)

where
s =

√

p − αp2 (20)

and H(z − 1) is the Heaviside function. Differentiating expression (19) with
respect to z and solving for c(p, 0) yields

c(p, 0) =
(1 − αp)H(z − 1) cosh s(z − 1) + ∂c

∂z
(p, z)

s sinh sz + λ cosh sz

−α

2

[

esz
∫ z

0
∂c
∂x

(0, u)e−su du + e−sz
∫ z

0
∂c
∂x

(0, u)esu du
]

s sinh sz + λ cosh sz
(21)

and hence an integro-differential relationship may be found between c(x, 0) and
∂c
∂x

(0, z) by inversion of (21). Unfortunately this cannot be inverted directly and
so the complex inversion formula needs to be employed (see, for example, [14]).
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Thus integration is performed along the infinite line p = γ (γ ∈ R+) in the
complex p-plane in a domain in which c(p, 0) is analytic.

The presence of the term s =
√

p − αp2 reveals that branch points exist at
p = 0, 1

α
and therefore a branch cut is made between these two points to ensure

c(p, 0) remains single-valued. The denominator of (21) does not give rise to
other singularities as will be seen later on in Section 3.

0 1 α

θ θ

r r
2

21

1

p

Figure 3: The Cut p-plane.

Any point p in the cut p-plane is located by use of polar coordinates centred
on either the origin or on 1

α
by setting p = r1e

iθ1 and p − 1
α

= r2e
iθ2 with

−π < θ1 < π and 0 < θ2 < 2π (see Figure 3). Thus on this particular branch of
the function

s =
√

p − αp2

=
√

αr1r2ei(θ1+θ2+π)

= i
√

αr1r2e
i( θ1+θ2

2 ) (22)

with 0 < (θ1 + θ2) < 2π (see Figure 3). Note that changing the domain of either
θ1 or θ2 by 2π (but not simultaneously, for example θ1 → θ1 + 2π and θ2 → θ2)
amounts to a complete circuit around one of the branch points. This circuit
through the branch cut indicates the point p lies on the other branch of the
function c(p, 0) since now

s = −i
√

αr1r2e
i( θ1+θ2

2 ). (23)

Observe that from one branch to the other s → −s. The inversion of c(p, 0)
should remain independent of the branch chosen on which to perform the in-
tegration. This property is confirmed by noting that equation (21) is invariant
under s → −s. It is therefore natural to take the branch where s is defined by
equation (23) since on this branch

<{s} =
√

αr1r2 sin

(

θ1 + θ2

2

)

> 0 (24)
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due to 2π < (θ1 + θ2) < 4π and
√

αr1r2 6= 0. The sign of <{s} on the chosen
branch is important as it enables the transformed boundary condition (8) to be
successfully applied to equation (21). Taking the limit of both sides of (21) as
z → ∞ yields

c(p, 0) = lim
z→∞

{

(1 − αp)
(

e−s + e−(2z−1)s
)

H(z − 1) + 2e−sz ∂c
∂z

(p, z)

s(1 − e−2sz) + λ(1 + e−2sz)

−α

[∫ z

0
∂c
∂x

(0, u)e−su du + e−2sz
∫ z

0
∂c
∂x

(0, u)esu du
]

s(1 − e−2sz) + λ(1 + e−2sz)

}

. (25)

Since <{s} > 0

c(p, 0) =
(1 − αp) e−s

s + λ
− α

s + λ

∫ ∞

0

∂c

∂x
(0, u)e−su du

− α

s + λ
lim
z→∞

e−2sz

∫ z

0

∂c

∂x
(0, u)esu du. (26)

Expression (26) may be further simplified by appealing to the following re-
sult.

Lemma 1 If c(x, 0) is continuous on the interval [0,∞)

lim
z→∞

e−2sz

∫ z

0

∂c

∂x
(0, u) esu du = 0. (27)

Thus (26) may be rewritten as

c(p, 0) =
(1 − αp) e−s

s + λ
− α

s + λ

∫ ∞

0

∂c

∂x
(0, u)e−su du. (28)

The proof is contained in Appendix A.

