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Abstract

We have derived an approximate analytical expression for the static director dis-
tortion of a planar nematic layer subject to a magnetic field H immediately above
the critical Freedericksz transition H = H.. The layer contains a voltage-independent
density of positively and negatively singly charged ionic species that interact with the
flexoelectric and dielectric polarisations which appear when the director is distorted.
The analytical solution is shown to correspond closely to a full numerical calculation
when H/H, = 1.01. The analytical approach allows a quantitive insight into how the
mobile charge shields the polarisation for different values of the elastic constants, the

ionic density, the flexoelectric coefficients and the layer thickness.



1 Introduction

Nematic liquid crystal materials generally contain molecules that possess permanent dipole
moments and that also exhibit an anisotropic electronic polarisability and an anisotropic dia-
magnetic susceptability. The average molecular orientation in the nematic phase is described
by the director, n. Due to the symmetry of the molecular ordering the phase exhibits dielec-
tric and magnetic anisotropies, with different values of the permittivity and the susceptability
observed parallel to and perpendicular to the n-director, but there is no spontaneous bulk
polarisation of the phase [1, 2|.

In 1969 Meyer [3] proposed that a bulk polarisation would arise from distortions in the
n-director if the nematic molecules possessed a shape polarity as well as a permanent electric
dipole moment. This effect, which has become known as the flexoelectric effect, is analogous
to the piezoelectric effect in certain crystals. The flexoelectric effect has been observed in
polar nematics and also for nematic materials for which the molecules are non-polar and
symmetric. In the latter case the appearance of the flexoelectric polarisation was attributed
to the contribution from a molecular quadrapole moment [4, 5].

Measurement of the Freedericksz transition of a nematic layer induced by a magnetic field
or an a.c. voltage has become an established technique for the determination of the values of
the Frank-Oseen elastic constants of nematic liquid crystal materials [6, 7, 8, 9]. For example,
a planar aligned nematic layer will undergo a splay distortion when a magnetic field above
the critical value H = H, is applied normal to the layer as long as the magnetic susceptability
parallel to the n-director, x, is larger than the value perpendicular to the n-director, x., so
that Ax = x| — x. > 0. There is no distortion below H = H, but the magnitude of the
distortion, which can be quantified in terms of the mid-layer tilt angle 0,,, increases sharply
as the magnetic field is increased above the critical value.

In 1974 Deuling [10] reported a theoretical investigation into the influence of a flexoelectric
polarisation on the magnetic Freedericksz effect. Increasing the magnitude of the sum of the
flexoelectric coefficients, e;; + e33, does not shift the critical field H,. but it does decrease the
gradient of the mid layer tilt as a function of magnetic field immediately above the threshold.
This “flexoelectric stiffening” was also implicity predicted to occur from analysis of the Freed-
ericksz effect induced by electric fields in the presence of a flexoelectric polarisation [11]. More
recent work by the present authors on the a.c. electrically induced Freedericksz transition con-

)

sidered the near “degeneracy” of the effect on the static distortion of the n-director profile
between decreasing the value of the nematic elastic constant ratio K3/K; and increasing the
value of e;; + e33 when fitting the shape of the capacitance-voltage curve above the threshold
voltage [12].

Historically, different measurement approaches have disagreed in the magnitude and even
sign of the flexoelectric coefficients when applied to the same material (e.g. 5CB or MB-

BA) [13]. One reason for this is the presence of mobile ionic contamination. When measure-



ments are made with a magnetic field or with an a.c. electric field whose period is shorter
than the space charge relaxation time there will be an ion-director-polarisation coupling. The
effect is most marked in polar nematic materials and when the measurement geometry is itself
asymmetric, for instance the hybrid aligned nematic geometry. Ponti [14] first demonstrated
that both the sign and magnitude of e;; + e33 was changed when the data of [15] was refitted
with an ionic charge number density of 1.0 x 102° m=3.

In this paper a theoretical investigation is presented of the magnetically induced Freeder-
icksz transition in the planar or “splay” alignment geometry. Equations describing nematic
continuum theory, non-equilibrium charge transport, and the appropriate Maxwell’s equations
of electromagnetism are solved self consistently in order to investigate how the flexoelectric

polarisation of the distorted layer can be shielded by the mobile ionic charge.

