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The Effect of Water Stage on The Infiltration Rate For 

Initially Dry Cchannels  
Hossam Elhanafy and Graham J. M. Copeland 
Civil Engineering Department, Strathclyde University,  U.K.  

 

Abstract 
Several hydrological models that are used for simulating water flow in rivers and channels are based on 

the shallow water equations as in Copeland & El-Hanafy, (2006) and Sanders & Katopodes (2000) or 

Saint Venant equations (El-Hanafy & Copeland, 2007a) and (Ding & Wang 2004). Both the shallow 

water equations and the Saint Venant equations form a system of partial differential equations which 

represents mass and momentum conservation along the channel and include source terms for the bed 

slope and bed friction. The quantity of infiltrated water into the channel bed should be added as a 

source term in both the mass the momentum equations. Akanbi & Katopodes, (1998) suggested an 

approximation of seepage outflow in the momentum equation that is based upon Green and Ampt 

infiltration rate equation. 

The well known formula for the infiltration rate by Green and Ampt neglects the effect of the water 

stage (water head) above the soil surface; this assumption is physically acceptable when the water 

depth is small compared to the other terms in Green-Ampt infiltration rate equation. But when 

simulating water flow over an initially dry bed or studying flood wave propagation over a thin initial of 

water depth then the water depth should be taken into consideration when calculating the infiltration 

rate despite its requiring more mathematical computations. 

This paper presents a staggered finite difference scheme for the channel routing based upon Saint 

Venant equations and uses the method of characteristics to interpolate the downstream boundary 

conditions after modifications to suit the case of a shallow water initial depth followed by a flood event 

(El-Hanafy & Copeland, 2007b). The modified method of characteristics is implemented to achieve a 

transparent down stream boundary. The relation between the water depth and the infiltration rate has 

been derived for Saint Venant equations and it is concluded that the effect of water stage has a positive 

effect on the infiltration rate as was expected. 

 

Keywords 
Green Ampt equation; Method of Characteristics; flood prediction; shallow water equations; St. Venant 

equations. 

1 - Introduction 

Simulating water flow in a river channel either by the shallow water equations or Saint Venant 

equations is not a recent topic in the field of computational fluid dynamics, one of the most important 

challenges is to take the effect of infiltrated water into the channel bed into consideration. Akanbi & 

Katopodes (1998) modelled the flood wave propagation on an initially dry bed using the finite element 

technique; Fiedler & Ramirez (2000) applied the MacCormack finite difference scheme to simulate the 

discontinuous shallow flow over an infiltrating surface. Although both these two works take the effect 

of infiltration rate into consideration they neglect the effect of the water stage above the soil surface in 

order to simplify the computations. 

Infiltration is the process of water penetration into the soil and it is an important process in the 

hydrological cycle by which surface runoff and groundwater recharge can be linked. The Richard’s 

equation which is a partial differential equation is used to evaluate the infiltration rate that penetrates 

the soil surface vertically (Smith & Woolhiser, 1971) as cited by Shaohua at al, (2002). Based on this, 

three infiltration-capacity formulas by Horton, Philip, and Green-Ampt have been derived. These three 

formula were assessed by Shaohua at al, (2002) and from their recommendations, it was found that the 

exact solution of Richard’s equation is best fitted by the Green-Ampt infiltration rate equation.  

The initial Green-Ampt model (1911) was the first physically-based model/equation describing the 

infiltration of water into soil. It has been the subject of considerable developments in soil physics and 

hydrology owing to its simplicity and satisfactory performance for a great variety of water infiltration 

problems. This model yields the infiltration rate as an implicit function of time (i.e., given a value of 

time (t), value of the infiltration rate (f) can be obtained only by direct calculation). But one of the 



important features of the well known Green-Ampt formula is the neglecting of the surface ponding on 

the infiltration rate.  

In this article, efforts were devoted to solve the well known Green-Ampt Formula using Newton 

Raphson without neglecting the ponding effect on the infiltration rate. The purpose, however, was not 

to construct a new infiltration formula but to assess the effect of water stage above the soil surface on 

the infiltration rate while simulating a water flow in initially dry river streams. 