3 Derivation of the ground concentration ex-

pression using the Complex Inversion For-

mula

The complex inversion formula is now applied to equation (28) to give

c(x, 0) = lim
T→∞

1

2πi

{
∫ γ+iT

γ−iT

(1 − αp) epx−s

s + λ
dp

−α

∫ ∞

0

∂c

∂x
(0, u)

∫ γ+iT

γ−iT

epx−su

s + λ
dp du

}

(29)
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where the order of integration has been interchanged. We introduce Φ1(p) and
Φ2(p, u) allowing us to write

c(x, 0) = lim
T→∞

1

2πi

{
∫ γ+iT

γ−iT

Φ1(p) dp

−α

∫ ∞

0

∂c

∂x
(0, u)

∫ γ+iT

γ−iT

Φ2(p, u) dp du

}

(30)

We now apply Cauchy’s theorem (see, for example, [14]) to the contour shown
in Figure 4 (the lines BD, JK, EF and HI lie on the branch cut but appear
separated for clarity). Inspection of (28) reveals no other singularities beyond

0

Γ G

H

K

I

J

FE

BD

A

γ + i

γ i

T

T

δ

R

−

θ 2

α
1δ

Figure 4: The Contour Γ in the Cut p-plane.

the branch points already discussed as λ > 0 and Re{s} > 0. Therefore the
function c(p, 0) remains analytic inside the contour Γ implying

∮

Γ

c(p, 0)epxdp =

∫

ABDEFGHIJKA

c(p, 0)epxdp = 0 (31)
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and so
∫

AB

+

∫

FG

= −
{
∫

BDEF

+

∫

GHIJKA

}

(32)

where the integrand has been omitted for clarity. Upon taking the limit as
T → ∞ it is clear that

c(x, 0) = lim
T→∞

1

2πi

∫ γ+iT

γ−iT

c(p, 0)epx dp

= lim
T→∞

1

2πi

{
∫

AB

+

∫

FG

}

= − lim
T→∞

1

2πi

{
∫

BDEF

+

∫

GHIJKA

}

. (33)

It will now be shown that the integrals over GH and KA tend to zero as T → ∞
and that the integrals over DE and IJ tend to zero as δ → 0.

The first step for the integrals over GH and KA is to transform to polar
coordinates centred at 1

α
, that is p is chosen so that p = Reiθ2 + 1

α
. Transforming

the integrals of (29) separately results in
∫

C

(1 − αp) epx−s

s + λ
dp =

∫

C

(1 − αp) epx−s

s + λ
iReiθ2 dθ2 (34)

and
∫

C

epx−su

s + λ
dp =

∫

C

epx−su

s + λ
.iReiθ2 dθ2 (35)

where C may be either GH or KA. The denominator of |Φ1(p)| and |Φ2(p, u)|
is bounded below by

|λ + s| =
∣

∣

∣
λ +

√

p − αp2

∣

∣

∣
≥
∣

∣

∣

√

p − αp2

∣

∣

∣
− λ. (36)

The modulus of
√

p − αp2 is also be bounded below by
∣

∣ p − αp2
∣

∣ = | p| |αp − 1|

=

∣

∣

∣

∣

Reiθ2 +
1

α

∣

∣

∣

∣

∣

∣αReiθ2

∣

∣

≥ R (αR − 1) (37)

and consequently
∣

∣

∣

√

p − αp2

∣

∣

∣
≥

√

R (αR − 1). (38)

Therefore by (36) and (38)
∣

∣

∣
λ +

√

p − αp2

∣

∣

∣
≥
√

R (αR − 1) − λ. (39)
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Examining the numerator of |Φ1(θ2)| (≡ |Φ1(p)|) and |Φ2(θ2, u)| (≡ |Φ2(p, u)|)
reveals

| 1 − αp| =

∣

∣

∣

∣

1 − α

(

Reiθ2 +
1

α

)
∣

∣

∣

∣

= αR (40)

and
∣

∣ epx−su
∣

∣ = e
x
α exR cos θ2e−u<{s}. (41)