2 Model and Governing Equations

The geometry that will be investigated consists of two parallel plates with the liquid crystal
sandwiched between them as depicted in Fig. 1. The director tilt angle # is defined relative
to the confining plates as shown in the Fig. 1. It will be assumed that the n-director lies
parallel to the boundaries at both of the surfaces, so that #(z = 0) = 6(z = d) = 0 rad. A
magnetic field H is applied perpendicular to the cell and, since the magnetic susceptability
anisotropy Ay is assumed to be positive, director re-orientation is expected to occur once
the field exceeds some critical threshold value |H| = H.. The flexoelectric polarisation,
which is obtained as a direct consequence of this induced director distortion, then creates an
internal electric field E. This acts in such a way so as to essentially reduce the effect of the
magnetic field. It will be assumed that two types of mobile ionic species are present in the
layer simultaneously, one having charge +|e| and number density n;,, and the other having
charge —|e| and number density n.. The positively charged ionic species will be referred to as
“holes” and the negatively charged ionic species as “electrons” (these labels have no physical
significance but are used simply to aid the brevity and flow of the article).

From liquid crystal continuum theory [16, 17, 18, 19] the total free energy density in such

a cell is given by

W = Welastic T Wmagnetic T Welectric
= Welastic + Wimagnetic + (Wiclectric + W flezoetectric T Wionic)
= K, (V' n)’+ 1K, (n-Vxn)’+1K;(nxVxn)
+3 (Ko + K4)V-[(n-V)n—(V-n)n] - %qux(n-H)2
Lot B? — Lege, (n-E)’ — e (V-n)(n-E) +es3(nx Vxn)-E4pU (1)

2 2

where the K; are the usual Frank elastic constants, py and €, are the permeability and permit-

tivity of free space, e;; and es3 are the splay and bend flexoelectric coefficients, respectively,

4



pr = le|(ny, — n.) is the free charge density and U denotes the electric potential. The unit-
less constant €, = €| — €, is the dielectric anisotropy of the material with ¢ and €, being
the relative dielectric permittivities parallel and perpendicular to the n-director. Due to the
symmetry of the geometry it will reasonably be assumed that the director distortion angle @,
electric field magnitude E = |E| and the electron and hole number densities (n, and ny) are

spatially only dependent on z. This allows us to introduce the following:
H=(0,0,H), E=(0,0,E(z1t), n=(cosf(z1t),0,sind(z,1t)), (2)

where H is assumed constant over the cell. Inserting these into equation (1) and writing the
electric field in terms of the potential via the relation E = —VU [20] then gives the total

free energy density to be

w = l[K cos?0 + K. sin29] 99 2— lu AxH?sin’f
9 L s 0z 2™

1 . U\’ 90\ [ OU
—5¢0 (el + €, s1n29)<%> + (eq1 + e33) smﬂcosﬂ(az> ( P ) + psU. (3)

The next step is to minimise the total energy of the system in order to obtain the governing
differential equation for the director distortion angle. Using the calculus of variations [18]

this process leads to the equation

20\ 1 9 1 AN
(K1 cos®0 + Kjsin®) ((922) — (K3 — K)sin (26) (82) + 5 €0caSin (26) <&>
1 : o*U 1 o0
+5 (€11 + e33) sin (26) (8 2) + quxH sin (26) — (815) 0, (4)

where v, represents the director rotational viscosity. In addition to the above it is also essential
to ensure that Maxwell’s equations for electric and magnetic fields are simultaneously satisfied.
In this situation, where the magnetic field is considered to be constant in both space and time,
and it is assumed that E = —V'V the only Maxwell equation that needs to be explicitly solved

is V- D = p; where D is the electric displacement which can be expressed as [1]
D:GOELE—f—E()Ga(H'E)n+611(V'n)n—633(nX V x 1’1), (5)

which upon insertion into the Maxwell equation leads to the differential equation

% {_GOQ (%) — €€, SIn%0 (gg) + = L (€11 + e33) sin (26) (gi)} le| (nn —ne) . (6)

In order to model the ion distribution the non-equilibrium charge transport equations

must also be solved:

on, 0 [ oU D, 8718] 0 ony, 0 [ oU D, 8nh] 0

(7)
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where p, and gy, are the electron and hole mobilities and D, and D), are the electron and
hole diffusivities. Temperature activated effects such as generation-recombination due to the
dynamic equilibrium between neutral molecules and dissociated ion-pairs are not considered
in the present model [21].