2 - Governing equations for the open channel flow 

The Saint Venant equations (SVEs) that take the effect of infiltration rate into consideration form a 

system of partial differential equations which represents mass and momentum conservation along the 

channel and include source terms for the bed slope and bed friction. These equations may be written as: 
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where t is time; x is the horizontal distance along the channel; Q is the discharge; A is the flow cross 

section area; H is the total water stage; g is the gravitational acceleration; z is the vertical distance 

between the horizontal datum and the channel bed as function (x,t); S0 is the bed slope = -
x

z

∂

∂ ; k is a 
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2
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momentum flux term, or convective acceleration; b is the channel bottom width and f is the infiltration 

rate. The effect of infiltration rate is added to the (SVEs) using the Green-Ampt model as shown in 

Figure 1,as follows: 
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FIGURE 1.  Green- Ampt formula 

 

Where F is the cumulative depth of infiltration (-ve); K is saturated hydraulic conductivity; ψf is 

suction at the wetting front (negative pressure head); θi is initial moisture content; θs is saturated 

moisture content; and H is the depth of ponding. 

The estimation of the momentum loss due to seepage (u.f/2) used in the momentum equation (2.2) 

follows work by Abiola & Nikaloaos (1998). 

Assume H is small relative to the other terms and the previous equation simplifies to the Green-Ampt 

infiltration rate equation. 
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But if the case under consideration is to simulate flood wave propagation over an infiltrating surface 

and the initial condition is a dry channel bed as shown in Figure 2, the previous assumption is not 

acceptable. 
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FIGURE 2.  Flood wave propagation in a an initially dry bed channel 

 
From Figure 2 it is clear that the initial condition is zero flow, so the effect of the water depth could 

be definitely neglected. But by focusing on the flood wave along the time axis at the upstream 

boundary there is a significant change in the water stage, which in turn should affect the infiltration 

rate. 

3 – Solution of Implicit Green-Ampt equation: 

The main problem that arises when evaluating the infiltration rate using the exact formula, equation 

(2.3) is that the cumulative depth of infiltration, F is an implicit function. The well known Newton 

Raphson could by used to find a solution for this implicit function as will be described later. 

Rearranging equation (2.4) gives the cumulative infiltration, F as a function of infiltration rate, f but 

still neglects the water depth, H. 
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Now, to take the effect of ponding and to introduce time dependence in equation (2.3) which is a 

relation between f and F, let 
is θθθ −=∆  and separate variables in equation (2.3); 
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Use the following u substitution to integrate equation (3.3) 

dFdu

HuF

HFu

f

f

=

∆+∆−=

∆−+∆=

θψθ

θψθ

 
Substitute the above into the differential equation. 
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Integrate the previous equation. 

( ) tKulnHulnu sf −=θ∆+ψθ∆−        (3.5) 

Substitute the original variables back into integrated equation. 
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Although t can be expressed explicitly as a function of F but F is an implicit function of t. so one of 

the most common methods to find the roots is Newton Raphson. The Newton Raphson formula 

consists geometrically of extending the tangent line at a current point xi until it crosses zero (Press et 

al, 1992) as shown in Figure 3. 

(3.2) 



 
 

FIGURE 3.  The geometrical principle of Newton Raphson Formula 

 

Once the values of the cumulative depth of infiltration are obtianed at each node within the discrizing 

scheme, the infiltration rate, f is calculated as  
t

F
f
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4 – Numerical approach: 

4.1 – Model discretization 

 A simple space and time staggered finite difference mesh is used to discretise the domain as depicted 

in Figure 4. The approximation of the derivatives
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or a weighted average of centered and upwind difference expressions: 
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See (Fletcher, 1991), (Leonard, 1983) and (Falconer and Liu, 1988) for more details. The discharge 

Q is marched forward in time using the momentum equation, equation (2.2) as follow: 
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The flow cross section, A, is marched forward in time using the continuity equation, equation (2.1) 
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where; Tw is the channel top width, and b is the channel bottom width. The initial conditions are 
1

iA 1
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iq while the boundary conditions are 
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Q  at the upstream boundary and 

1+j
nxA  at the 

downstream boundary, the upstream condition is the inflow hydrograph; the downstream condition 

must be interpolated using the method of characteristics (MOC) as described in Abbott (1977) and 

French (1986) see below. 
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FIGURE 4.  The discretization scheme for Saint Venant equations 

4.2 -Method of Characteristics (MOC): 

Following a standard text such as (Abbott, 1977) and (French, 1986), the characteristics of the Saint 

Venant equations can be derived. The final form is: 
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Where; ∆ indicates a total change in the variable along the characteristic path. equation (4.4) is 

conceptually correct from the mathematical point of view, but when dealing with a wave propagating 

over an initially dry bed we cannot interpolate the unknown value of the cross section area, A at the 

downstream boundary (point B) in Figure 5 from a unknown value backward in time (point A) in 

Figure 5 directly since due to nonlinearity, the characteristic is not a straight line but it is a curve as 

shown by the dashed line in Figure 5. So the Modified Method Of Characteristics (MMOC) see (El-

Hanafy & Copeland, 2007b) for more details should be implemented rather than the common Method 