Therefore

|Φ1(θ2)| ≤
αR2e(R cos θ2+

1

α)x−<{s}

√

R (αR − 1) − λ
(42)

and

|Φ2(θ2, u)| ≤ Re(R cos θ2+
1

α)x−u<{s}

√

R (αR − 1) − λ
. (43)

The length of GH and KA can be no more that πR and so
∣

∣

∣

∣

∫

C

Φ1(θ2) dθ2

∣

∣

∣

∣

≤ απR3e(R cos θ2+
1

α)x−<{s}

√

R (αR − 1) − λ
(44)

and
∣

∣

∣

∣

∫

C

Φ2(θ2, u) dθ2

∣

∣

∣

∣

≤ πR2e(R cos θ2+
1

α)x−u<{s}

√

R (αR − 1) − λ
(45)

using the fact that the modulus of an integral is bounded by the maximum value
of its integrand times the contour length (see, for example, [14]).

0

γ + i T

θ
T

R
r
1

1 α

Figure 5: Variation of θT with T .

Now let us define θT = arccos
γ− 1

α

R
(see Figure 5) and note that if T → ∞

then R → ∞ since

lim
T→∞

R = lim
T→∞

√

(

γ − 1

α

)2

+ T 2. (46)
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Therefore θT → π
2

as T → ∞ implying that the range of θ2 is restricted to
π
2
≤ θ2 ≤ 3π

2
and so cos θ2 ≤ 0. Also, since p = γ + iT then r2 = R (cf. Figure 3)

and so

√
αr1r2 =

√

αr1R =
√

α

{

(

γ2 + T 2
)

(

(

γ − 1

α

)2

+ T 2

)}
1

4

(47)

(see Figure 5). Hence by (47) and (24)

<{s} → ∞, as T → ∞. (48)

Therefore as T → ∞ the negative exponential term e−<{s} dominates implying

lim
T→∞

∣

∣

∣

∣

∫

C

Φ1(θ2) dθ2

∣

∣

∣

∣

= 0 (49)

and

lim
T→∞

∣

∣

∣

∣

∫

C

Φ2(θ2, u) dθ2

∣

∣

∣

∣

= 0 (50)

for C either GH or KA.
It is now shown that the integrals around DE and IJ tend to zero as δ → 0.

For brevity this will be demonstrated for contour DE only as the proof for
contour IJ is similar. Let p = δeiθ2 + 1

α
(this is the same as the previous

transform with R replaced by δ) and so from (44) and (45)

∣

∣

∣

∣

∫

DE

Φ1(θ2) dθ2

∣

∣

∣

∣

≤ απδ3e(δ cos θ2+ 1

α)x−<{s}

√

δ (αδ − 1) − λ
(51)

and
∣

∣

∣

∣

∫

DE

Φ2(θ2, u) dθ2

∣

∣

∣

∣

≤ πδ2e(δ cos θ2+ 1

α)x−u<{s}

√

δ (αδ − 1) − λ
. (52)

Therefore

lim
δ→0

∣

∣

∣

∣

∫

DE

Φ1(θ2) dθ2

∣

∣

∣

∣

= 0 (53)

and

lim
δ→0

∣

∣

∣

∣

∫

DE

Φ2(θ2, u) dθ2

∣

∣

∣

∣

= 0. (54)

Hence from (33)

c(x, 0) = − lim
T→∞

1

2πi

{
∫

BD

+

∫

EF

+

∫

HI

+

∫

JK

}

. (55)
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The remaining integration may now be conducted over a real domain. Let
p = eiπ = −v (v ∈ R

+) on contour HI (where
√

p = i
√

v) and so

∫

HI

Φ1 (p) dp =

∫ R− 1

α

δ

(1 + αv) e−vx−ia

λ + ia
dv (56)

and
∫

HI

Φ2 (p, u) dp =

∫ R− 1

α

δ

e−vx−iau

λ + ia
dv (57)

where a =
√

v (1 + αv). The same operation on contour JK (this time
√

p =
ei3π/2 = −i

√
v as there has been a rotation around the branch point at zero)

yields
∫

JK

Φ1 (p) dp = −
∫ R− 1

α

δ

(1 + αv) e−vx+ia

λ − ia
dv (58)

and
∫

JK

Φ2 (p, u) dp = −
∫ R− 1

α

δ

e−vx+iau

λ − ia
dv. (59)