For the analytical work it is being assumed that the “strong anchoring” condition holds
at the boundaries 2 = 0 and z = d which means that the director is fixed parallel to the
surfaces. It is necessary to introduce a very small initial tilt angle throughout the bulk of
the layer when the system is modelled numerically. Additionally, since no external electric
field is being applied we assume that the bounding plates are both held at zero potential. For
the charge transport equations we consider the boundaries to be insulated meaning that no
current can flow into or out of the cell. Since the boundaries are earthed but allow no charge
flow they can be regarded as unreactive or passivated. This approximates to the situation in a
practical device where the electrodes are coated with a thin dielectric layer. Mathematically,

these conditions can be expressed in the forms:

D
0(0,¢) =6 (d,t) =0, ne(z,t)M _ De One(2,1) —0,
0z 2=0,d He 0z 2=0,d
(8)
D
U (0,t) =U (d,t) =0, nh(z,t)M +_hM —0.
0z 2=0,d M, 0z 2=0,d

In addition to the boundary conditions discussed above, we also require the following

initial conditions:
0(2,0)=0, U(z0) =0, ne(z0) =n,(z0)=mng 9)

It is therefore assumed that at ¢ = 0 the charge is uniformly distributed with a known

density which means that ng is constant.

3 Analytical Solution

Although the full system of equations defined by (4), (6) and (7), along with their associated
boundary and initial conditions (8) and (9) can be solved numerically, an analytical solution
provides some insight into the precise relation between the director orientation and the various
field components. In this section we derive an approximate asymptotic static solution when
the applied magnetic field is just above the threshold. We introduce a small perturbation
parameter, € through the relation

H=H,(1+¢), (10)
and construct series solutions of the form
O =el) +e05+ ..., Ne=ng~+ENeg+ €Ny + ...,
U=€Uy+e'Up+..., np=mng+np+enp+.... (11)



Inserting these into the governing equations (4), (6) and (7) and making use of the ap-
proximations

sin’d ~ 07 — £6*,  sin (20) ~ 20 — 26°, (12)

we obtain, up to third order in ¢, the following system of differential equations:

[Klglzz + /LOAXHEQI] €+ [Klgi’)zz - Klgfglzz + K39%91zz + (K3 - Kl) 919%2

+ (611 + 633) 91U2zz + MUAXHEH?, — %,U/()AXHEH% + QMUAXHzel] 63 = O, (13)
[—€0€ Uz, + (e11 + e33) 0161.], e = le| (Ph2 — Ne2) e, (14)
D, D,

|:——7L0Z:| + |:7L0U2Z — —TlegZ:| 62 = 0, (15)

e z He 2

D D

|:—hngzj| + |:7L0ng —+ —hnh23:| 62 = 0, (16)

Hh z Hh z

where the z subscripts denote differentiation. These equations are now solved sequentially,
for each power of €, making use of the boundary conditions in (8).

It is clear to see that the zeroth order equations are trivially satisfied since n, is a constant
and the only first order equation arises from (13). Solving this gives rise to the familiar

threshold expression

™ K1
H.=— , 17
d\ poAx (a7)
along with the solution term
0, = Bsin (%) , (18)

where B is a constant of integration, yet to be determined. Turning to the second order

equations, it is now possible to simulatenously solve (14), (15) and (16) to obtain the solutions

U, (‘7 (1D+_e>i>) (;;7)32) exp (\z) + B2 cos (%) +o(C— D)
+ [a (D—C)— nB — (" (1D+_e>i)) (;;7)3 2)} exp (—A2) (19)

- ot om0 (S0 e

<a (D - C) —nB?
1 + exp (Ad)