Of Characteristics (MOC). These formulas are used to interpolate boundary values of B at the 

downstream boundary (x = nt) from a known value of A at x = nt-1 as multi segments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 5.  Interpolation along the characteristics using 

         The Modified Method of Characteristics. 
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5 – Test case 1: 

This case is a bench mark, idealized case since the studied channel has a trapezoidal cross section as 

shown in Figure 6 and the channel is frictionless and horizontal. The main purpose of this case is to 

investigate the effect of the water depth on the infiltration rate. If the driving condition upstream is a 

steady flow and identical with a uniform initial condition and the infiltration rate is absolutely 

neglected, then the values of both the discharge and the water depth along the channel should remain as 

it is without any variation as shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 6.  Channel cross section      FIGURE 7.  Steady uniform flow 

 

If the infiltration rate is involved as a source term in Saint Venant equations (SVEs), equations (2.1 

and 2.2) without taking the effect of the water depth, i.e. implement equation (2.4) for the calculation 

of the infiltration rate, then the water depth is expected to decrease along the time axis since the 

infiltration rate is function of time as shown in Figure 8.  

If the exact solution of Green-Ampt equation is implemented to calculate the infiltration rate, and 

taking the effect of ponding into consideration, equation (2.3) then the water depth is expected to be 

less than the previous calculation shown in Figure 8. The result of this case is shown in Figure 9 and by 

comparing Figure 8 and Figure 9 it is apparent that when the effect of the water depth on the infiltration 

rate is ignored the infiltrated water into the soil is less than if the water depth is taken into 

consideration. This is why in Figure 9 the water depth decreases more quickly than in Figure 8 so it 

drops down from 0.05 m to nearly zero within 33 min. only, while in Figure 8 it takes about 40 minutes 

to reach the zero stage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 8.  Water depth within the channel       

& the effect of water depth on 

the infiltration rate is neglected 

FIGURE 9. Water depth within the channel 

& taking the effect of water depth on 

the infiltration rate into consideration 
 

Furthermore, Figure 10 shows the rates of infiltration evaluated from formulas, equation (2.3) and 

equation (2.4), which emphasis that the rate of infiltration increase when taking the effect of ponding 

into consideration, in other word neglecting the ponding effect results in under estimates of the 

infiltration rate. 
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FIGURE 10.  Water depth within the channel 

6 – Test case 2: 

At this case the stream is 15 km long and its cross section is rectangular section with 3.0 m bottom 

width. Flow in the channel is simulated for a period of 2.5 hour during which time a sinusoidal 

hydrograph shape of duration 50 minute as shown in Figure 11 is introduced at the upstream boundary 

and passes along the channel to represent a flash flood event. The peak discharge is  0.16 m
3
.s

-1
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 11.  a flash flood hydrograph at the upstream boundary. 
 

The effect of the infiltration rate on the flow is significant as illustrated in Figure 12 which represents 

the flood passage along the channel. The water depth decreased from 15 cm to zero within 2 hr. and 20 

min. at the down stream boundary, while the flood wave reached a zero flow within 2.5 hr.  
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FIGURE 12.  Flash flood wave propagation 
 

Figure 13 show the distribution of the infiltration rate along the channel for 2.5 hr. and it is clear how 

the values of the infiltration are responding to the water depth along the trajectory of the flood wave. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 13.  distribution of the infiltration rate 



7 – Conclusions: 

This paper shows that, although Green-Ampt Formula is considered one of the most appropriate 

formula for the calculation of the infiltration rate (Shaohua at al, 2002), some precautions should be 

considered while implementing it. As shown, one of the most important factors that greatly affects the 

calculations of the infiltration rate is the effect of ponding above the soil surface on the infiltration rate 

which in turn should reduce the water stage of the water flow. So in a case where the studied channel is 

an irrigation channel for example, it is clear now that the total infiltrated water to the ground will be 

greater than if it is calculated without taking the effect of ponding. Also, the water stage, which is an 

important factor in the design of irrigation structures, will be less than if it is calculated without taking 

the effect of ponding. 

If the purpose of a study is not only to simulate the flow but also to evaluate the sensitivity of the 

flow to some controls such as the bed friction, bed slope and infiltration rate as in the work by           

El-Hanafy & Copeland (2007c), in this case the estimation of the sensitivity of the flow to the 

infiltration rate will be less if the effect of ponding is ignored see Figure 10 

The present more complete solution for Green-Ampt equation allows a realistic computation of the 

infiltration rate, water flow conditions, and sensitivity analysis. Results of the sensitivity of the flow to 

the infiltration rate are shown in separate publications El-Hanafy et al, (2007d). 
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