After some simplification

∫

HIJK\IJ

Φ1(p) dp = −2i

∫ R− 1

α

δ

(1 + αv) e−vx

λ2 + a2
(λ sin a + a cos a) dv (60)

and
∫

HIJK\IJ

Φ2(p, u) dp = −2i

∫ R− 1

α

δ

e−vx

λ2 + a2
(λ sin au + a cos au) dv. (61)

Now let p − 1
α

= v (v ∈ R+) on contour BD (where
√

1 − αp = −i
√

αv) and so

∫

BD

Φ1 (p) dp =

∫ γ− 1

α

δ

αve(v+ 1

α)x+ia

λ − ia
dv (62)

and
∫

BD

Φ2 (p, u) dp = −
∫ γ− 1

α

δ

e(v+ 1

α)x+iau

λ − ia
dv. (63)

The same operation on contour EF (this time
√

1 − αp = i
√

v as there has been
a rotation around the branch point at 1

α
) yields

∫

EF

Φ1 (p) dp = −
∫ γ− 1

α

δ

αve(v+ 1

α)x−ia

λ + ia
dv (64)

and
∫

EF

Φ2 (p, u) dp =

∫ γ− 1

α

δ

e(v+ 1

α)x−iau

λ + ia
dv. (65)
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Therefore, after some simplification

∫

BDEF\DE

Φ1(p) dp = 2iα

∫ γ− 1

α

δ

ve(v+ 1

α)x

λ2 + a2
(λ sin a + a cos a) dv (66)

and

∫

BDEF\DE

Φ2(p, u) dp = −2i

∫ γ− 1

α

δ

e(v+ 1

α)x

λ2 + a2
(λ sin au + a cos au) dv. (67)

On taking the limits T → ∞, δ → 0, equation (55) becomes

c(x, 0) = − 1

π

∫ γ− 1

α

0

αve(v+ 1

α)x

λ2 + a2
(λ sin a + a cos a) dv

−α

π

∫ ∞

0

∂c

∂x
(0, u)

∫ γ− 1

α

0

e(v+ 1

α)x

λ2 + a2
(λ sin au + a cos au) dv du

1

π

∫ ∞

0

(1 + αv) e−vx

λ2 + a2
(λ sin a + a cos a) dv

−α

π

∫ ∞

0

∂c

∂x
(0, u)

∫ ∞

0

e−vx

λ2 + a2
(λ sin au + a cos au) dv du.

(68)

The solution has an arbitrary constant γ present but the boundary condition (10)
implies γ → 1

α
and so

c(x, 0) =
1

π

∫ ∞

0

(1 + αv) e−vx

λ2 + a2
(λ sin a + a cos a) dv

−α

π

∫ ∞

0

∂c

∂x
(0, u)

∫ ∞

0

e−vx

λ2 + a2
(λ sin au + a cos au) dv du.

(69)

3.1 Approximation of the flux term ∂c
∂x

(0, z)

The integrals in solution (69) have no closed form solution. However inverting
equation (A.10) (see Appendix A) gives

∂c

∂x
(0, z) =

1

2α
δ (z − 1)

−L−1

[

κe−q +
q + λ

α

∫ ∞

0

e−(κ+ 1

2α)ξc(ξ, 0) dξ; z

]

. (70)
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In what follows we show by substitution of

∂c

∂x
(0, z) = βδ(z − 1) (71)

into equation (69) that β ≈ 1
2α

and that the noninverted term in equation (70) is
of little significance in the ground concentration calculation. This substitution
gives

c(x, 0) =
1

π

∫ ∞

0

(1 + αv) e−vx

λ2 + a2
(λ sin a + a cos a) dv

−αβ

π

∫ ∞

0

e−vx

λ2 + a2
(λ sin a + a cos a) dv. (72)

Taking the limit of both sides of (72) as x → 0 and solving for β results in

β =
1

α
+ lim

x→0

∫∞

0
ve−vx

λ2+a2 (λ sin a + a cos a) dv
∫∞

0
e−vx

λ2+a2 (λ sin a + a cos a) dv

=
1

α
+ lim

x→0

I1(x)