) exp (Az) +1B? cos (2%2) +0(C— D)} +C, (20)

- o0 (2D

(U (1D—|—_e>ia) (;\;7)32) exp (\z) +nB? cos (2;) +0(C - D)} +D, (21
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where C' and D are integration constants and we have introduced the parameters

lelno ((pn | pe (en1 +eg3)m® /(4r® le|
\ = ~heo e S A = — . 22
eoe. \ Dy, + D,)’ g €€ | d? d? + 7 €0€ L N\? (22)

Due to the insulating boundary conditions, no charge can either enter or leave the cell and

as we have assumed that there are no charge generation or recombination processes ocurring
we can consider the total amount of each type of charge to be conserved within the cell. Since
the leading order terms of the electron and hole number density series solutions are equal to
the constant initial density ny we can assume that each of the remaining terms must integrate
to zero. Applying this condition to equations (20) and (21) gives two of the integration

constants to be ) )
_ HenonB” - pwnon B
D, '’ Dy,

Next, in order to obtain the constant B, we turn to the third order term of the differential

C (23)

equation (13) where detailed, but straightforward, calculations eventually yield

—1/2
pof  lnten)s . (24)
4K1 K160€L (471'2 + )\2d2)

It should be noted that a negative solution for B also exists, however this just corresponds
to a rotation of the director in the opposite direction. The solutions up to second order in €

may now be simplified to reveal that

§ = eBsin (%Z) , (25)
9 2mz 9
U =nB* |cos = —1| €, (26)
. 9
Ne = g + MDnO nB? cos (%) €, (27)
2
ny = ng — M;)?ZO nB? cos (%) . (28)

It can also be shown that, when ny = 0, the expression for the maximum distortion
angle, 0, = eB, reduces to that obtained elsewhere [11, 22] when ions are not considered.
Additionally, in the absence of both flexoelectricity and ionic contamination it simplifies to

the analytic solution found in the literature [18].

4 Results

In order to check the accuracy of the analytic solution we have solved the full set of differential
equations (4), (6) and (7), subject to the conditions (8) and (9), numerically using the finite



element package COMSOL Multiphysics [23]. Although the full dynamic equations were used
for these solutions, only the final static state results are presented here.

Unless stated otherwise the parameter values used are those displayed in Table 1. Here we
have used measurements performed on the material E7 for the permittivity components and
elastic constants and Ay takes on a typical value for nematic materials [12, 18]. The diffusivity
constants are calculated using the Einstein relation D = pkgT/ |e| where kp denotes the
Boltzmann constant, and the temperature 7" was assumed to be 300 K. An unusually small
viscosity vaue was used to reduce computational time for the numerical solutions. This does
not have any consequences for the static solutions in which we are interested.

In Figs. 2 and 3 we show a comparison of the analytical solutions, obtained using equations
(25) to (28), and those computed numerically for the director distortion angle, potential and
ion number densities across the cell at two different applied magnetic field strengths. The
dashed lines correspond to the predictions of the analytical solution and the solid lines to
the predictions of the full numerical calculations. When the magnetic field is just above
the threshold, H/H, = 1.01, there is close agreement between the numerical and analytical
solutions. The deviation between the two solutions becomes significant at higher fields, when
H/H. = 1.05, as a result of limiting the asymptotic analysis to second order in e. The
magnitude of the flexoelectric polarisation will be higher in the regions where there are spatial
gradients in the n-director angle 6 and the potential U, as can be seen from equation (1).
In Fig. 3 the mobile positive and negative charges react oppositely to the variation of the
polarisation through the layer with the number density of electrons being enhanced at the
centre of the cell, but depleted near to the boundaries, whereas the number density of holes
is enhanced near to the boundaries, but depleted towards the centre.

Figure 4 illustrates the effects that both flexoelectricity and ionic contamination can have
on the n-director distortion angle through the cell when H/H. = 1.5. These data and the
data for all subsequent graphs have been obtained through numerical solution of equations
(4), (6) and (7). The solid line shows the distortion that has been calculated in the absence of
any ionic contamination or flexoelectric polarisation when n, = 0 m~ and e;; +e33 = 0 Cm™".
The mid-layer tilt angle is #,, = 1.036 rad. If the ionic number density is maintained at zero
but the flexoelectric polarisation is increased to e;; 4+ e33 = 3.0 x 10~ Cm ™! the distortion
decreases and there is a significant reduction in the mid-layer tilt angle, now 6, = 0.984 rad.
This effect has been previously reported and investigated [10].

The effect of increasing the charge number density is then investigated for the case where
the sum of the flexoelectric coefficients is kept constant at e;; + e33 = 3.0 x 10~ Cm~!. For
ne = 1.0 x 10" m~2 the difference from the n-director distortion profile for when n, = 0.0 m—>
is negligible. If this profile was plotted in Fig. 4 it would therefore be coincident with the
lower dotted curve. When the number density is increased further the mobile ionic species
begin to shield the flexoelectric polarisation and the reduction in the mid-layer tilt angle

relative to when the sum of the flexoelectric coefficients is zero is not as marked. The curve



for n, = 1.0 x 10 m 2 and e;; +e33 = 3.0 x 107 Cm !, shown as the alternate dot-dashed
curve in Fig. 4 lies only just below the solid curve in Fig. 4 for which n, = 0 m™3 and

3 is not shown because this would be

e11 + e33 = 0 Cm~!. The curve for n, = 1.0 x 10%* m~
coincident with the solid line. Therefore the decrease in the distortion across the layer and the
accompanying reduction of the mid-layer tilt due to the effect of the flexoelectric polarisation
is virtually cancelled by the shielding effect of the mobile ions at this high number density.

There is a trade-off where higher values of the sum of the flexoelectric coefficients cause the
mid-layer tilt angle 6,,, to decrease below the zero flexoelectric polarisation value of 1.036 rad,
but at higher values of the ionic charge density n, shielding partially or fully cancels this
decrease. This is illustrated in Fig. 5 which shows a surface plot of the value of 6,, as a
function of both ej; + e33 and the base 10 logarithm of n, for H/H. = 1.5. The value of 6,
is reduced only when the sum of the flexoelectric coefficients is large but the ionic number
density is small. Note that for the highest values of e;; + e33 a value of n, of 1.0 x 10** m 3 is
still insufficient to provide full shielding and return 6,, back up to 1.036 rad. The analytical
equations (24) and (25) give an insight, albeit for the region only just above threshold, into
how this trade off operates. The second term in (24) has the square of the sum ej; + e33 in
the numerator, but this is acted against by having the term A? in the denominator. From
equation(22), A? is directly proportional to the ionic number density, n,.

Since the square of ej; + e33 appears in equation (24) then the appearance and effects
of the flexoelectric polarisation in this geometry should be independent of the sign of the
sum of the flexoelectric coefficients. However at higher fields, where the asymptotic analysis
is no longer a good approximation to the full solution to equations (4) to (7), we find that
there are small differences in the potential profile and the n-director profile between the cases
where the sign of e;; + es3 is positive or negative. These differences would also be seen if the
n-director distortion in the nematic layer were caused by electric fields of different polarity
but with the sign of e;; + e33 kept constant. Following from this there will be implications
for the theoretical treatment of a nematic layer with a flexoelectric polarisation under applied
a.c. voltages [12].

Figure 6 shows the results of the numerical calculation of the mid-layer distortion, 6,,, as
a function of static magnetic field. All of the curves with different values of e;; + e33 and
n, take the same value of 6,, up until the Freedericksz threshold, H/H. = 1. Above the
threshold there is a sharp increase in the value of #,, in every case, but the gradients of the
curves are different. The solid curve, which shows the steepest gradient immediately above
the threshold, is for n, = 0 m 2 and e;; +e33 = 0 Cm!. The lowest gradient occurs when the
ionic number density n, is still zero but the sum of the flexoelectric coefficients is increased
to e11 + e33 = 3.0x 107" Cm~'. The behaviour of the curves with non-zero values of n, is in
accordance with the discussion above, i.e. a high value of n, tends to provide shielding which
cancels the decrease in the value of 6, caused by the flexoelectric polarisation. An important

feature in Fig. 5 is that the curves with different values of e;; + e33 and n, are very close
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to converging by the time H/H,. has reached a value of 2.5. The curves do not cross as the
magnetic field is further increased, but the separation between them decreases further.