I2(x)
. (73)

In general it is not possible to take the limit inside the integrals in equa-
tion (73). However, truncation of the integrals allows a numerical approxima-
tion of β to be made for discrete values of α, λ and x. The method is first to
numerically evaluate the integrals over a range of x values (close to zero) for a
specific α and λ and then use linear extrapolation to obtain the limit as x → 0
of the integral quotient in (73) (see Plots (a) and (b) in Figure 6). Plot (b)
in Figure 6 suggests the limit in (73) is independent of λ. This observation is
corroborated by the small fluctuations of β over a range of λ values shown in
Plot (d) (these negligible oscillations are probably due to numerical errors from
extrapolation and truncation). However Plot (a) shows a clear dependence of
the limit in (73) on α and Plot (c) confirms that β ≈ 1/2α. This result provides
clear evidence that

∂c

∂x
(0, z) ≈ 1

2α
δ (z − 1) (74)

for all x, α and λ. Further evidence that (74) is a good approximation can be
obtained by its substitution into (69) to yield

c(x, 0) ≈ 1

2π

∫ ∞

0

(1 + 2αv) e−vx

λ2 + a2
(λ sin a + a cos a) dv. (75)

The approximate solution (75) can then be compared with a numerical solution
of the original system (6)-(10) at discrete values of α and λ. This numerical
solution may be viewed as experimentally gathered data from the field say,
which we denote by cd(x, 0).
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Figure 6: Numerical Evaluation of the Integrals and Limits of Equation (73)

The MATLAB package FEMLAB was used to solve system (6)-(10) numer-
ically for cd(x, 0) at various values of α and λ [6]. The Dirac delta in boundary
condition (9) is expressed as, [5],

δ(x) = lim
ε→0+

1

2
√

πε
e−

x2

4ε (76)

and approximated by

δ(x) ≈ 1

2
√

πε
e−

x2

4ε (77)

for ε << 1.
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Figure 7: FEMLAB Generated Solutions of Concentration (α = 1.2, λ = 0.8).

Equations (6)-(10) are solved by FEMLAB with the approximation (77);
the resulting solution on the ground (i.e. z = 0) will be denoted by cε

d(x, 0)
(see Plot (a) in Figure 7). Clearly the results are dependent on the value of ε
selected. However, this problem may be circumvented by noting that only the
magnitude of the solution is affected by a change in ε and that (providing α and
λ remain fixed) qualitative properties remain conserved. Thus normalisation of
the concentration with respect to its maximum through

c̃d(x, 0) =
cε
d(x, 0)

cmax
d

(78)

where
cmax
d = max

x∈R+
cε
d(x, 0) (79)

yields identical solutions c̃d(x, 0) for all sufficiently small values of ε (see Plot
(b) Figure 7). In order to effect a comparison with c̃d(x, 0) the solution c(x, 0)
obtained through equation (75) must also be similarly normalised through:

c̃(x, 0) =
c(x, 0)

cmax
(80)

where
cmax = max

x∈R+
c(x, 0). (81)

It should be emphasized at this stage that while the solution (75) utilises the
flux approximation (74) the experimental data is obtained directly from the
numerical evaluation of the system (6)-(10).
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Figure 8: Plots Comparing c̃(x, 0) and c̃d(x, 0) for Various α and λ.

Plots (a) and (b) in Figure (8) show that c̃d(x, 0) compares favourably with
that generated by the approximation (75). Plot (c) suggests that for λ << α
the numerical and analytical approximations differ slightly for large x. Plot (d)
suggests that for α << λ solutions differ slightly for small x. Analysis of the
sensitivity of c̃(x, 0) to the value of β reveals marked deviations from c̃d(x, 0)
(see Figure 9). This provides further evidence to support (74) approximating
the true flux; consequently, in the next section, c(x, 0) will be calculated directly
from equation (75).
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4 Inverse Problem Formulation and Solution