In a practical measurement of the Freedeericksz transition either the transmission of light,
with the cell between crossed polarisors, or the capacitance of the liquid crystal cell, is moni-
tored as a function of the applied magnetic field [6, 7, 8]. In Fig. 7 we show the permittivity
as a function of the relative magnetic field strength, H/H,, using precisely the same results
from the numerical simulations that were used to generate the curves shown in Fig. 6. The
permittivity was calculated by dividing the layer into a large number of slices and summing
the reciprocals of the z-components of the permittivities of the individual slices using a numer-
ical integration technique. The gradients of the permittivity versus H/H, curves immediately
above the Freedericksz threshold behave in a similar manner to Fig. 6 considering the different
values used for the sum of the flexoelectric coefficients, e 4+ e33, and the initial charge number
density, n,. The gradient is reduced when e;; +e33 = 3.0x 107! Cm ! as long as the initial
charge number density is of order 1.0 x 10 m~3 or below.

When the relative magnetic field strength is above H/H, > 1.5 a different behaviour is
observed for the permittivity in Fig. 7 compared to the mid-layer tilt angle in Fig. 6. In Fig. 7

U and n, takes values 0, 10'8,

the permittivity curves for which e;; +e33 = 3.0 x 107 Cm~
and 10* m™2 all converge at high fields. The curve for which the charge number density
and sum of the flexoelectric coefficients are zero remains at a higher permittivity above these
converged curves. The difference between the observed high field behaviours in Fig. 6 and
Fig. 7 arises from the fact that the mid-layer tilt angle only shows the maximum tilt angle at
a particular value of H/H.. The permittivity, however, is calculated from the full n-director
profile through the layer. As the field is increased the high gradients in the n-director, from
which the greatest flexoelectric polarisation arises, become more and more localised to the
regions near to the boundaries of the cell. The influence of this polarisation on the mid-layer
tilt angle therefore becomes proportionately less. However, a given value of the ionic number
density becomes less effective in shielding the flexoelectric polarisation in these regions. It is
possible that this feature could be helpful in determining the true value of the flexoelectric
coefficients of a nematic material, despite any contamination being present.

The Debye screening length [24], defined by A = (GEOkBT/TL0€2)1/2, indicates the length over
which the mobile charge density n, will be effective in screening the flexoelectric polarisation
due to gradients in the n-director. If the flexoelectric polarisation is confined to thin layers
near to the boundaries of the cell, as is the case at high values of H/H,, then the value of A
must be commensurate with widths of the boundary layer to maintain effective screening. This
requires higher values of the charge density at the higher values of H/H.. At a temperature of
300 K and with a permittivity of ¢ = 10, which is between the values of the two components
given in Table 1, the Debye screening length takes the values A = 3.8 x 107% m when n, =
1.0 x 108 m™3, A = 1.1 x 107 m when n, = 1.0 x 10" m™3, and A = 3.8 x 107" m
when n, = 1.0 x 102® m—3. These values should be considered in the context of the cell
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thickness that was used in our simulations, d = 1.0 x 107> m. It is clear that a charge
density of n, = 1.0 x 10'® m=3 will be insufficient to screen the flexoelectric polarisation at
even relatively low values of H/H, since the corresponding value of A is approaching half the
thickness of the cell.