The practical utility of the expression for the ground concentration, equation (75),
is that it allows us to compute the mass transfer rate constant from ground con-
centration data. We shall also be to recover the Peclet number via the parameter
α. The inverse problem that we wish to address therefore is that of determining
α and λ from {c̃d(xi, 0), i = 1, . . . , m}. We shall solve

min
χ∈R2

f(χ) =
m
∑

i=1

ri(χ)2 = rT r (82)

for χ = [α, λ] and where

ri(χ) = c̃(xi, 0; χ) − c̃d(xi, 0). (83)

is the error between the model prediction and the experimental data at the point
xi. The solution to equation (82) minimizes the sum of the squares of these
errors. Note the change of notation from c̃(xi, 0) to c̃(xi, 0; χ) to emphasise the
dependence on the parameters α and λ.

In order to carry out this minimisation we use the trust region NONLINLSQ
routine from the MATLAB optimisation toolbox [3]. The essence of trust region
methods is that they approximate the nonlinear function by a simpler function
whilst defining a trust region in which the simpler function is a reasonable ap-
proximation to the original function (for more details see, for example, [4]).
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4.1 Numerical Results

The optimisation routine was supplied with an initial estimate χ0 = [α0, λ0] and
a data set {c̃d(xi, 0; χ

j
)}100

j=1 (0 < xi < 20) representing synthetically generated

data. One hundred separate data sets {c̃d(xi, 0; χ
j
)}100

j=1 were generated by solv-

ing the system (6)-(10) using FEMLAB for 100 distributed values of α and λ.
Consequently, there were 100 different least squares problems to solve. The ini-
tial estimate χ0 = [α0, λ0] was also taken randomly from a uniform distribution.
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Figure 10: Variation of the Relative Error Er.

The iterative method was terminated when the difference in the cost function
∣

∣

∣
f(χ

i
)k − f(χ

i
)k+1

∣

∣

∣
< 10−8 (see (82)). It was found that the maximum number

of iterations taken for the method to converge to a solution χ∗ = [α∗, λ∗] was

19



20. A relative percentage error was calculated at termination through

Er =
‖ s − χ∗ ‖2

‖ s ‖2

× 100 (84)

where s is the true solution as calculated by FEMLAB.
Scatter plots of the 100 relative errors against particular norms of the solu-

tion, iterated solution and initial estimate were constructed in order to obtain
some information on the error dependence of the iterated solution χ∗ = [α∗, λ∗]
(see Figure 10). Firstly it should be noted that of the 100 problems solved the
worst error encountered was of the order 2.4% with the majority of errors below
1%. Plot (a) shows that there is little or no dependence of the error on the iter-
ated solution. Significantly, Plot (b) suggests that the error has no dependence
on the initial estimate. Plot (c) again suggests that the error is insensitive to
the difference of the elements in the initial estimate vector χ0 = [α0, λ0]. Finally
Plot (d) displays some clustering and the conclusion drawn is that the larger the
difference between the parameters α and λ, the larger is the error.

A statistical analysis has been performed on the data to obtain correlation
coefficients between the error and the various norms. This analysis confirmed
that there is little correlation between the error Er and |α0 − λ0| or indeed
‖ s − χ0 ‖2. However a high correlation between the error Er and the difference
in the solution parameters |α − λ| was observed. Recall that a value |α − λ|
of the order of 25 produced visible discrepancies between the FEMLAB and
model predicted data (see Figure 8(c)). These discrepancies may be interpreted
as noise due to both poor experimental (FEMLAB) data and/or errors in the
model. The noise in the solution was quantified through

δ =
‖ c̃(s) − c̃d(s) ‖2

‖ c̃(s) ‖2
× 100 (85)

where c̃(s) = [c̃(x1, 0; s), . . . , c̃(xm, 0; s)]T and c̃d(s) = [c̃d(x1, 0; s), . . . , c̃d(xm, 0; s)]T

and where the noise is calculated with respect to ‖ c̃d(s) ‖2.
The high degree of correlation between the relative error and the percentage

noise suggests that an increase in noise (decrease in the reliability of the model
or data) will lead to an increase in the error of the iterated solution (see Plot
(b) Figure 11). Although unsubstantiated Plot (c) (Figure 10), and Plots (a)
and (b) (Figure 11) suggest that the dependence of the error on the noise may
be linear.

5 Conclusions

We have derived an expression for the concentration of the particulate deposited
on the ground arising from particle dispersion from a high chimney (equa-
tion (75)). We have considered the general case wherein the effects of both
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diffusion and convection on the steady state ground concentration of particulate
have been incorporated. Two key parameters emerge from this analysis: α, the
square of the Peclet number, and λ the nondimensionalised surface mass transfer
rate. They govern the form of the ground concentration profile. In many practi-
cal situations it is possible to measure concentration levels on the ground and we
have shown that it is possible to recover these key parameters given this ground
concentration. Synthetically generated data (using FEMLAB) was employed
to illustrate this point. The inverse problem was solved using an optimisation
approach and excellent agreement between the recovered and actual values was
obtained. As a by-product of this investigation an estimate of the concentration
flux above the chimney stack was obtained. In deriving the model certain sim-
plifying assumptions were made. Natural extensions of the model arise through
relaxing some of these assumptions: for instance, a height dependent wind veloc-
ity could be included ([12], p386, p413), or a height dependent diffusivity ([13],
p593) and, rather than using a point source, a more realistic term for the particle
concentration at the chimney opening could be added.
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A Proof of Lemma 1

First of all we shall require the following theorem:

Theorem 1 (Lebesgue’s Theorem of Dominated Convergence, [7]) Let
fn (for n = 1,2,. . . ), f , and g be (complex valued) functions defined on I such
that

1. fn(x) → f(x) as n → ∞ for all x ∈ I

2. | fn(x)| ≤ g(x) for all x ∈ I

3. g(x) is integrable on I

then f(x) is integrable on I and

lim
n→∞

∫

I

fn(x) dx =

∫

I

f(x) dx.

2

We require that c(x, 0) be bounded.

Lemma 2 Assuming c(x, 0) is continuous on [0,∞) then

| c(x, 0)| ≤ N

for N ∈ R+.
Proof Assuming c(x, 0) is continuous on [0,∞) then by (10), for every ε > 0,
∃ b ∈ R+:

| c(x, 0)| < ε, ∀ x ≥ b. (A.1)

Thus c(x, 0) is bounded on [b,∞]. But c(x, 0) is bounded on [0, b] by the Extreme
Value Theorem [2] and so ∃ N ∈ R

+ with

| c(x, 0)| ≤ N, x ∈ [a,∞).
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2

Using convolution, equation (18) is inverted from (p, q)-space to (x, q)-space
yielding

c(x, q) =
e

x
2α

κ
sinh κx

∂c

∂x
(0, q)

+
1

2ακ
(2ακ cosh κx − sinh κx) e

x
2α

−q

+
q + λ

2ακ

(

eκx

∫ x

0

e−(κ+ 1

2α)ξc(ξ, 0) dξ

− e−κx

∫ x

0

e(κ− 1

2α)ξc(ξ, 0) dξ

)

e
x
2α (A.2)

where κ =

√
1−4αq2

2α
. Solving for ∂c

∂x
(0, q) results in

∂c

∂x
(0, q) = cosechκx

{

κc(x, q)e
−x
2α

− 1

2α
(2ακ coshκx − sinh κx) e−q

−q + λ

2α

(

eκx

∫ x

0

e−(κ+ 1

2α)ξc(ξ, 0) dξ

− e−κx

∫ x

0

e(κ− 1

2α)ξc(ξ, 0) dξ

)

}

. (A.3)

Branch cuts in the q-plane are found in a similar fashion to those previously
found in the p-plane. It is again noted that equation (A.3) is invariant under the
transform κ → −κ and so either branch will yield the same result upon appli-
cation of the complex inversion formula. Therefore the branch where <{κ} > 0
is chosen and the limit of expression (A.3) as x → ∞ is taken to obtain

∂c

∂x
(0, q) = lim

x→∞

[

(

1 − e−2κx
)−1

{

2κc(x, q)e−(κ+ 1

2α)x

− 1

α

(

ακ
(

1 + e−2κx
)