Another interesting feature that is highlighted by the analytical solution is the dependence
of 0,, on the cell thickness d described by equation (24). Although the magnitude of the
critical threshold is d-dependent, a plot of 6, versus H/H, should not vary with d. Even
when flexoelectricity is introduced, inspection of the second term in equation (24) predicts
that the cell thickness has no effect unless the charge number density n, is non zero. These
predictions are bourne out by the plots of the mid-layer tilt angle and the permittivity as a
function of the relative magnetic field strength H/H, for different values of the charge number
density shown in Figs. (8) and (9). For both of these figures the values of the parameters
used are as shown in Table 1 except for the cell thickness, d, and the relative magnetic field
strength, H/H., which are as indicated. Therefore, for all of the curves shown, relatively
high values of the sum of the flexoelectric coefficients and the charge number density are
being considered. Under these circumstances the gradient immediately after the threshold
field depends upon the cell thickness. Higher cell thicknesses give a steeper gradient, which
is in accordance with the prediction of equations (24) and (25). Since all the curves were
calculated with the same value n, = 1.0 x 10'® m=3 they all converge at high values of H/H,
for both the mid-layer tilt angle and the permittivity, which is consistent with the numerical
results depicted in Figs. (6) and (7).

5 Conclusion

We have shown that the observed influence of a flexoelectric polarisation in the region imme-
diately above the critical magnetic Freedericksz transition can be reduced or even removed
by the shielding effects of mobile ionic species having a sufficiently high number density. This
effect has been demonstrated in the planar nematic alignment geometry with strong surface
anchoring and with equal densities of singly charged positive and negative ionic species. In
order for this shielding to occur, higher values of the charge number density n, are needed for
higher values of the sum of the flexoelectric coefficients e;; + e33. Analytical calculations have
given an insight into how the shielding is controlled by the interplay between these parameters
and by other variables such as the cell thickness, the elastic constants, the static permittivity
tensor for the liquid crystal and the mobilities of the ionic species.

One interesting observation is the differences in the behaviour of the mid-layer tilt as
compared to the permittivity as a function of magnetic field when considering different values
for the sum of the flexoelectric coefficients and the charge number density. At high magnetic
fields the permittivity is reduced by having a non zero value of e;; + e33 and this reduction

remains for number densities up to n, = 1.0 x 102° m 3. This suggests the possibility that
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measurements at high field could be used to indicate the presence of a flexoelectric polarisa-
tion almost independently of the level of ionic contamination in the nematic material. This
possibility requires further investigation because the permittivity has been calculated by di-
viding the nematic layer into thin slices and considering the permittivity tensor in each slice.
In a practical measurement a small a.c. voltage would be applied and the capacitance, and
thus permittivity, of the layer would be inferred from the relative phase and amplitude of the
resultant a.c. displacement current. If the probe voltage is small and its frequency is high
then any fluctuations that this causes in the charge density profile and the director distortion
and associated flexoelectric polarisation may be negligible. However, it is difficult to achieve
high magnetic fields using standard laboratory equipment and so further work is underway
to investigate if a similar effect could be observed if the n-director distortion is caused by a

large a.c. voltage which is also used to measure the capacitance.
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Figure 1: Tllustration of the geometry under investigation
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Figure 2: (a) Director distortion and (b) potential across the cell for different
applied magnetic fields. The dashed and solid lines represent the analytical and

numerical solutions respectively. The parameters used in the calculations are given
in Table 1.
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Figure 3: (a) Electron number density and (b) hole number density across the
cell for different applied magnetic fields. The dashed and solid curves represent

the analytical and numerical solutions, respectively. The parameters used in the
calculations are given in Table 1.
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Figure 4: Director distortion across the cell for different initial constant charge
number densities and the sum of the flexoelectric coefficients. The parameters

used in the numerical calculations are given in Table 1.
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Figure 5: Mid-layer tilt angle as a function of the constant charge number density
and sums of the flexoelectric coefficients. The parameters used in the numerical

calculations are given in Table 1.
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Figure 6: Distortion in the centre of the cell as a function of applied magnetic
field for different constant charge number densities and sums of the flexoelectric
coefficients. The parameters used in the numerical calculations are given in Table
1.
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Figure 7: Permittivity of the cell as a function of applied magnetic field for different
constant charge number densities and sums of the flexoelectric coefficients. The

parameters used in the numerical calculations are given in Table 1.
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Figure 8: Distortion in the centre of the cell as a function of applied magnetic field
for different cell thicknesses. The parameters used in the numerical calculations

are given in Table 1.
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Figure 9: Permittivity of the cell as a function of applied magnetic field for different

cell thicknesses. The parameters used in the numerical calculations are given in
Table 1.
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