− 1

2

(

1 − e−2κx
)

)

e−q

−q + λ

α

(
∫ x

0

e−(κ+ 1

2α)ξc(ξ, 0) dξ

− e−2κx

∫ x

0

e(κ− 1

2α)ξc(ξ, 0) dξ

)

}]

(A.4)
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and hence

∂c

∂x
(0, q) =

(

1

2α
− κ

)

e−q − q + λ

α

∫ ∞

0

e−(κ+ 1

2α)ξc(ξ, 0) dξ

+
q + λ

α
lim

x→∞
e−2κx

∫ x

0

e(κ− 1

2α)ξc(ξ, 0) dξ. (A.5)

If
∫ ∞

0

e(κ− 1

2α)ξc(ξ, 0) dξ (A.6)

converges or oscillates between finite values then

lim
x→∞

e−2κx

∫ x

0

e(κ− 1

2α)ξc(ξ, 0) dξ = 0. (A.7)

If however
∫ ∞

0

e(κ− 1

2α)ξc(ξ, 0) dξ → ±∞, as x → ∞ (A.8)

use of l’Hôpital’s rule and boundary condition (10) yields

lim
x→∞

e−2κx

∫ x

0

e(κ− 1

2α)ξc(ξ, 0) dξ =
1

2κ
lim

x→∞
e−(κ+ 1

2α)xc(x, 0)

= 0. (A.9)

An expression for ∂c
∂x

(0, q) is therefore given by

∂c

∂x
(0, q) =

(

1

2α
− κ

)

e−q − q + λ

α

∫ ∞

0

e−(κ+ 1

2α)ξc(ξ, 0) dξ. (A.10)

The Final Value theorem (see, for example, [14]) is applied to equation (A.10)

to determine the nature of ∂c
∂x

(0, z) as z → ∞. Recalling that κ =

√
1−4αq2

2α
it is

clear

lim
q→0

q
∂c

∂x
(0, q) = lim

q→0

{

−q

(

q + λ

α

)
∫ ∞

0

e−(κ+ 1

2α)ξc(ξ, 0) dξ

}

. (A.11)

Define

fn(ξ) = e−(κn+ 1

2α)ξc(ξ, 0) (A.12)

with q = τ
n

for τ ∈ C (n = 1, 2, 3, . . . ) so that κn =

q

1−4α( τ
n)

2

2α
. Let g(ξ) = Ne−

ξ

2α

and observe that the use of the Final Value theorem combined with <{κn} > 0
yields

| fn(ξ)| ≤ N
∣

∣

∣
e−(κn+ 1

2α)ξ
∣

∣

∣

= Ne−<{κn}ξe
ξ

2α

≤ g(ξ), ∀ξ ∈ [0,∞) . (A.13)
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Now let f(ξ) = e−
ξ

α c(ξ, 0) and note that

fn(ξ) → f(ξ), as n → ∞. (A.14)

Thus (A.13) and (A.14) satisfy Theorem 1 and

lim
q→0

∫ ∞

0

e−(κ+ 1

2α)ξc(ξ, 0) dξ =

∫ ∞

0

e−
ξ
α c(ξ, 0) dξ (A.15)

since n → ∞ as q → 0. The integral in equation (A.15) is convergent and so by
this and equation (A.11)

lim
q→0

q
∂c

∂x
(0, q) = 0 (A.16)

and hence by the Final Value theorem

lim
z→∞

∂c

∂x
(0, z) = 0. (A.17)

If
∫ ∞

0

∂c

∂x
(0, u) esu du (A.18)

converges or oscillates between finite values then

lim
z→∞

e−2sz

∫ z

0

∂c

∂x
(0, u) esu du = 0. (A.19)

However if
∫ z

0

∂c

∂x
(0, u) esu du → ±∞, as x → ∞ (A.20)

then l’Hôpital’s rule may be used to obtain

lim
z→∞

e−2sz

∫ z

0

∂c

∂x
(0, u) esu du = lim

z→∞
e−sz ∂c

∂x
(0, z) . (A.21)

Hence by equations (A.17) and (A.21) Lemma 1 follows.
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